脂多糖结合蛋白与CD14结合位点模拟肽的筛选及模拟肽对大鼠内毒素性急性肺损伤保护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     急性肺损伤(ALI)是指由心源性以外的各种肺内外致病因素导致的急性、进行性缺氧性呼吸衰竭,临床常见,死亡率高。内毒素是革兰阴性菌壁外膜成分,化学结构为脂多糖(LPS),是ALI的主要致病因素之一,目前尚无有效的抗内毒素治疗药物。正常情况时人体内LPS的水平很低,即使在革兰阴性菌脓毒血症时,血浆中LPS浓度仅为0.01~1ng/ml,如此低水平LPS的致炎作用需依赖于LBP/CD14的增敏。研究发现,LBP可增强LPS对表达mCD14细胞的刺激作用,当LBP存在时LPS可刺激单核巨噬细胞产生TNF-α增加1000倍。在LPS的致炎过程中,LBP肽链的N末端与LPS结合,C末端与CD14结合。由于LBP/CD14位于LPS致炎信号通路的上游,对LPS有增敏作用,阻断经LBP/CD14的LPS信号传导,可望在各种炎性细胞激活和炎性细胞因子产生之前阻断炎症反应,减轻内毒素性ALI。为此,本研究拟运用噬菌体展示肽库筛选技术,筛选LBP与CD14结合位点的模拟肽,再行体外实验观察模拟肽的抗内毒素生物活性,并观察该模拟肽对大鼠内毒素性ALI的保护作用,以期为内毒素性ALI的防治提供实验依据和新的策略。
     方法
     1.采用噬菌体展示肽库筛选技术,对CD14进行包被,以LBP为洗脱液进行亲和筛选。再随机挑取100个筛选后噬菌体克隆,采用ELISA法逐步进行结合实验、竞争实验和细胞因子生成抑制实验,筛选出与CD14具有高亲和力、与LBP竞争性强的噬菌体克隆,并对筛选阳性噬菌体克隆进行测序,测序所得12肽与LBP一级氨基酸序列进行比对,获得模拟肽。
     2.应用FMOC固相法合成模拟肽,采用ELISA法检测模拟肽与CD14的结合活性及与LBP竞争性结合CD14的活力;用LPS诱导U937细胞产生TNF-α,观察模拟肽高(10μg/ml)、中(1.0μg/ml)和低(0.1μg/ml)浓度对LPS诱导细胞表达TNF-αmRNA和生成TNF-α的影响,并进一步观察不同时间应用模拟肽对LPS诱导细胞表达TNF-αmRNA和生成TNF-α的作用。3.采用颈静脉注射LPS的方法复制大鼠内毒素性ALI模型,按随机原则将实验
     大鼠分为正常对照组(N)、脂多糖致伤组(LPS)和模拟肽治疗组(MP12)。大鼠按分组进行不同处理, 2 h后,测定动脉血氧分压(PaO2)和肺组织湿干重比(W/D),采用伊文思蓝示踪法检测肺微血管通透性,并进行肺组织病理形态学观察;再行支气管肺泡灌洗分离肺泡巨噬细胞,观察模拟肽对肺泡巨噬细胞结合LPS的影响。
     结果
     1.噬菌体展示肽库的亲和筛选使噬菌体得到了有效富集,结合实验显示100个噬菌体克隆中73个与CD14有较高的结合活性,竞争抑制实验表明26个克隆具有较强与LBP竞争结合CD14的活性;细胞因子生成抑制实验显示,26个噬菌体克隆中8个可显著抑制LPS诱导细胞生成TNF-α。
     2.对8个筛选阳性的噬菌体克隆进行测序,获得3条12肽序列FHRWPTWPLPSP,AAFHRAHHLTSP和MHRHPPPITLPL,其核心序列为共同序列FHRXPXXXXPXX,Blast检测3条多肽与LBP一级结构无相似的序列,为模拟肽;
     3.应用FMOC固相合成法成功合成模拟肽AC-FHRWPTWPLPSP-NH2,纯度在95%以上,分子量为1562.00,与理论值相符。结合实验显示,模拟肽在高、中浓度时与CD14有较高的结合活性;竞争抑制实验显示,模拟肽在高、中浓度时有较强的与LBP竞争结合CD14的活力。
     4.LPS组细胞TNF-α基因和蛋白表达较对照组显著增高(P﹤0.01),模拟肽高、中浓度组TNF-α比LPS组明显降低(P﹤0.05);不同时间应用模拟肽对LPS诱导细胞TNF-α影响实验结果显示,早期应用模拟肽干预可抑制LPS诱导细胞TNF-α的表达。
     5.与正常对照组比较,LPS致伤组大鼠的PaO2下降、W/D比值增大、肺微血管通透性增强和肺泡巨噬细胞平均荧光强度增加(P﹤0.05);模拟肽治疗组上述指标较LPS组有明显改善(P﹤0.05)。
     结论
     1.本研究成功的从噬菌体展示肽库中筛选获得了与CD14有高亲和力、抑制LBP结合CD14活性强、可明显降低LPS诱导细胞生成TNF-α的噬菌体克隆。
     2.测序获得了噬菌体克隆展示肽序列FHRWPTWPLPSP、AAFHRAHHLTSP和MHRHPPPITLPL,其核心序列为FHRXPXXXXPXX,多肽与LBP一级结构无相似的序列,为模拟肽。
     3.模拟肽AC-FHRWPTWPLPSP-NH2具有与CD14亲和力高,抑制LBP结合CD14活性强的生物特性。
     4.模拟肽能够在基因和蛋白水平抑制LPS诱导单核巨噬细胞TNF-α的表达,其早期应用对TNF-α的抑制作用明显。
     5.模拟肽可改善内毒素性ALI大鼠的氧合,减轻肺损伤,其减少大鼠肺泡巨噬细胞与LPS的结合可能是对大鼠内毒素性ALI保护作用的机制之一。
Background and Objective
     Acute lung injury (ALI) is an acute progressive respiratory failure induced by various reasons except cardiogenic factors with high mortality. Lipopolysaccharide (LPS), a major component of Gram-negative bacterial endotoxin, is the leading cause of ALI. So far, there are still no effective antiendotoxin drugs. Physiologically, the LPS concentration is very low in human body. Even in pyemia induced by gram-negative bacilli, the plasma concentration of LPS is only 0.01-1ng/ml. The increasing sensitivity system of LPS-binding protein (LBP)/CD14 plays a pivotal role in LPS-mediated inflammatory responses. The previous studies have shown that LBP enhances the effect of LPS on TNF-αreleases in membrane CD14 (mCD14)-positive cells such as mononuclear macrophages to 1000 folds. The binding site for LPS is situated in the N-terminal part of the LBP molecule, while the C-terminal part of the LBP mediates the binding of LBP to CD14. LBP/CD14 is at the upstream of LPS signal transduction. So, inflammatory response may be attenuated by LBP/CD14 pathway intervention before cell activation and inflammatory media release in endotoxin-induced ALI. In this study we will screen the mimic peptide of LBP binding to CD14 with phage display peptide library, then detect the antiendotoxin activity of mimic peptide in vitro and observe its protective effects on ALI rat model induced by endotoxin.
     Methods
     1. CD14 was coated and the four rounds of bio-pannings were carried out using LBP as eluant with a phage display peptide library. One hundred bacteriophage clones were selected randomly and used in binding test, competition test and inhibition test of cytokine production by enzyme linked immunosorbent assay (ELISA). Totally, eight positive clones with high affinity to CD14 and powerful competition with LBP were sequenced. These 12-mer peptides were compared with primary amino acid sequence of LBP.
     2. A mimic peptide was synthesized by Fmoc-based solid phase peptide synthesis. The affinity binding to CD14 and the activity competing against LBP were determined by ELISA. U937 cells were treated with LPS and incubated with mimic peptides at a high (10ug/ml), middle (1.0ug/ml) and low (0.1ug/ml) dose, respectively. The TNF-αexpression in U937cells were determined at the mRNA and the protein level, respectively. And the effects of MP12 on cell TNF-αrelease induced by LPS were detected by ELISA at different time point.
     3. A rat model of ALI was established by jugular injection of LPS. Rats were randomly divided into three groups: N, LPS, MP12. Group N was untreated as control. Group LPS was injured by LPS injection as ALI model. Group MP12 was treated with LPS and MP12. After 2 hours treatment, the artery blood and lung tissue were collected. The level of PaO2 in artery blood and the wet/dry ratio of lung tissue were measured. The pulmonary microvascular permeability was detected. The histological changes of lung tissue were observed under microscope. The Alveolar macrophages were isolated from bronchoalveolar lavage fluid and the effects of mimic peptides on LPS conjugation with cells were observed.
     Results
     1. Phages were found to be enriched effectively by pannings. The binding test showed that 73 phages clones exhibited high affinity with CD14. The competition test showed that 26 clones among them competed powerfully against LBP for binding to CD14. The inhibition test of cytokine showed that LPS-induced TNF-αwas suppressed by 8 clones significantly.
     2. Three 12-mer sequences of FHRWPTWPLPSP, AAFHRAHHLTSP and MHRHPPPITLPL were obtained from eight positive phage clones, which core sequence was FHRXPXXXXPXX. Blast showed that there were no homoplastic sequences between mimic peptide and primary structure of LBP.
     3. The mimic peptide of AC-FHRWPTWPLPSP-NH2 was synthesized successfully by Fmoc-based solid phase peptide synthesis. The purity was above 95% and the molecular weight was 1562.00. The binding test and competition test showed that this mimic peptide exhibited higher affinity with CD14 and more powerful competition against LBP for binding to CD14 at high and middle dose.
     4. TNF-αexpression in U937 cells stimulated with LPS increased significantly both at the mRNA and the protein level. The mimic peptide suppressed the expression of TNF-αinduced by LPS at the mRNA and the protein level, especially at earlier intervension stage..
     5. Compared with group N, PaO2 decreased and W/D ratio, pulmonary microvascular permeability, mean fluorescence intensity of alveolar macrophage in group LPS increased significantly. However, compared with group LPS, the above indexes in group MP12 also decreased significantly, except PaO2 increased.
     Conclusion
     1. Positive phage clones are screened successfully from a phage display peptide library, which exhibit high affinity with CD14, powerful competition against LBP and inhibits the production of TNF-αinduced by LPS.
     2. Three 12-mer sequences of FHRWPTWPLPSP, AAFHRAHHLTSP and MHRHPPPITLPL are screened from positive phage clones. The core sequence is FHRXPXXXXPXX, and there are no homoplastic sequences between mimic peptide and primary structure of LBP.
     3. The mimic peptide of AC-FHRWPTWPLPSP-NH2 exhibits high affinity with CD14 and inhibits LBP binding to CD14.
     4. The mimic peptide suppresses the TNF-αexpression in mononuclear macrophage induced by LPS at the mRNA and the protein level, especially at the earlier intervention stage.
     5. The mimic peptide improves oxygenation and attenuates lung injury in rats. It inhibits the conjugation between LPS and alveolar macrophages, suggesting that the mimic peptide could protect rats from endotoxin-induced ALI.
引文
1.钱桂生.急性肺损伤和急性呼吸窘迫综合征研究现状与展望[J].解放军医学杂志, 2003, 28(2):97-101.
    2. Frutos Vivar F, Ferguson ND, Esteban A. Epidemiology of acute lung injury and acute respiratory distress syndrome[J].Semin Respir Crit Care Med, 2006,27(4): 327-336.
    3. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells[J]. Lab Invest, 2006,86(1): 9-22.
    4. Richard L. Kitchens, Patricia A. et al. Modulatory effects of sCD14 and LBP on LPS-host cell interactions[J]. J Endotoxin Res,2005, 11(4):225-230.
    5. Vreugdenhil AC , Rousseau C H , Hartung T , et al. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons [J]. J Immunol, 2003, 170(3): 1399-1405.
    6. Finberg RW, Re F, Popova L, et al. Cell activation by Toll-like receptors: role of LBP and CD14.J Endotoxin Res,2004,10(6): 413-418.
    7. Fierer J, Swancutt MA, Heumann D, et al. The role of lipopolysaccharide binding protein in resistance to Salmonella infections in mice. J Immunol, 2002, 168(12): 6396-6403.
    8. Antal SP. Evaluation of CD14 in host defence[J]. Eur J Clin Invest, 2000, 30(2):167- 179.
    9. Heumann D. CD14 and LBP in endotoxemia and infections caused by Gram-negative bacteria[J].J Endotoxin Res, 2001,7(6): 439-441.
    10. Clett E, Elliott BG, Ian RP. Structure and function of lipopolysaccharides[J]. Microbes Infect, 2002, 4(8): 837–851.
    11. Meszaros K, Aberle S, White M, et al. Immuno reactivity and bioactivity of lipopo lysaccharide-binding pro tein in no rmal and heat-in-act ivated sera[J]. Infect Immun, 1995, 63(1)∶363-365.
    12.蒋建新,姚咏明,郑江.细菌内毒素基础与临床.人民军医出版社, 2004(第一版)
    13. Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS[J]. Microbes Infect, 2002,4(9): 903-914.
    14. Fenton MJ ,Golenbock DT. LPS-binding proteins and receptors [J] . J Leukoc Biol, 1998 ,64(1):25-32.
    15. Tapping RI, Tobias PS. Cellular binding of soluble CD14 requires lipopolysaccharide (LPS) and LPS-binding protein [J]. J Biol Chem,1997, 272 (37) :23157-23164.
    16. Le Roy D, Di Padova F, Adachi Y, et al. Critical role of lipopolysaccharide- binding protein and CD14 in immune responses against gram-negative bacteria[J]. J Immunol, 2001, 167(5): 2759-2765.
    17. Perera PY, Vogel SN, Detore GR, et al. CD14-dependent and CD14-independent signaling pathways in murine macrophages from normal and CD14 knockout mice stimulated with Lipopolysaccharide or taxol [J] . J Immunol, 1997, 158 (9) : 4422-4429.
    18. Vesy CJ, Kitchens RL, Wolfbauer G, et al. Lipopolysacchride binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes[J]. Infect Immun, 2000, 68(5): 2412-2417.
    19. Lanza JS, Miller S, Jacob S, et al. Hyperlipoproteinemic low-density lipoprotein receptor- deficient mice are more susceptible to sepsis than corresponding wild-type mice[J]. J Endotoxin Res, 2003, 9(6): 341-347.
    20. Smith GP. Filamentous fusion phage : novel expression vectors that display cloned antigens on the virion surface[J]. Science , 1985 , 228(4705) :1315 - 1317.
    21. Willats WG. Phage display: practicalities and prospects[J]. Plant Mol Biol, 2002,50(6): 837-854.
    22. Samoylova TI, Morrison,NE, Globa LP, et al. Peptide phage display: opportunities for development of personalized anti-cancer strategies[J]. Anticancer Agents Med Chem, 2006, 6(1): 9-17.
    23. Rowley M J, O'Connor K, Wijeyewickrema L. Phage display for epitope determination: a paradigm for identifying receptor-ligand interactions[J]. Biotechnol Annu Rev, 2004,10:151-188.
    24. Hartley O. The use of phage display in the study of receptors and their ligands[J]. J Recept Signal Transduct Res. 2002, 22(1-4): 373-392.
    25. Usui M , Hanamura N , Hayashi T , et al . Molecular cloning ,expression and tissue distribution of canine lipopolysaccharide (LPS)-binding protein[J]. Biochim Biophys Acta , 1998 ,1397(2) :202– 212.
    26. Beamer LJ, Carroll SF, Eisenberg D, et al. The BPL/LBP family of proteins: a structural analysis of conserved region5[J]. Protein Sci, 1998,7(4):906-914.
    27. Iovine N, Eastvold J, Elsbach P, et al. The Carboxyl-terminal Domain of Closely Related Endotoxinbinding Proteins Determines the Target of Protein- Lipopolysaccharide Complexes[J]. J Bib Chem, 2002, 277(10) : 7970-7978.
    28. Iovine NM, Eksbacg P, Weiss J. An opsonic function of the neutrophil bactericidal/ permeability increasing protein depends on both its N and C terminal domains[J]. Proc Natl Acad Sci USA, 1997, 94(20): 10973- 10978.
    29. Farzan M, Mirzabekov T , Kolchinsky P et al . Tyrosine sulfation of the amino terminus of ccR5 facilitritates HIV entry[J]. Cell ,1999 ,96(5) :667-767.
    30. Sette A, Buus S, Colon S, et al. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells[J]. Nature, 1987, 328(6129): 395-399.
    31. Jansson A H , Eriksson C , Wang X. Lung inflammatory responses and hyperinflation induced by an int rat racheal exposure to lipopolysaccharide in rat s[J]. Lung , 2004, 182(3):163-171.
    32. Gando S,Kameue T, Matsuda N, et al. Inflammation. Systemic inflammation and disseminated intravascular coagulation in early stage of ALI and ARDS: role of neutrophil and endothelial activation. Inflammation, 2004, 28(4): 237-244.
    33. Rajesh BM, Iqbal J. Recent advances in the synthesis of some bioactive peptides and peptidomimetics[J]. Curr Pharm Biotechnol, 2006, 7(4): 247-259.
    34. N.休厄德, H.D.贾库布克.(刘克良,何军林译).肽;化学与生物合成.科学出版.2005
    35. Sagan S, Karoyan P, Lequin O, et al. N- and C alpha-methylation in biologically active peptides: synthesis, structural and functional aspects[J]. Curr Med Chem,2004, 11(21): 2799-2782.
    36. Piseitelli SC, Reiss WG, Figg WD, et al. Pharmacokinetic studies with recombinant cytokines[J] . Clin Pharmacokin, 1997,32(5):368-381.
    37. Camarero JA, Mitchell AR. Synthesis of proteins by native chemical ligation using Fmoc-based chemistry[J]. Protein Pept Lett, 2005,12(8):723-728.
    38. Teruya K, Murphy AC, Burlin T, et al. Fmoc-based chemical synthesis and selective binding to supercoiled DNA of the p53 C-terminal segment and its phosphorylated and acetylated derivatives[J]. J Pept Sci, 2004,10(8): 479-493.
    39. Mitulovic G, Mechtler K. HPLC techniques for proteomics analysis- a short overview of latest developments[J]. Brief Funct Genomic Proteomic. 2006,5(4): 249-260.
    40. Hallbeck AL, Walz TM, Wasteson A. Interleukin-6 enhances transforming growth factor-alpha mRNA expression in macrophage2like human monocytoid (U293721) cells[J]. Biosci Rep, 2001, 21 (3):325-339.
    41. Zhao KW, Li X, Zhao O, et al. Protein kinase C delta mediates retinoic acid and phorbol myristate acetate - induced phospholip id scramblase 1 gene exp ression: its role in leukemic cell differentiation[J]. Blood, 2004, 104(12) : 3731 - 3738.
    42. Hu X, MoscinskiLC, ValkovN I, et al. Prolonged activation of the mitogen - activated p rotein kinase pathway is required for macrophage-like differentiation of a human myeloid leukemic cell line[J]. Cell Growth Differ, 2000, 11 (4) : 191–200.
    43. Kadl A , Huber J , Gruber F ,et al. Analysis of inflammatory gene induction by oxidized phospholipids in vivo by quantitative real-time RT/PCR in comparison with effects of LPS[J]. Vascul Pharmacol, 2002 ,38(4) :219– 227.
    44. Harris P, Ralph P. Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines[J]. J Leukoc Biol,1985,37(4): 407-422.
    45. Landmann R, Link S, Sansano S, et al. Soluble CD14 activatesmonocytic cells independently of lipopolysaccharide [J]. Infect Immun, 1998, 66 (5) : 2264- 2271.
    46. Jack RS, Gruunwald U, Stelter F, et al. Both membrane-bound and soluble forms of CD14 bind to gram-negative bacteria [J]. Eur J Imm unol, 1995, 25(5): 1436 - 1441.
    47. Zhang DE, Hetherington CJ, Gonzalez DA, et al. Regulation of CD14 expression during monocytic differentiation induced with 1a, 252 dihydroxyvitamin D3 [J]. J Immunol, 1994, 153(7): 3276- 3283.
    48. van Leeuwen HJ, Van Der TM, Van Strijp JA, et al. The role of tumour necrosis factor in the kinetics of lipopolysaccharide-mediated neutrophil priming in whole blood [J]. Clin Exp Immunol, 2005,140(1): 65-72.
    49. Parsey MV, Tuder RM, Abraham E, et al. Neutrophils are major contributors to intraparenchymal lung IL-1 beta expression after hemorrage and endotoxemia [J]. J Immunol,1998,160(2): 1007-1013.
    50. Koh Y, Hybertson BM, Jepson EK, et al. Tumor necrosis factor induced acute lung leak in rats: less than with interleukin-1 [J]. Inflammatory, 1996, 20(5): 461-469.
    51. Singh J ,Suruchi A. Anti-TNF-αstrategy: present status of this therapeutic paradigm [J] . Indian J Pharmacol, 2004, 36 (1) :10- 14.
    52. Vodovotz Y, Kopp JB, Takeguchi H, et al. Increased mortality, blunted production of nitric oxide, and increased production of TNF-alpha in endotoxemic TGF-beta1 transgenic mice[J]. J leukoc Biol, 1998, 63(1): 31-39.
    53. Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review [J]. Lancet. 2007,369(9572): 1553-1564.
    54. Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome [J].Semin Respir Crit Care Med. 2006; 27(4):337-49.
    55.毛宝龄,钱桂生,陈正堂.急性呼吸窘迫综合征.北京:人民卫生出版社,2002.
    56. Luh SP, Chiang CH. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies [J]. J Zhejiang Univ Sci B, 2007,8(1): 60-69.
    57. Yamasawa H , Ishii Y, Kitamura S. Cytokine-induced neutrophil chemoattractant in a rat model of lipopolysaccharide-induced acute lung injury[J]. Inflammation, 1999, 23 (3) : 263-274.
    58. Gainer JL, Stennett AK, Murray RJ.The effect of trans sodium crocetinate (TSC) in a rat oleic acid model of acute lung injury[J]. Pulm Pharmacol Ther, 2005,18(3): 213-216.
    59. Sachs UJ, Hattar K,Weissmann N, et al. Antibody-induced neutrophil activation as a trigger for transfusion-related acute lung injury in an ex vivo rat lung model[J]. Blood, 2006,107(3):1217-1219.
    60. Hamada M, Yamaoto S, Moriguchi S, et al. Phagocytosis of alveolar macrophages after conagenin injection to rats[J]. J Antibiot, 2001, 54(4): 349-353.
    61. Gupta S, Feng L, Yoshimura T, et al. Intra alveolar macrophage inflammatory petide induced rapid neutrophil localization in the lung[J]. Am J Respir Cell Mol Biol, 1996, 15(5):656-663.
    62. Lee PT, Holt PG, Mc William AS, et al. Role of alveolar macrophages in innate immunity in neonates: evidence for selective lipopolysaccharide binding protein production by rat neonatal alveolar macrophages[J]. Am J Respir Cell Mol Biol. 2000; 23(5): 652-661.
    63. Le RD, Di Padova F, Tees R, et al. Monoclonal antibodies to murine lipopolysaccharide (LPS)-binding protein (LBP) protect mice from lethal endotoxemia by blocking either the binding of L PS to LBP or the presentation of L PS/ LBP complexes to CD14[J]. JImmunol ,1999 ;162(12) :7454-7460.
    64. Frevert CW, Matute BG, Sherrett SJ, et al . Effect of CD14 blockade in rabbits with Escherichia coli pneumonia and sepsis [J]. J Immunol. 2000, 164 (10): 5439-5445.
    65. Olszyna DP, Verbon A, Pribble JP, et al. Effect of IC14, an anti-CD14 antibody, on plasma and cell-associated chemokines during human endotoxemia[J]. Eur Cytokine Netw, 2003,14(3): 158-162.
    66. Verbon A , Dekkers PE , ten Hove T , et al. IC14 , an anti-CD14 antibody, inhibits endotoxin-mediated symptoms and inflammatory responses in humans[J]. J Immunol, 2001,166(5) :3599-3605.
    67. Reinhart K, Gluck T, Ligtenberg J,et al.CD14 receptor occupancy in severe sepsis: results of a phase I clinical trial with a recombinant chimeric CD14 monoclonal antibody (IC14) [J]. Crit Care Med,2004,32(5): 1100-1108.
    68. Weiss J. Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide- binding protein (LBP): structure, function and regulation in host defence against Gram-negative bacteria [J]. Biochem Soc Trans, 2003, 31(Pt 4): 785-790.
    69. Jiang Z, Hong Z, Guo W, et al. A synthetic peptide derived from bactericidal/ permeability- increasing protein neutralizes endotoxin in vitro and in vivo[J]. Int Immunopharmacol, 2004 ,4(4): 527-37.
    70. Wu X, Qian G, Zhao Y, et al. LBP inhibitory peptide reduces endotoxin- induced macrophage activation and mortality[J]. Inflamm Res, 2005,54(11): 451-457.
    1.钱桂生.急性肺损伤和急性呼吸窘迫综合征研究现状与展望[J].解放军医学杂志,2003, 28(2):97-101.
    2. Frutos Vivar F, Ferguson ND, Esteban A. Epidemiology of acute lung injury and acute respiratory distress syndrome[J]. Semin Respir Crit Care Med, 2006, 27(4): 327-336.
    3. Finberg RW,Re F,Popova L, et al. Cell activation by Toll-like receptors: role of LBP and CD14 [J]. J Endotoxin Res, 2004,10(6):413-418.
    4. Usui M , Hanamura N , Hayashi T , et al . Molecular cloning ,expression and tissue distribution of canine lipopolysaccharide (LPS)-binding protein[J]. Biochim Biophys Acta, 1998,1397(2) :202– 212.
    5. Iovine N, Eastvold J, Elsbach P, et al. The Carboxyl-terminal Domain of Closely Related Endotoxinbinding Proteins Determines the Target of Protein-Lipopolysaccharide Complexes[J]. J Bib Chem, 2002, 277(10): 7970- 7978.
    6. Lovine NM, Eksbacg P, Weiss J. An opsonic function of the neutrophil bactericidal/ permeability-increasing protein depends on both its N- and C- terminal domains[J]. Proc Natl Acad Sci USA, 1997, 94(20):10973-10978.
    7.蒋建新,姚咏明,郑江.细菌内毒素基础与临床.人民军医出版社,2004(第一版).
    8. Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS[J]. Microbes Infect, 2002,4(9): 903-914.
    9. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells[J]. Lab Invest, 2006 , 86(1): 9-22.
    10. Clett E, Elliott BG, Ian RP. Structure and function of lipopolysaccharides[J]. Microbes Infect, 2002, 4(8): 837–851
    11. Didier LR, Franco DP, Yoshiyuki A, et al. Critical Role of Lipopolysaccharide- Binding Protein and CD14 in Immune Responses against Gram-Negative Bacteria1[J]. J Immunol, 2001, 167(5): 2759–2765.
    12. Fenton MJ ,Golenbock DT. LPS-binding proteins and receptors [J]. J Leukoc Biol, 1998 ,64(1):25-32.
    13. Heumann D, Adachi Y, Le Roy D, et al. Role of plasma, lipopolysaccharide- bindingprotein , and CD14 in response of mouse peritoneal exudate macrophages to endotoxin[J]. Infect Immun, 2001 ,69 (1) :378-385.
    14. Tapping RI, Tobias PS. Cellular binding of soluble CD14 requires lipopolysaccharide (LPS) and LPS2binding protein [J]. J Biol Chem,1997, 272 (37) :23157-23164.
    15. Richard L. Kitchens, Patricia A. et al. Modulatory effects of sCD14 and LBP on LPS-host cell interactions[J]. J Endotoxin Res,2005,11(4):225-230.
    16. Perera PY, Vogel SN, Detore GR, et al . CD14-dependent and CD14-independent signaling pathways in murine macrophages from normal and CD14 knockout mice stimulated with Lipopolysaccharide or taxol[J]. J Immunol, 1997, 158(9): 4422-4429.
    17. Vesy CJ, Kitchens RL, Wolfbauer G, et al. Lipopolysacchride binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes[J]. Infect Immun, 2000, 68(5): 2412-2417.
    18. Lanza JS, Miller S, Jacob S, et al. Hyperlipoproteinemic low-density lipoprotein receptor-deficient mice are more susceptible to sepsis than corresponding wild-type mice[J]. J Endotoxin Res, 2003, 9(6): 341-347.
    19. Hamann L, Stamme C, Ulmer AJ,et al.Inhibition of LPS-induced activation of alveolar macrophages by high concentrations of LPS-binding protein[J]. Biochem Biophys Res Commun,2002,295(2): 553-560.
    20. Lin WJ, Yeh WC. Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock[J]. Shock, 2005, 24(3): 206-209.
    21. Chen K, Huang J, Gong W, et al.Toll-like receptors in inflammation, infection and cancer[J].Int Immunopharmacol, 2007,7(10):1271-1285.
    22. Arbour NC ,Lorenz E ,Schutte BC ,et al . TLR4 mutations are associated with endotoxin hyporesponsiveness in humans [J] . Nat Genet ,2000 ,25(2) :187 - 191.
    23. Kobayashi M, Saitoh S, Tanimura N, et al. Regulatory roles for MD-2 and TLR4 in ligand-induced receptor clustering[J]. J Immunol, 2006 ,176(10): 6211-6218.
    24. Visintin A, Iliev DB, Monks BG. MD-2[J].Immunobiology. 2006, 211(6-8): 437-447.
    25. Carmody RJ, Chen YH. Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling[J]. Cell Mol Immunol, 2007, 4(1),31-41.
    26. Lakhani SA, Bogue CW .Toll-like receptor signaling in sepsi[J]. Curr Opin Pediatr, 2003, 15(3): 278-282.
    27. Palsson MC, Dermott EM, Oneill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4[J]. Immunology, 2004, 113(2): 153-162.
    28. Jansson A H , Eriksson C , Wang X. Lung inflammatory responses and hyperinflation induced by an int rat racheal exposure to lipopolysaccharide in rat s[J] . Lung , 2004, 182(3):163-171 .
    29. Gando S,Kameue T, Matsuda N, et al. Inflammation. Systemic inflammation and disseminated intravascular coagulation in early stage of ALI and ARDS: role of neutrophil and endothelial activation[J]. Inflammation. 2004, 28(4): 237-244.
    30. Walley KR ,Lukacs NW ,Standiford TJ ,et al. Balance of inflammatory cytokines related to severity and mortality of murine sep sis[J] . Infect Immun ,1996 ,64 (11) :4733–4738.
    31. Lomas NJ, Chung CS, Perl M, et al. Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge[J]. Am J Physiol Lung Cell Mol Physiol, 2006, 290(1): L51-58.
    32.Klein RD, Su GL, Aminlari A, et al. Pulmonary LPS-binding protein (LBP) upregulation following LPS-mediated injury. J Surg Res, 1998,78(1): 42-47.
    33.Martin TR, Rubenfeld GD, Ruzinski JT, et al. Relationship between soluble CD14, lipopolysaccharide binding protein, and the alveolar inflammatory response in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med, 1997, 155(3): 37-944.
    34. Roger GS. acute lung injury in 2003.Acta Pharmacol Sin, 2003,24(12):1288-1291
    35. Bellingan GJ. The pathogenesis of ALI/ARDS[J]. Thorax, 2002, 57(3):540-546.
    36. Greene CM, Mc Elvaney NG. Toll-like receptor expression and function in airway epithelial cells[J]. Arch Immunol Ther Exp, 2005,53(5): 418-427.
    37. Martin TR. Recognition of bacterial endotoxin in the lungs[J]. Am J Resp ir CellMol Biol, 2000, 23(2): 128-132.
    38. Le Roy D ,Di Padova F , Tees R , et al. Monoclonal antibodies to murine lipopolysaccharide (LPS)-binding protein (LBP) protect mice from lethal endotoxemia by blocking either the binding of L PS to LBP or the presentation of L PS/ LBP complexes to CD14[J]. J Immunol ,1999,162(12) :7454-7460
    39. Goldblum SE ,Brann TW,Ding X ,et al. Lipopolysaccharide (LPS)-binding protein and soluble CD14 function as accessory molecules for LPS-induced changes in endothelial barrier function ,in vitro[J]. J Clin Invest ,1994,93(2) :692-702
    40. Wu X, Qian G, Zhao Y,et al. LBP inhibitory peptide reduces endotoxin-induced macrophage activation and mortality[J]. Inflamm Res. 2005, 54(11): 451-457.
    41. Hamann L,Stamme C, Ulmer AJ,et al.Inhibition of LPS-induced activation of alveolar macrophages by high concentrations of LPS-binding protein[J]. Biochem Biophys Res Commun, 2002, 295(2): 553-560.
    42. Weiss J. Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide- binding protein (LBP): structure, function and regulation in host defence against Gram-negative bacteria [J]. Biochem Soc Trans, 2003, 31(Pt 4): 785-790.
    43. Levy O. Therapeutic potential of the bactericidal/permeability increasing protein[J]. Expert Op in Investig Drugs, 2002, 11(2): 159 - 167.
    44. Gao HG, Yuan JC, Xiao GX. et al. Protective effects of bactericidal/permeability increasing protein simulated peptide on murine acute lung injury induced by lipopolysaccharidero [J]. Chin J Burns, 2005, 21(2):100-103.
    45. Axtelle T, Pribble J. IC14, a CD14 specific monoclonal antibody, is a potential treatment for patients with severe sepsis. J Endotoxin Res, 2001, 7(4): 310-314
    46. Frevert CW, Matute BG, Sherrett SJ, et al . Effect of CD14 blockade in rabbits with Escherichia coli pneumonia and sepsis [J]. J Immunol, 2000, 164 (10) : 5439-5445
    47. Van Furth AM ,Verhard SEM ,Langermans JA ,et al. Anti-CD14 monoclonal antibodies inhibit the production of tumor necrosis factor alpha and interleukin-10 by human monocytes stimulated with killed and live Haemophilus influenzae or Streptococcus pneumoniae organisms[J]. Infect Immun , 1999, 67(8) 3714-3718.
    48. Olszyna DP, Verbon A, Pribble JP,et al. Effect of IC14, an anti-CD14 antibody, on plasma and cell-associated chemokines during human endotoxemia[J]. Eur Cytokine Netw, 2003,14(3): 158-162.
    49. Verbon A , Dekkers PE , ten Hove T , et al. IC14 , an anti-CD14 antibody, inhibits endotoxin-mediated symptoms and inflammatory responses in humans[J]. J Immunol ,2001,166(5) :3599-3605.
    50. Axtelle T, Pribble J. An overview of clinical studies in healthy subjects and patients with severe sepsis with IC14, a CD14-specific chimeric monoclonal antibody[J]. J Endotoxin Res, 2003, 9(6): 385-389.
    51. Genth ZS, von Haehling S, Bolger AP, et al. The anti-CD14 antibody IC14 suppresses ex vivo endotoxin stimulated tumor necrosis factor-alpha in patients with chronic heart failure[J]. Eur J Heart Fail, 2006, 8(4): 366-372.
    1. Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review[J]. Lancet, 2007,369(9572): 1553-1564.
    2. Chen K, Huang J, Gong W, et al. Toll-like receptors in inflammation, infection and cancer[J]. Int Immunopharmacol, 2007,7(10):1271-1285.
    3. Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS[J]. Microbes Infect, 2002,4(9): 903-914.
    4.Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells[J]. Lab Invest, 2006 , 86(1): 9-22.
    5. Kitchens RL , Thompson PA. Impact of sepsis - induced changes inplasma on LPS interactions with monocytes and plasma lipoproteins :roles of soluble CD14, LBP, and acute phase lipoproteins [J]. J Endotoxin Res ,2003 ,9 (2)∶113-118.
    6. Frevert CW, Matute BG, Sherrett SJ, et al. Effect of CD14 blockade in rabbits with Escherichia coli pneumonia and sepsis [J]. J Immunol, 2000, 164 (10) : 5439-5445.
    7. Van Furth AM, Verhard SEM, Langermans JA ,et al. Anti-CD14 monoclonal antibodies inhibit the production of tumor necrosis factor alpha and interleukin-10 by human monocytes stimulated with killed and live Haemophilus influenzae or Streptococcus pneumoniae organisms[J]. Infect Immun, 1999, 67(8): 3714-3718.
    8. Olszyna DP, Verbon A, Pribble JP, et al. Effect of IC14, an anti-CD14 antibody, on plasma and cell-associated chemokines during human endotoxemia[J]. Eur Cytokine Netw, 2003, 14(3): 158-162.
    9. Spek CA, Verbon A, Aberson H,et al. Treatment with an anti-CD14 monoclonal antibody delays and inhibits lipopolysaccharide- induced gene expression in humans in vivo[J]. J Clin Immunol, 2003,23(2): 132-140.
    10. Verbon A , Dekkers PE , ten Hove T , et al. IC14 , an anti-CD14 antibody ,in hibits endotoxin-mediated symptoms and inflammatory responses in humans[J]. J Immunol, 2001,166 (5):3599-3605.
    11.Verbon A, Meijers JC, Spek CA, et al. Effects of IC14, an anti-CD14 antibody, on coagulation and fibrinolysis during low-grade endotoxemia in humans[J]. J Infect Dis, 2003, 187(1): 55-61.
    12.Axtelle T, Pribble J. An overview of clinical studies in healthy subjects and patients with severe sepsis with IC14, a CD14-specific chimeric monoclonal antibody[J]. J Endotoxin Res, 2003, 9(6): 385-389.
    13.Reinhart K, Gluck T, Ligtenberg J, et al. CD14 receptor occupancy in severe sepsis: results of a phase I clinical trial with a recombinant chimeric CD14 monoclonal antibody (IC14) [J]. Crit Care Med, 2004, 32(5): 1100-1108.
    14. Genth ZS, von Haehling S, Bolger AP, et al. The anti-CD14 antibody IC14 suppresses ex vivo endotoxin stimulated tumor necrosis factor-alpha in patients with chronic heart failure[J]. Eur J Heart Fail, 2006, 8(4): 366-372.
    15.Chuang T, Ulevitch RJ. Identification of hTLR10 : a novel human Toll-like receptor preferentially expressed in immune cells[J]. Biochem Biophys Acta, 2001 , 1518 (1- 2) :157-161.
    16. Wang R, Stephens J, Lacy MJ. Characterization of monoclonal antibody HTA125 with specificity for human TLR4[J]. Hybrid Hybridomics, 2003, 22(6): 357-365.
    17.Jeyaseelan S, Chu HW, Young SK, et al. Distinct roles of pattern recognition receptors CD14 and Toll-like receptor 4 in acute lung injury[J]. Infect Immun, 2005, 73(3): 1754-1763.
    18.Hawkins LD, Christ WJ, Rossignol DP. Inhibition of endotoxin response by synthetic TLR4 antagonists[J]. Curr Top Med Chem, 2004, 4(11): 1147-1171.
    19. Visintin A, Halmen KA, Latz E, et al. Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2[J]. J Immunol, 2005, 175(10): 6465-6472.
    20.Bunnell E, Lynn M, Habet K, et al. A lip id A analog, E5531, blicks the endotoxin response in human volunteerswith experimental endotoxemia[J]. Crit Care Med, 2000, 28(8): 2713-2719.
    21. Kumar A, Bunnell E, Lynn M, et al.Experimental human endotoxemia is associated with depression of load-independent contractility indices: prevention by the lipid a analogue E5531[J]. Chest, 2004, 126(3): 860-567.
    22. Asai Y.Development of an injectable formulation for the novel lipid A analog E5531 using a‘pH-jump method’[J]. Yakugaku Zasshi, 2004,124(12): 965-972.
    23.Wasan KM, Sivak O, Cote RA, et al. Association of the endotoxin antagonist E5564 with high-2density lipop roteins in vitro dependence on low2density and triglyceride2rich lipop rotein concentrations[J]. Anti microb Agents Cheother, 2003, 47(9): 2796-2803.
    24.Shiozaki M, Doi H, Tanaka D, et al. Syntheses of glucose analogues of E5564 as a highly potent anti-sepsis drug candidate[J].Bioorg Med Chem, 2006,14(9): 3011-3016.
    25.LynnM, Wong YN, Wheeler JL, et al. Extended vivo pharmacodynamic activity of E5564 in normal volunteers with experimental endotoxemia[J]. J Pharmacol Exp Ther, 2004, 308(1): 175-181.
    26. Solomon SB, Cui X, Gerstenberger E, et al.Effective dosing of lipid A analogue E5564 in rats depends on the timing of treatment and the route of Escherichia coli infection[J]. J Infect Dis, 2006, 193(5): 634-644.
    27.Baumgarten G, Knuefermann P, Schuhmacher G, et al. Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia[J]. Shock, 2006, 25(1): 43-49.
    28.Weiss J. Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide- binding protein (LBP): structure, function and regulation in host defence against Gram2negative bacteria [J]. Biochem Soc Trans, 2003, 31 ( Pt 4): 785-790.
    29.Li C, Li J, Lv Z, et al. Protection of mice from lethal endotoxemia by chimeric human BPI-Fcgamma1 gene delivery[J]. Cell Mol Immunol, 2006, 3(3): 221-225.
    30.Gao HG, Yuan JC, Xiao GX. et al. Protective effects of bactericidal/permeability increasing protein simulated peptide on murine acute lung injury induced by lipopolysaccharidero [J]. Chin J Burns, 2005, 21(2):100-103.
    31. Fang WH, Yao YM, Shi ZG, et al. Effect of recombinant bactericidal/permeability- increasing protein on endotoxin translocation and lipopolysaccharide-binding protein/CD14 expression in rats after thermal injury[J]. Crit Care Med, 2001, 29(7): 1452-1459.
    32.Harkin DW, Barros DAA, McCallion K,et al. Bactericidal/permeability increasing protein attenuates systemic inflammation and acute lung injury in porcine lower limb ischemia reperfusion injury[J].Ann Surg, 2001, 234(2): 233-244.
    33.Chen J, Li C, Guan Y, et al. Protection of mice from lethal Escherichia coli infection by chimeric human bactericidal/ permeability-increasing protein and immunoglobulin G1 Fc gene delivery[J]. Antimicrob Agents Chemother, 2007, 51(2): 724-731.
    34.Levy O. Therapeutic potential of the bactericidal /permeability increasing protein[J]. ExpertOp in Investig Drugs, 2002, 11(2): 159-167.
    35. Levels JH , Abraham PR, van den Ende A, et al. Dist ribu-tion and kinetics of lipoprotein-bound endotoxin[J]. Infect Immun , 2001, 69 (5) : 2821-2828.
    36.Berbee JF, van der HCC,Kleemann R, et al. Apolipoprotein CI stimulates the response to lipopolysaccharide and reduces mortality in gram-negative sepsis[J]. FASEB J,2006,20(12): 2162-2164.
    37.Chien JY, Jerng JS, Yu CJ, et al. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis[J]. Crit Care Med, 2005, 33(8): 1688-1693.
    38.Vishnyakova TG, Bocharov AV, Baranova IN, et al. Binding and internalization of lipopolysaccharide by Cla-1 ,a human orthologue of rodent scavenger receptor B1[J]. J Biol Chem, 2003, 278 (25) : 22771-22780.
    39. Kitchens RL , Wolfbauer G, Albers JJ , et al. Plasma lipoproteins promote the release of bacterial lipopolysaccharide f rom the monocyte cell surface[J]. J Biol Chem , 1999 , 274(48) : 34116-34122.
    40.Parker TS , Levine DM , Chang JC , et al . Reconstituted high-density lipoprotein neutralizes gramnegative bacteriallipopolysaccharides in human whole blood[J]. Infect Immun ,1995 , 63 (1) : 253-258.
    41.Vesy CJ , Kitchens RL , Wolfbauer G, et al. Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gramnegative bacterialmembranes[J]. Infect Immun, 2000,68 (5) :2410-2417.
    42.Thaveeratitham P, Khovidhunkit W, Patumraj S. High-density lipoproteins (HDL) inhibit endotoxin-induced leukocyte adhesion on endothelial cells in rats: effect of the acute-phase HDL[J]. Clin Hemorheol Microcirc, 2007, 36(1): 1-12.
    43.Akashi S , Shimazu R , Ogata H. et al . cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages[J]. J Immunol , 2000 ; 164(7) :3471-3475.
    44. Ohta S, Bahrun U, Shimazu R, et al. Induction of long-term lipopolysaccharide tolerance by an agonistic monoclonal antibody to the toll-like receptor 4/MD-2 complex[J]. Clin Vaccine Immunol, 2006 , 13(10): 1131-1136.
    45.Yang H , Ochani M, Li J, et al . Reversing established sepsis with antagonists of endogenous HMGB1. Proc Natl Acad Sci USA , 2004 , 101 (1) : 296-301.
    46.Ulloa L , Ochani M, Yang H , et al . Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation[J]. Proc Natl Acad Sci USA , 2002 , 99 (19) : 12351-12355.
    47. Cruz D N, Bellomo R, Ronco C. Clinical effects of polymyxin B-immobilized fiber column in septic patients[J]. Contrib Nephrol, 2007, 156: 444-451.
    48. Matsuda N ,Hattori Y,Takahashi Y,et al. Therapeutic effect of in vivo transfection of transcription factor decoy to NF -kappaB on septic lung in mice [J] . Am J Physiol Lung Cell Mol Physiol , 2004,287(6): L1248-1255.
    49. Yamada C, Sano H, Shimizu T, et al. Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization[J]. J Biol Chem, 2006, 281(31): 21771-21780.
    50. Jacque B, Stephan K, Smirnova I, et al. Mice expressing high levels of soluble CD14 retain LPS in the circulation and are resistant to LPS-induced lethality[J]. Eur J Immunol, 2006 , 36(11): 3007-3016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700