Mn掺杂SnO_2中铁磁耦合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀磁半导体由于在自旋电子学领域具有潜在的应用价值,受到人们广泛地关注。而稀磁半导体中铁磁性的来源一直是困扰人们的问题,其中晶体缺陷及载流子是影响稀磁半导体铁磁性的两个主要因素。本论文主要研究了载流子对Mn掺杂SnO_2稀磁半导体铁磁性的影响,主要工作概括如下:
     利用固相反应法制备了Sn_(1-x)Mn_xO_2 (x = 0.01, 0.03, 0.05),Sn_(1-x-y)Mn_xSb_yO_2 (x = 0.01, 0.03; y = 0, 0.005, 0.02, 0.04)和Sn_(1-x-z)Mn_xCu_zO_2 (x = 0.01, 0.03, 0.05; z = 0.005, 0.02)多晶样品。利用X射线衍射仪(XRD)、X射线光电子能谱(XPS)和物理性质测试系统(PPMS)对样品的结构、价态、电输运性质和磁性质进行了系统的研究。
     多晶Sn_(1-x-y)Mn_xSb_yO_2系列样品呈现出单一金红石结构,没有杂相生成,随着Sb含量的增加,晶胞体积增大,铁磁性减弱。对于x = 0.03的样品,居里温度由未掺杂Sb (y = 0)时的27 K减小到26.5 K (y = 0.005),当掺杂量y≥0.02时,样品表现出顺磁性。而Sb的掺杂量为y = 0.04时,由于样品中Sb~(5+)离子代替SnO_2中Sn~(4+)离子而产生大量电子,导致样品导电性显著增强。
     为进一步研究空穴在铁磁耦合中的作用,我们在Sn_(1-x)Mn_xO_2中共掺杂Cu元素。电输运测量表明所有Sn_(1-x-z)Mn_xCu_zO_2样品在室温均为绝缘体,而随着Cu含量的增加样品的铁磁性呈现出增强趋势:对于x = 0.03系列样品,少量Cu掺杂(z = 0.005)时居里温度上升到30.5 K;随着Cu含量进一步增加到2 %时,居里温度增加到40.0 K。
     上述Sb和Cu掺杂Sn_(1-x)Mn_xO_2中的磁性可以用束缚磁极化子模型解释:在Sn_(1-x)Mn_xO_2样品中,Mn~(3+)代替样品中Sn~(4+)离子产生局域化的空穴,周围的Mn~(3+)以局域化的空穴为中心形成束缚磁极化子,极化子间有效半径发生交叠产生铁磁相互作用。当体系中掺入Sb后,Sb~(5+)代替Sn~(4+)产生自由电子补偿掉样品中局域化的空穴,减少了样品中束缚磁极化子数目,导致铁磁性减弱。而当体系中掺入Cu后,Cu~(2+)代替SnO_2晶格中Sn~(4+)产生新的局域化空穴,增多的空穴与邻近的Mn~(3+)离子形成新的束缚磁极化子,从而使样品的铁磁性增强。
Diluted magnetic semiconductors (DMSs) have become a focus of considerable interests in recent years due to their potential application in the new field of research and application known as spintronics. However, the origin of the ferromagnetism challenges the researcher’s understanding of magnetic order in solids. In this thesis, we have investigated the influence of charge carrier on the structural, magnetic and electrical properties of Sb and Cu doped Sn_(1-x)Mn_xO_2. The main results are generalized as follows.
     Sn_(1-x)Mn_xO_2 (x = 0.01, 0.03, 0.05), Sn_(1-x-y)Mn_xSb_yO_2 (x = 0.01, 0.03; y = 0, 0.005, 0.02, 0.04), Sn_(1-x-z)Mn_xCu_zO_2 (x = 0.01, 0.03, 0.05; z = 0.005, 0.02) polycrystalline samples were prepared by a solid-state reaction method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and physical property measurement system (PPMS) were used to measure the crystal structure, the chemical binding state, the electrical properties and the magnetic properties, respectively.
     It is found that all Sn_(1-x-y)Mn_xSb_yO_2 samples are crystallized in single phase with a rutile structure which is the characteristic of SnO_2. The lattice expansion and reducing ferromagnetism are observed with increasing Sb concentration. In particular, at a fixed Mn composition of x = 0.03, it is found that the ferromagnetic behaviors observed in undoped Sn0.97Mn0.03O_2 are suppressed due to the antimony doping; and the resistivity decreased drastically with Sb concentration up to 0.04 in Sn0.97-yMn0.03SbyO_2. Combined with all the results, we conclude that the ferromagnetic interaction between Mn~(3+) ions is destroyed by the mobile charge electrons which are introduced by Sb~(5+) substitution for Sn~(4+).
     To investigate the role of hole in ferromagnetism, Cu is co-doped into the Sn_(1-x)Mn_xO_2. It is found that the doping of copper, which acts as Cu~(2+) in SnO_2, brings significant enhancement of the ferromagnetism in Sn_(1-x)Mn_xO_2, while the samples remain electrical insulating. In particular, at a fixed Mn composition of x = 0.03, Curie temperature (TC) increases up to 40.0 K at Cu concentration z = 0.02 from TC = 27.0 K at undoped Sn0.97Mn0.03O_2.
     The observed ferromagnetism in Mn-doped SnO_2 is discussed on the basis of the formation of bound magnetic polarons (BMP): a BMP consists of a localized hole and many Mn~(3+) ions around the localized center, the overlapping and interaction of neighboring BMPs produce long-range ferromagnetic coupling. In Sn_(1-x-y)Mn_xSb_yO_2, the localized holes will be compensated by the electrons introduced by the Sb doping, which will induce a decrease of the concentration of BMPs and suppression of the ferromagnetism. For the Cu doped Sn0.97Mn0.03O_2, the concentration of localized hole will be increased by substituting Cu~(2+) for Sn~(4+), which would introduce more BMPs with the proximate Mn, hence the ferromagnetism are enhanced.
引文
[1] Ohno H, Making Nonmagnetic Semiconductors Ferromagnetic, Science, 1998, 281: 951-956
    [2] Furdyna J K, Diluted magnetic semiconductors, J. Appl. Phys.,1988, 64: R29-R64
    [3] Ohno H, Shen A, Matsumoto F et al., (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett., 1996, 69: 363-365
    [4] Dietl T, Ohno H, Matsukura F et al., Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science, 2000, 287: 1019-1022
    [5] Dietl T, Ohno H, and Matsukura F, Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors, Phys. Rev. B, 2001, 63: 195205-1~21
    [6] Matsumoto Y, Murakami M, Shono T et al., Room-temperature ferromagnetism in transparent transition metal-doped Titanium dioxide, Science, 2001, 291: 854-856
    [7] Hong N H, Prellier W, Sakai J et al., Substrate effects on the room-temperature ferromagnetism in Co-doped TiO2 thin films grown by pulsed laser deposition, J. Appl. Phys., 2004, 94: 7378-7380
    [8] Kim J K, Park J H, Park B G et al., Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films, Phys. Rev. Lett., 2003, 90: 017401-1~4
    [9] Shinde S R, Ogale S B, Higgins J S et al., Co-occurrence of superparamagnetism and anomalous Hall Effect in highly reduced cobalt-doped rutile TiO2-δfilms, Phys. Rev. Lett., 2004, 92: 166601-1~4
    [10] Ueda K, Tabata H, and Kawai T, Magnetic and electric properties of transition-metal-doped ZnO films, Appl. Phys. Lett., 2001, 79: 988-990
    [11] Lee H J, Jeong S Y, Cho C R et al., Study of diluted magnetic semiconductor: Co-doped ZnO, Appl. Phys. Lett., 2002, 81: 4020-4022
    [12] Cho Y M, Choo W K, Kim H et al., Effects of rapid thermal annealing on the ferromagnetic propterties of sputtered Zn1-x(Co0.5Fe0.5)xO thin films, Appl. Phys. Lett., 2002, 80: 3358-3360
    [13] Rode K, Anane A, Mattana R et al., Magnetic semiconductors based on cobalt substituted ZnO, J. Appl. Phys., 2003, 93: 7676-7678
    [14] Park M S, and Min B I, Ferromagnetism in ZnO codoped with transition metals: Zn1-x(FeCo)xO and Zn1-x(FeCu)xO, Phys. Rev. B, 2003, 68: 224436-1~6
    [15] Venkatesan M, Fitzgerald C B, Lunney J G, and Coey J M D, Anisotropic Ferromagnetism in Substituted Zinc Oxide, Phys. Rev. Lett., 2004, 93: 177206-1~4
    [16] Lin H T, Chin T S, Shih J C et al., Enhancement of ferromagnetic properties in Zn1-xCoxO by additional Cu doping, Appl. Phys. Lett., 2004, 85: 621-623
    [17] Ramachandran S, Tiwari A, and Narayan J, Zn0.9Co0.1O-based diluted magnetic semiconducting thin films, Appl. Phys. Lett., 2004, 84: 5255-5257
    [18] Gacic M, Jakob G, Herbort C et al., Magnetism of Co-doped ZnO thin films, Phys. Rev. B, 2007, 75: 205206-1~8
    [19] Kim J H, Kim H, and Kim D, Magnetic properties of epitalxially grown semiconducting Zn1-xCoxO thin films by plused laser deposition, J. Appl. Phys., 2003, 92: 6066-6071
    [20] Yoon S W, Cho S B, We S C et al., Magnetic properties of ZnO-based diluted magnetic semiconductors, J. Appl. Phys., 2003, 93: 7879-7881
    [21] Park J H, Kim M G, Jang H M et al., Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films, Appl. Phys. Lett., 2004, 84: 1338-1340
    [22] Li W, Kang Q, Lin Z et al., Paramagnetic anisotropy of Co-doped ZnO single crystal, Appl. Phys. Lett., 2006, 89: 112507-1~3
    [23] Yin S, Xu M X, Yang L et al., Absence of ferromagnetism in bulk polycrystalline Zn0.9Co0.1O , Phys. Rev. B , 2006, 73: 224408-1~3
    [24] Lee E C, and Chang K J, Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO, Phys. Rev. B, 2004, 69: 085205-1~5
    [25] Sluiter M H F, Kawazoe Y, Sharma P et al., First Principles Based Design and Experimental Evidence for a ZnO-Based Ferromagnet at Room Temperature, Phys. Rev. Lett., 2005, 94: 187204-1~4
    [26] Chanier T, Sargolzaei M, Opahle I et al., LSDA+U versus LSDA: Towards a better description of the magnetic nearest-neighbor exchange coupling in Co- and Mn-doped ZnO, Phys. Rev. B, 2006, 73: 134418-1~7
    [27] Sati P, Deparis C, Morhain C et al., Antiferromagnetic Interactions in Single Crystalline Zn1-xCoxO Thin Films, Phys. Rev. Lett., 2007, 98: 137204-1~4
    [28] Coey J M D, Douvalis A P, Fitgerald C B et al., Ferromegnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. , 2004, 84: 1332-1334
    [29] Hong N H, Sakai J, Poirot N et al., Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films, Phys. Rev. B , 2006, 73: 132404-1~4
    [30] Xu Q, Schmidt H, Zhou S et al., Room temperature ferromagnetism in ZnO films due to defects, Appl. Phys. Lett., 2008, 92: 082508-1~3
    [31] Liu H, Zhang X, Li L et al. , Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO, Appl. Phys. Lett., 2007, 91: 072511-1~3
    [32] Ozaki N, Okabayashi I, Kumekawa T et al., Suppression of ferromagnetism due to hole doping in Zn1-xCrxTe grown by molecular-beam epitaxy, Appl. Phys. Lett., 2005, 87: 192116-1~3
    [33] Ozaki N, Nishizawa N, Marcet S et al., Significant Enhancement of Ferromagnetism in Zn1-xCrxTe Doped with Iodine as an n-Type Dopant, Phys. Rev. Lett., 2006, 97: 037201-1~4
    [34] Gao K H, Li Z Q, Du T et al., Ferromagnetic properties of Cu1-xMnxO magnetic semiconductors, Phys. Rev. B, 2007, 75: 174444-1~11
    [35] Buchholz D B, Chang R P H, Song J H et al., Room-temperature ferromagnetism in Cu-doped ZnO thin films, Appl. Phys. Lett., 2005, 87: 082504-1~3
    [36] Tiwari A, Snure M, Kumar D et al., Ferromagnetism in Cu-doped ZnO films: Role of charge carriers, Appl. Phys. Lett., 2008, 92: 062509-1~3
    [37] Frohlich H, and Nabarro F R N, Orientation of nuclear spins in metals, Proc. R. Soc. London, 1940, A175: 382-391
    [38] Ruderman M A, and Kittel C, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev., 1954, 96: 99-102
    [39] Kasuya T, A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model, Prog. Theot. Phys., 1957, 16: 45-57
    [40] Yosida K, Magnetic Properties of Cu-Mn Alloys, Phys. Rev., 1957, 106: 893-898
    [41] White R M, Quantum Theoty of Magnetism, Springer-Verlag Berlin Heidelberg New York, 1983
    [42] Zener C, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev., 1951, 82: 403-405
    [43] Wolff P A, Bhatt R N, and Durst A C, Polaron-polaron interactions in diluted magnetic semiconductors, J. Appl. Phys., 1996, 79: 5196-5198
    [44] Kaminski A, and Sarma S D, Polaron Percolation in Diluted Magnetic Semiconductors, Phys. Rev. Lett., 2002, 88: 247202-1~4
    [45] Kilic C, and Zunger A, Origins of Coexstence of Conductivity and Transparency in SnO2 , Phys. Rev. Lett., 2002, 88: 195501-1~4
    [46] Ogale S B, Choudhary R J, Buban J P et al., High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2-δ, Phys. Rev. Lett., 2003, 91: 077205-1~4
    [47] Fitzgerald C B, Venkatesan M, Douvalis A P et al., SnO2 doped with Mn, Fe or Co: Room temperature dilute magnetic semiconductors, J. Appl. Phys., 2004, 95: 7390-7392
    [48] Punnoose A, Hays J, Gopal V et al., Room-temperature ferromagnetism in chemically synthesized Sn1-xCoxO2 powders, Appl. Phys. Lett., 2004, 85: 1559-1561
    [49] Hays J, Punnoose A, Baldner R et al., Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles, Phys. Rev. B, 2005, 72: 075203-1~4
    [50] Liu C M, Zu X T, and Zhou W L, Magnetic interaction in Co-doped SnO2 nano-crystal powders, J. Phys.: Condens. Matter, 2006, 18: 6001-6007
    [51] Gopinadhan K, Pandya D K, Kashyap S C et al., Cobalt-substituted SnO2 thin films: A transparent ferromagnetic semiconductor, J. Appl. Phys., 2006, 99: 126106-1~3
    [52] Yan L, Pan J S, and Ong C K, XPS studies of room temperature magnetic Co-doped SnO2 deposited on Si, Mater. Sci. Eng. B, 2006, 128: 34-36
    [53] Gopinadhan K, Pandya D K, Kashyap S C et al., On the blueshift in Sn1-xCoxO2-δtransparent ferromagnetic semiconductor thin films, J. Phys.: Condens. Matter, 2007, 19: 016216-1~7
    [54] Liu X F, Sun Y, and Yu R H, Role of oxygen vacancies in tuning magnetic properties of Co-doped SnO2 insulation films, J. Appl. Phys., 2007, 101: 123907-1~6
    [55] Wang X L, Zeng Z, Zheng X H et al., First-principles investigations of Co- and Fe-doped SnO2 , J. Appl. Phys. , 2007, 101: 09H104-1~3
    [56] Kimura H, Fukumura T, Kawasaki M et al., Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2 , Appl. Phys. Lett., 2002, 80: 94-96
    [57] Gao K H, Li Z Q, Liu X J et al., Bulk Sn1-xMnxO2 magnetic semiconductors without room-temperature ferromagnetism, Solid State Commun. , 2006, 138: 175-178
    [58] Duan L B, Rao G H, Yu J et al., Structural and magnetic properties of chemically synthesized Sn1-xMnxO2 nanocrystalline powders, J. Appl. Phys. , 2007, 101: 063917-1~6
    [59] Punnoose A, Hays J, Thurber A et al., Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping, Phys. Rev. B , 2005, 72: 054402-1~14
    [60] Mathew X, Hays J, and Punnoose A, Effect of annealing condition on the Fe incorporation and ferromagnetism of Sn1-xFexO2: A Raman spectroscopic investigation, J. Appl. Phys., 2006, 99: 08M101-1~3
    [61] Mathew X, Enriquez J P, Garcia C M et al., Structrual modifications of SnO2 due to the incorporation of Fe into the lattice, J. Appl. Phys., 2006, 100: 073907-1~7
    [62] Torres C E R, Cabrera A F, and Sanchez F H, Magnetic behavior of nanoclusters of Fe-doped SnO2 , Phys. B , 2007, 389: 176-179
    [63] Wang W, Wang Z, Hong Y et al., Structure and magnetic properties of Cr/Fe-doped SnO2 thin films, J. Appl. Phys., 2006, 99: 08M115-1~3
    [64] Hong N H, Sakai J, Prellier W et al., Transparent Cr-doped SnO2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment, J. Phys.: Condens. Matter, 2005, 17: 1697-1702
    [65] Hong N H, and Sakai J, Ferromagnetic V-doped SnO2 thin films, Phys. B, 2005, 358: 265-268
    [66] Zainullina V M, Electronic structure, chemical bonding and properties of Sn1-xMxO2, M = As, Sb, Bi, V, Nb , Ta (0≤x≤0.25), Phys. B, 2007, 391: 280-285
    [67] Archer P I, Radovanovic P V, Heald S M et al., Low-Temperature Activation and Deactivation of High-Curie-Temperature Ferromagnetism in a New Diluted Magnetic Semiconductor: Ni2+-doped SnO2, J. Am. Chem. Soc., 2005, 127: 14479-14487
    [68] Hong N H, Ruyter A, Prellier W et al., Magnetism in Ni-doped SnO2 thin films, J. Phys.: Condens. Matter, 2005, 17: 6533-6538
    [69] Archer P I, and Gamelin D R, Controlled grain-boundary defect formation and its role in the high-Tc ferromagnetism of Ni2+: SnO2 , J. Appl. Phys. , 2006, 99: 08M107-1~3
    [70]方俊鑫,陆栋,固体物理学(上),上海科技出版社,1981
    [71]黄继武,X射线衍射实验操作指导,中南大学,2006
    [72]马礼敦,近代X射线多晶衍射实验技术与数据分析,化学工业出版社,2004
    [73]常铁军,刘喜军,材料近代分析测试方法,哈尔滨工业大学出版社,2005
    [74] Nutz T, Felde U Z, and Haase M, Wet-chemical synthesis of doped nanoparticales: Blue-colored colloids of n-doped SnO2:Sb, J. Chem. Phys., 1999, 110: 121142-12150
    [75] Kim H, and Pique A, Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition, Appl. Phys. Lett., 2004, 84: 218-220
    [76] Shannon R D, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst., 1976, 32: 751-767
    [77] Kim H, Gilmore C M, Pique A et al., Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices, J. Appl. Phys., 1999, 86: 6451-6461
    [78] Audi A A, and Sherwood P M A, Valence-band x-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations, Surf. Interface Anal., 2002, 33: 274-282
    [79] Szczuko D, Werner J, Oswald S et al., XPS investigations of surface segregation of doping elements in SnO2, Appl. Surf. Sci., 2001, 179: 301-306
    [80] Morgan W E, Stec W J, and Wazer J R V, Inner-Orbital Binding-Energy Shifts of Antimony and Bismuth Compounds, Inorg. Chem., 1973, 12: 953-954
    [81] Geraldo V, Scalvi L V A, Lisboa-Filho P N et al., Drude’s model calculation rule on electrical transport in Sb-doped SnO2 thin films, deposited via sol-gel, J. Phys. Chem. Solids, 2006, 67: 1410-1415
    [82] XPS Database Main Search Menu, Http://srdata.nist.gov/xps/main_search_menu.htm
    [83] Terrier C, Chatelon J P, Berjoan R et al., Sb-doped SnO2 transparent conducting oxide from the sol-gel dip coating technique, Thin Solid Films, 1995, 263: 37-41
    [84] Giraldi T R, Lanfredi A J C, Leite E R et al., Electrical characterization of SnO2:Sb ultrathin films obtained by controlled thickness deposition, J. Appl. Phys., 2007, 102: 034312-1~5
    [85] Ghimbeu C M, Landschoot R C V, Schoonman J et al., Preparation and characterization of SnO2 and Cu-doped SnO2 thin films using electrostatic spray deposition (ESD), J. Eur. Ceram. Soc., 2007, 27: 207-213
    [86] Ghijsen J, Tjeng L H, Elp J V et al., Electronic structure of Cu2O and CuO, Phys. Rev. B, 1988, 38: 11322-11330
    [87] Spaldin N A, Search for ferromagnetism in transition-metal-doped piezoelectric ZnO, Phys. Rev. B, 2004, 69: 125201-1~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700