钩端螺旋体溶血素促炎反应及其信号通路和溶解吞噬泡膜介导免疫逃逸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钩端螺旋体病(Leptospirosis,简称钩体病)是一种全球分布的、洪涝时重点监控的自然疫源性传染病,是我国重点防疫和监控的主要传染病之一。致病钩体赖株基因组中存在众多编码溶血素的基因表明溶血素在钩端螺旋体病中发挥重要作用,但溶血素在钩体感染巨噬细胞后基因表达水平和分泌性尚未阐明。本研究中采用T-A克隆等分子生物学方法构建钩体溶血素基因sphl (LA1027)、 sph2(LA1029)、sph3(LA4004)、sph4(LA3050)、 hlpA(LA1650)、 hly(LA3937)、 hlyX(LA0378)和tlyA(LA0327)的原核表达系统及Ni-NTA亲和层析法提纯各重组溶血素蛋白,分光光度法检测重组溶血素蛋白对绵羊红细胞的溶血活性,实时荧光定量PCR检测钩体赖株感染THP-1和J774A.1细胞后溶血素基因mRNA水平变化及Western-blot检测感染这两种细胞后溶血素蛋白的分泌性。结果成功地构建了8个高效表达目的重组蛋白的表达系统及重组蛋白具备不同程度的溶血活性,感染巨噬细胞后8个溶血素基因水平上调,其中以sph2和hlpA上调更为显著,在两种细胞中rSphl、 rSph2、 rSph3、 rH1pA和rT1yA均能够分泌到胞外。这为后续深入研究8个溶血素的致病机理奠定了良好的基础。
     人感染致病性钩端螺旋体后可引起严重的全身性炎症反应,但是钩体病人血清中完整的炎症因子谱未见报道。钩体赖株基因组中存在众多编码溶血素的基因表明溶血素在钩端螺旋体致病中发挥作用,但关于钩端螺旋体溶血素能否诱导炎性细胞因子分泌及相关的信号通路研究未见报道。本研究中,采用炎性相关细胞因子抗体芯片技术检测钩体病人和感染钩体后的小鼠血清中的完整炎性因子谱。与钩体病人血清相比,感染的小鼠血清中细胞因子出现相对较低的水平,而IL-1β,IL-6和TNF-α三种促炎性细胞因子是钩体病人和感染后小鼠血清均升高的细胞因子。钩端螺旋体重组鞘磷脂类溶血素蛋白(rSph1-rSph4)和非鞘磷脂类溶血素蛋白(rH1pA、rH1yC、rH1yX和rT1yA)均可诱导入和小鼠巨噬细胞分泌IL-1β,IL-6和TNF-α,但在小鼠巨噬细胞中水平相对较低。TLR2和TLR4受体封闭后,溶血素诱导人和小鼠巨噬细胞释放IL-1β,IL-6和TNF-α的能力减弱,这一结论在TLR敲除小鼠的单核巨噬细胞中也得到验证。胞内信号通路NF-κB和JNK抑制剂处理后,人和小鼠巨噬细胞在溶血素刺激下释放上述三种细胞因子的能力减弱。本研究发现8个钩端螺旋体重组溶血素蛋白能通过TLR2和TLR4受体介导的JNK和NF-κB途径诱导人和小鼠巨噬细胞分泌炎性细胞因子。
     为了探讨钩端螺旋体(简称钩体)侵入人或鼠单核-巨噬细胞方式及其吞噬泡形成差异性。本研究中采用透射电镜观察钩体赖株侵入小鼠单核-巨噬样细胞J774A.1和佛波酯(PMA)激活的人单核细胞THP-1后吞噬泡形成情况。采用免疫荧光联合激光共聚焦显微镜及荧光分光光度仪等方法,观察细胞内吞抑制剂单丹磺酰尸胺(MDC)、氧化酚砷(PAO)阻断及网格蛋白抗体封闭前后,J774A.1细胞和THP-1细胞内钩体赖株数量的变化。结果发现774A.1细胞内钩体存在于吞噬泡内,THP-1细胞内钩体无吞噬泡膜包绕。MDC和PAO能以剂量依赖方式抑制J774A.1和THP-1细胞内吞钩体,其中10μmol/L以上MDC和1μmol/L以上PAO阻断的J774A.1和THP-1细胞内钩体数量明显少于未阻断细胞(P<0.05)。网格蛋白抗体封闭后,J774A.1和THP-1细胞内钩体数量也明显减少(P<0.05)。从上述结果中得出如下结论:钩体以网格蛋白依赖性内吞途径侵入人或鼠单核-巨噬细胞。人或鼠单核-巨噬细胞内钩体吞噬泡形成有明显差异,这可能是人或鼠感染钩体后发病情况不同的原因之一。
     钩体病是由致病性钩体引起的全世界流行的人兽共患病,但致病性钩体感染人和家禽(或野生动物)的症状不同。钩体在感染人和动物时迅速通过皮肤和粘膜进入血流,吞噬过程是最重要的天然免疫防护机制之一,因此单核细胞和巨噬细胞在清除侵入病原菌的吞噬功能对钩体感染的天然免疫保护中起到关键作用。钩体与人和小鼠巨噬细胞相互作用的结局不一样,大多数进入小鼠原代与传代细胞的钩体局限在吞噬泡内,而感染人原代与传代巨噬细胞内大多数钩体分布在细胞质内,且不被吞噬泡膜所包裹;含钩体的小鼠吞噬细胞膜能够与溶酶体融合而被杀灭,但人巨噬细胞内钩体反而有繁殖的迹象。
     新生的吞噬体缺乏将病原体或摄入物质杀死降解的能力,从吞噬体产生到成为具有杀死并降解被吞噬物的吞噬溶酶体的过程称为吞噬体的成熟。微生物的逃逸机制是通过寄生在巨噬细胞内的吞噬体中的细菌,干扰内体的发生和成熟,导致形成的吞噬体不能获得溶酶体性质。致病性钩体感染人巨噬细胞后是如何逃逸宿主天然防疫系统而在其内存活和繁殖以及钩体溶血素是否参与此干扰吞噬体成熟的过程,均未见报道。
     本研究中,我们通过透射电镜对THP-1和J774A.1细胞中吞噬泡的形成及演变的研究,结果发现THP-1和J774A.1细胞在内吞开始均形成吞噬泡膜,THP-1中吞噬泡膜出现消失的过程,但J774A.1细胞中的吞噬泡膜没有出现消失的过程。通过对THP-1和J774A.1细胞吞噬泡成熟过程中的表面标志分子进行免疫荧光及激光共聚焦观察,结果显示THP-1细胞中,溶血素主要与吞噬泡膜早期标志物(Rab5)共定位,与晚期标志物(Rab7和LAMP-1)共定位较少;J774A.1细胞中,溶血素可与不同时期吞噬泡膜表面标志物发生共定位。
     上述结果初步得出钩体溶血素能够与吞噬泡膜发生作用,通过溶解吞噬泡膜参与干扰吞噬泡成熟的过程,从而介导钩体逃逸人巨噬细胞的吞噬杀灭作用。这可能是人或鼠感染问号钩体后发病情况不同的原因之一
Leptospira interrogans is a global distribution zoontic diseases when flood outbreak, which is one of the major infectious diseases in China's key prevention and control. There are many genes that encode putative hemolysin Leptospira interrogans strain Lai genome, hemolysin may contribute to the pathogenesis of leptospirosis, but leptospira gene expression and secretion of hemolysin during infected with macrophages have not been reported.
     In this study, first, we constructed Leptospira hemolysin genes including sphl (LA1027), sph2(LA1029), sph3(LA4004), sph4(LA3050), hlpA (LA1650), hlyC (LA3937), hlyX(LA0378) and tlyA (LA0327) prokaryotic expression system by cloning, then the recombinant proteins were extracted and purified by Ni-NTA affinity chromatography, and hemolytic activity of recombinant proteins were measured by hemolytic test in sheep blood by spectrophotometry. Finally, real-time fluorescence quantitative PCR was applied to detect the change of hemolysin genes in mRNA levels and Western-blot was used to detect the secreted of hemolysin proteins during Leptospira interrogans infected THP-1and J774A.1cells.
     The results showed that eight recombinant proteins with varying degrees of hemolytic activity has been constructed with high-level expression, eight hemolysin genes mRNA levels upregulated after infected with macrophages, especaily for sph2and hlpA show more significant increase, rSphl, rSph2, rSph3, rH1pA and rTlyA can be secreted into the extracellular in THP-1and J774A.1cells.
     All these results lead us to have a conclusion that a prokaryotic expression system with high efficiency of L. interrogans hemolysin genes were constructed successfully and the hemolysin genes change in mRNA and protein levels during infected with macrophages, which lay a foundation for further study of pathogenic of leptospira hemolysin.
     Infection of pathogenic Leptospira species causes serious systemic inflammation in patients but the profile of proinflammatory cytokines has never been characterized. Although the presence of numerous hemolysin-encoding genes in the genomes of pathogenic L.interrogans strains suggests that the hemolysins may contribute to pathogenesis in leptospirosis, the ability of leptospiral hemolysins to induce proinflammatory cytokines and stimulate TLR-dependent signaling pathways has never been reported. In the present study, we measured the cytokine profile in sera from leptospirosis patients and leptospire-infected mice using cytokine protein microarrays. The infected mice provided less elevated serum cytokines with relatively lower levels compared to the patients. However, IL-1β, IL-6and TNF-a were the main proinflammatory cytokines in sera of both the patients and infected mice. The tested leptospiral recombinant sphingomyelinic hemolysins (rSphl to rSph4) and non-sphingomyelinic hemolysins (rHlpA, rHlyC, rHlyX and rTlyA) could induce the production of IL-1(3, IL-6and TNF-a in human macrophages, while the production of cytokines in mouse macrophages was relatively lower. Inhibition of TLR2and TLR4as well as the NF-kB and JNK pathways in the two species of macrophages significantly reduced the production of hemolysin-induced IL-1β,IL-6and TNF-a. Macrophages isolated from TLR2-, TLR4-or double TLR2-and4-deficient mice confirmed the TLR2-and TLR4-dependent regulation of proinflammatory cytokine production induced by leptospiral hemolysins. Taken together, we demonstrated that all eight leptospiral hemolysins have the ability to induce inflammatory cytokines via TLR2and TLR4through the JNK and NF-kB pathways.
     This study is aim to determine the modality of Leptospira interrogans invading human and murine mononuclear-macrophages and diversity of leptospiral phagocytotic vesicle formation. Transmission electron microscopy was applied to observe the invasion of L. interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai into murine mononuclear-macrophage-like cell line J774A.1and PMA-activated human monocyte line THP-1and the formation of leptospiral phagocytotic vesicles. By using immunofluorescence plus either laser confocal microscopy or fluorescence spectrophotometry, the changes of intracellular leptospiral numbers in J774A.1and PMA-activated THP-1cells before and after block with endocytosis inhibitors monodansylcadaverin (MDC), phenylarsine oxide (PAO) and clathrin antibody were investigated.
     The leptospires in J774A.1cells were located in phagocytotic vesicles while the leptospires in THP-1cells had no package with phagocytotic vesicle membrane. Both MDC and PAO presented the effect inhibiting endocytosis of L. interrogans into J774A.1and THP-1cells in dose-dependent manner. The numbers of leptospires in J774A.1and THP-1cells that pre-blocked with10μmol/L or above MDC and1μmol/L or above PAO were significantly less than that in the two cells untreated with MDC and PAO (P<0.05). After J774A.1and THP-1cells were blocked with clathrin antibody, the numbers of intracellular leptospires were also remarkbly decreased (P<0.05).
     Leptospira interrogans can invade into both human and murine mononuclear-macrophages through the way of clathrin-dependent endocytosis. There is an opposite diversity of leptospiral phagocytotic vesicle formations in human and murine mononuclear-macrophages, which may result in the difference of pathogenesis in humans and mice after infected with L. interrogans.
     Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira, but the symptoms of human and poultry infected with leptospira are different. Leptospira can enter the bloodstream through the skin and mucous membranes quickly, Phagocytic process is the most important innate immune protection mechanisms, so the monocytes and macrophages play a key role in removing invasive pathogen. However, Leptospira invaded human and mouse macrophages occured different phenomenons, most of leptospira limited in the phagocytic vacuole of mouse primary and passage macrophages and distributed in the cytoplasm of human primary and passage macrophages. Furthermore, phagocytic membrane containing leptospira fused with lysosomes and leptospira were killed in mouse, while fertile signs of leptospira within human macrophages.
     Cells of the innate immune system ingest and destroy invading microorganisms by initially engulfing them into a specialized vacuole, known as the phagosome. The nascent phagosome is not competent to kill and eliminate the ingested microorganisms. Phagosome maturation is the process by which internalized particles (such asbacteria and apoptotic cells) are trafficked into a series of increasingly acidified membrane-bound structures, leading to particle degradation. The basic evasion mechanism is to mediate the process of phagosome, resulting in the formation of the mature phagosome-lysosome could not be obtained to produce within the phagosome, such as Mycobacterium tuberculosis. However, the mechanisms of pathogenic leptospira in human macrophages escaped from the host immune system and reproducted in the organization, and whether the leptospira hemolysins involved in the phagosome maturation process are not reported.
     In this study, we found that THP-1and J774A.1cells formed phatocytic vesicle membrane at the beginning of infection, then the phatocytic vesicle membrane diappeared in THP-1cells while not in J774A.1cells using TEM. Then using laser confocal immunofluorescence, we found that the major hemolysin co-localizated with the early markers of phagocytic vesicle membrane (Rab5),less co-localizated with the late markers (Rab7and LAMP-1) in THP-1cells, hemolysins could co-localizated with different periods of surface markers of vesicle membrane in J774A.1cells.
     We can conclude preliminarily that leptospira hemolysins interfered with the process of vacuolar maturation and mediated the evasion of leptospira from human macrophages for pathogen survival which id different with mouse macrophages, which may result in the difference of pathogenesis in humans and mice after infected with L. interrogans
引文
1. Zhang C, Wang H, Yan J Leptospirosis prevalence in Chinese populations in the last two decades. Microbes Infect.
    2. Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296-326.
    3. Evangelista KV, Coburn J Leptospira as an emerging pathogen:a review of its biology, pathogenesis and host immune responses. Future Microbiol 5:1413-1425.
    4. Projan SJ, Kornblum J, Kreiswirth B, Moghazeh SL, Eisner W, et al. (1989) Nucleotide sequence:the beta-hemolysin gene of Staphylococcus aureus. Nucleic Acids Res 17:3305.
    5. Rowe GE, Pellett S, Welch RA (1994) Analysis of toxinogenic functions associated with the RTX repeat region and monoclonal antibody D12 epitope of Escherichia coli hemolysin. Infect Immun 62:579-588.
    6. Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, et al. (1996) Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin:prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165:73-79.
    7.Freer JH, Birkbeck TH (1982) Possible conformation of delta-lysin, a membrane-damaging peptide of Staphylococcus aureus. J Theor Biol 94:535-540.
    8. Alexander AD, Smith OH, Hiatt CW, Gleiser CA (1956) Presence of hemolysin in cultures of pathogenic leptospires. Proc Soc Exp Biol Med 91:205-211.
    9. del Real G, Segers RP, van der Zeijst BA, Gaastra W (1989) Cloning of a hemolysin gene from Leptospira interrogans serovar hardjo. Infect Immun 57:2588-2590.
    10. Lee SH, Kim KA, Park YG, Seong IW, Kim MJ, et al. (2000) Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai. Gene 254:19-28.
    11. Lee SH, Kim S, Park SC, Kim MJ (2002) Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells. Infect Immun 70:315-322.
    12. Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, et al. (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422:888-893.
    13. Bernheimer AW, Bey RF (1986) Copurification of Leptospira interrogans serovar pomona hemolysin and sphingomyelinase C. Infect Immun 54:262-264.
    14. Yanagihara Y, Kojima T, Mifuchi I (1982) Hemolytic activity of Leptospira interrogans serovar canicola cultured in protein-free medium. Microbiol Immunol 26: 547-556.
    15. Zhang YX, Geng Y, Bi B, He JY, Wu CF, et al. (2005) Identification and classification of all potential hemolysin encoding genes and their products from Leptospira interrogans serogroup Icterohae-morrhagiae serovar Lai. Acta Pharmacol Sin 26:453-461.
    16. Zhang YX, Geng Y, Yang JW, Guo XK, Zhao GP (2008) Cytotoxic activity and probable apoptotic effect of Sph2, a sphigomyelinase hemolysin from Leptospira interrogans strain Lai. BMB Rep 41:119-125.
    17. Hauk P, Negrotto S, Romero EC, Vasconcellos SA, Genovez ME, et al. (2005) Expression and characterization of HlyX hemolysin from Leptospira interrogans serovar Copenhageni:potentiation of hemolytic activity by LipL32. Biochem Biophys Res Commun 333:1341-1347.
    18. Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, et al. (2003) Leptospirosis:a zoonotic disease of global importance. Lancet Infect Dis 3:757-771.
    19. Tajiki H, Salomao R (1996) Association of plasma levels of tumor necrosis factor alpha with severity of disease and mortality among patients with leptospirosis. Clin Infect Dis 23:1177-1178.
    20. Vernel-Pauillac F, Goarant C Differential cytokine gene expression according to outcome in a hamster model of leptospirosis. PLoS Negl Trop Dis 4:e582.
    21. Gleason TG, Houlgrave CW, May AK, Crabtree TD, Sawyer RG, et al. (1998) Hemolytically active (acylated) alpha-hemolysin elicits interleukin-1 beta (IL-1beta) but augments the lethality of Escherichia coli by an IL-1-and tumor necrosis factor-independent mechanism. Infect Immun 66:4215-4221.
    22. Braun JS, Novak R, Gao G, Murray PJ, Shenep JL (1999) Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect Immun 67:3750-3756.
    23. Doran KS, Chang JC, Benoit VM, Eckmann L, Nizet V (2002) Group B streptococcal beta-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J Infect Dis 185:196-203.
    24. Li S, Ojcius DM, Liao S, Li L, Xue F, et al. Replication or death:distinct fates of pathogenic Leptospira strain Lai within macrophages of human or mouse origin. Innate Immun 16:80-92.
    25. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, et al. (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350-354.
    26. Jarry TM, Memmi G, Cheung AL (2008) The expression of alpha-haemolysin is required for Staphylococcus aureus phagosomal escape after internalization in CFT-1 cells. Cell Microbiol 10:1801-1814.
    27. Rahman A, Srivastava SS, Sneh A, Ahmed N, Krishnasastry MV Molecular characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis:a non-conventional hemolysin and a ribosomal RNA methyl transferase. BMC Biochem 11:35.
    28. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635-700.
    29. Dong H, Hu Y, Xue F, Sun D, Ojcius DM, et al. (2008) Characterization of the ompLl gene of pathogenic Leptospira species in China and cross-immunogenicity of the OmpLl protein. BMC Microbiol 8:223.
    30. Luo D, Xue F, Ojcius DM, Zhao J, Mao Y, et al. (2009) Protein typing of major outer membrane lipoproteins from Chinese pathogenic Leptospira spp. and characterization of their immunogenicity. Vaccine 28:243-255.
    31. Nascimento AL, Ko Al, Martins EA, Monteiro-Vitorello CB, Ho PL, et al. (2004) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164-2172.
    32. Matsunaga J, Medeiros MA, Sanchez Y, Werneid KF, Ko Al (2007) Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans:differential effects on LigA and Sph2 extracellular release. Microbiology 153:3390-3398.
    33. Carvalho E, Barbosa AS, Gomez RM, Cianciarullo AM, Hauk P, et al. (2009) Leptospiral TlyC is an extracellular matrix-binding protein and does not present hemolysin activity. FEBS Lett 583:1381-1385.
    34. Cao XJ, Dai J, Xu H, Nie S, Chang X, et al. High-coverage proteome analysis reveals the first insight of protein modification systems in the pathogenic spirochete Leptospira interrogans. Cell Res 20:197-210.
    35. Xue F, Dong H, Wu J, Wu Z, Hu W, et al. Transcriptional responses of Leptospira interrogans to host innate immunity:significant changes in metabolism, oxygen tolerance, and outer membrane. PLoS Negl Trop Dis 4:e857.
    36. McBride AJ, Athanazio DA, Reis MG, Ko Al (2005) Leptospirosis. Curr Opin Infect Dis 18:376-386.
    37. Matsuda N, Hattori Y (2006) Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci 101:189-198.
    38. Cinco M, Vecile E, Murgia R, Dobrina P, Dobrina A (1996) Leptospira interrogans and Leptospira peptidoglycans induce the release of tumor necrosis factor alpha from human monocytes. FEMS Microbiol Lett 138:211-214.
    39. Diament D, Brunialti MK, Romero EC, Kallas EG, Salomao R (2002) Peripheral blood mononuclear cell activation induced by Leptospira interrogans glycolipoprotein. Infect Immun 70:1677-1683.
    40. de Fost M, Hartskeerl RA, Groenendijk MR, van der Poll T (2003) Interleukin 12 in part regulates gamma interferon release in human whole blood stimulated with Leptospira interrogans. Clin Diagn Lab Immunol 10:332-335.
    41. Jongyota W, Wigraipat C, Nontapa S, Taweechaisupapong S, Wara-Aswapati NC, et al. (2008) Differential response of cytokines induced by Leptospira interrogans, serogroup Pomona, serovar Pomona, in mouse and human cell lines. Asian Pac J Allergy Immunol 26:229-236.
    42. Lowanitchapat A, Payungporn S, Sereemaspun A, Ekpo P, Phulsuksombati D, et al. Expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys of hamsters infected with pathogenic Leptospira. Comp Immunol Microbiol Infect Dis 33: 423-434.
    43. Warren R, Lockman H, Barnewall R, Krile R, Blanco OB, et al. Cynomolgus macaque model for pneumonic plague. Microb Pathog 50:12-22.
    44. Hawiger J (2001) Innate immunity and inflammation:a transcriptional paradigm. Immunol Res 23:99-109.
    45. Barton GM (2008) A calculated response:control of inflammation by the innate immune system. J Clin Invest 118:413-420.
    46. Tsiotou AG, Sakorafas GH, Anagnostopoulos G, Bramis J (2005) Septic shock; current pathogenetic concepts from a clinical perspective. Med Sci Monit 11: RA76-85.
    47. Cerami A (1992) Inflammatory cytokines. Clin Immunol Immunopathol 62:S3-10.
    48. Luo Y, Liu Y, Sun D, Ojcius DM, Zhao J, et al. InvA protein:a nudix hydrolase required for infection by pathogenic leptospira in cell lines and animals. J Biol Chem.
    49. Pereira MM, Andrade J, Marchevsky RS, Ribeiro dos Santos R (1998) Morphological characterization of lung and kidney lesions in C3H/HeJ mice infected with Leptospira interrogans serovar icterohaemorrhagiae:defect of CD4+ and CD8+ T-cells are prognosticators of the disease progression. Exp Toxicol Pathol 50: 191-198.
    50. Koizumi N, Watanabe H (2003) Identification of a novel antigen of pathogenic Leptospira spp. that reacted with convalescent mice sera. J Med Microbiol 52: 585-589.
    51. Nally JE, Fishbein MC, Blanco DR, Lovett MA (2005) Lethal infection of C3H/HeJ and C3H/SCID mice with an isolate of Leptospira interrogans serovar copenhageni. Infect Immun 73:7014-7017.
    52. Iwakura Y, Ishigame H, Saijo S, Nakae S Functional specialization of interleukin-17 family members. Immunity 34:149-162.
    53. Adler B, de la Pena Moctezuma A Leptospira and leptospirosis. Vet Microbiol 140: 287-296.
    54. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, et al. (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. Faseb J 8: 217-225.
    55. Isogai E, Isogai H, Fujii N, Oguma K (1990) Macrophage activation by leptospiral lipopolysaccharide. Zentralbl Bakteriol 273:200-208.
    56. Nahori MA, Fournie-Amazouz E, Que-Gewirth NS, Balloy V, Chignard M, et al. (2005) Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol 175:6022-6031.
    57. Priya CG, Rathinam SR, Muthukkaruppan V (2008) Evidence for endotoxin as a causative factor for leptospiral uveitis in humans. Invest Ophthalmol Vis Sci 49: 5419-5424.
    58. Trent MS, Stead CM, Tran AX, Hankins JV (2006) Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res 12:205-223.
    59. Viriyakosol S, Matthias MA, Swancutt MA, Kirkland TN, Vinetz JM (2006) Toll-like receptor 4 protects against lethal Leptospira interrogans serovar icterohaemorrhagiae infection and contributes to in vivo control of leptospiral burden. Infect Immun 74:887-895.
    60. Marangoni A, Aldini R, Sambri V, Giacani L, Di Leo K, et al. (2004) Production of rumor necrosis factor alpha by Treponema pallidum, Borrelia burgdorferi s.l., and Leptospira interrogans in isolated rat Kupffer cells. FEMS Immunol Med Microbiol 40:187-191.
    61. Taneike I, Zhang HM, Wakisaka-Saito N, Yamamoto T (2002) Enterohemolysin operon of Shiga toxin-producing Escherichia coli:a virulence function of inflammatory cytokine production from human monocytes. FEBS Lett 524:219-224.
    (?)ekara NO, Dietrich N, Lyszkiewicz M, Lienenklaus S, Weiss S (2009) Signals triggered by a bacterial pore-forming toxin contribute to toll-like receptor redundancy in gram-positive bacterial recognition. J Infect Dis 199:124-133.
    63. Soderblom T, Oxhamre C, Wai SN, Uhlen P, Aperia A, et al. (2005) Effects of the Escherichia coli toxin cytolysin A on mucosal immunostimulation via epithelial Ca2+ signalling and Toll-like receptor 4. Cell Microbiol 7:779-788.
    64. Dessing MC, Hirst RA, de Vos AF, van der Poll T (2009) Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice. PLoS One 4:e7993.
    65. Ito Y, Kawamura I, Kohda C, Tsuchiya K, Nomura T, et al. (2005) Seeligeriolysin O, a protein toxin of Listeria seeligeri, stimulates macrophage cytokine production via Toll-like receptors in a profile different from that induced by other bacterial ligands. Int Immunol 17:1597-1606.
    66. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816-825.
    67. Dragneva Y, Anuradha CD, Valeva A, Hoffmann A, Bhakdi S, et al. (2001) Subcytocidal attack by staphylococcal alpha-toxin activates NF-kappaB and induces interleukin-8 production. Infect Immun 69:2630-2635.
    68. Rose F, Zeller SA, Chakraborty T, Domann E, Machleidt T, et al. (2001) Human endothelial cell activation and mediator release in response to Listeria monocytogenes virulence factors. Infect Immun 69:897-905.
    69. Stassen M, Muller C, Richter C, Neudorfl C, Hultner L, et al. (2003) The streptococcal exotoxin streptolysin O activates mast cells to produce tumor necrosis factor alpha by p38 mitogen-activated protein kinase-and protein kinase C-dependent pathways. Infect Immun 71:6171-6177.
    70. Merien F, Baranton G, Perolat P (1997) Invasion of Vero cells and induction of apoptosis in macrophages by pathogenic Leptospira interrogans are correlated with virulence. Infect Immun 65:729-738.
    71. Li L, Ojcius DM, Yan J (2007) Comparison of invasion of fibroblasts and macrophages by high-and low-virulence Leptospira strains:colonization of the host-cell nucleus and induction of necrosis by the virulent strain. Arch Microbiol 188: 591-598.
    72. Liu Y, Zheng W, Li L, Mao Y, Yan J (2007) Pathogenesis of leptospirosis: interaction of Leptospira interrogans with in vitro cultured mammalian cells. Med Microbiol Immunol 196:233-239.
    73. Jin D, Ojcius DM, Sun D, Dong H, Luo Y, et al. (2009) Leptospira interrogans induces apoptosis in macrophages via caspase-8-and caspase-3-dependent pathways. Infect Immun 77:799-809.
    74. Wileman T, Harding C, Stahl P (1985) Receptor-mediated endocytosis. Biochem J 232:1-14.
    75. Gonzalez-Gaitan M, Stenmark H (2003) Endocytosis and signaling:a relationship under development. Cell 115:513-521.
    76. Miliotis MD, Tall BD, Gray RT (1995) Adherence to and invasion of tissue culture cells by Vibrio hollisae. Infect Immun 63:4959-4963.
    77. Valenti-Weigand P, Benkel P, Rohde M, Chhatwal GS (1996) Entry and intracellular survival of group B streptococci in J774 macrophages. Infect Immun 64: 2467-2473.
    78. Jevon M, Guo C, Ma B, Mordan N, Nair SP, et al. (1999) Mechanisms of internalization of Staphylococcus aureus by cultured human osteoblasts. Infect Immun 67:2677-2681.
    79. Kobayashi Y (2001) Clinical observation and treatment of leptospirosis. J Infect Chemother 7:59-68.
    80. Moller W, Nemoto I, Matsuzaki T, Hofer T, Heyder J (2000) Magnetic phagosome motion in J774A.1 macrophages:influence of cytoskeletal drugs. Biophys J 79: 720-730.
    81. Kurosaka K, Watanabe N, Kobayashi Y (2001) Production of proinflammatory cytokines by resident tissue macrophages after phagocytosis of apoptotic cells. Cell Immunol 211:1-7.
    82. Ray E, Samanta AK (1996) Dansyl cadaverine regulates ligand induced endocytosis of interleukin-8 receptor in human polymorphonuclear neutrophils. FEBS Lett 378: 235-239.
    83. Boudin H, Sarret P, Mazella J, Schonbrunn A, Beaudet A (2000) Somatostatin-induced regulation of SST(2A) receptor expression and cellsurface availability in central neurons:role of receptor internalization. J Neurosci 20: 5932-5939.
    84. Morales CR, Zhao Q, Lefrancois S (1999) Biogenesis of lysosomes by endocytic flow of plasma membrane. Biocell 23:149-160.
    85. Koelle DM (2007) Immunobiology and host response.
    86. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188:253-269.
    87. Cinco M New insights into the pathogenicity of leptospires:evasion of host defences. New Microbiol 33:283-292.
    88. Rohde K, Yates RM, Purdy GE, Russell DG (2007) Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 219:37-54.
    89. Deretic V, Singh S, Master S, Harris J, Roberts E, et al. (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8:719-727.
    90. Steinberg BE, Grinstein S (2008) Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants. J Clin Invest 118:2002-2011.
    91. Desjardins M, Huber LA, Parton RG, Griffiths G (1994) Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124:677-688.
    92. Lamothe J, Huynh KK, Grinstein S, Valvano MA (2007) Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol 9:40-53.
    1. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454: 428-435.
    2. Matsuda N, Hattori Y (2006) Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci 101:189-198.
    3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783-801.
    4. Takeuchi O, Akira S Pattern recognition receptors and inflammation. Cell 140: 805-820.
    5. Chtarbanova S, Imler JL Microbial sensing by Toll receptors:a historical perspective. Arterioscler Thromb Vasc Biol 31:1734-1738.
    6. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397.
    7. Muzio M, Bosisio D, Polentarutti N, D'Amico G, Stoppacciaro A, et al. (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes:selective expression of TLR3 in dendritic cells. J Immunol 164: 5998-6004.
    8. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, et al. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777-1782.
    9. Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition:CD 14, TLRs and the LPS-activation cluster. Trends Immunol 23:301-304.
    10. Kawasaki K, Akashi S, Shimazu R, Yoshida T, Miyake K, et al. (2000) Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 275:2251-2254.
    11. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge:heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164: 558-561.
    12. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, et al. (2000) Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nat Immunol 1:398-401.
    13. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, et al. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97: 13766-13771.
    14. Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, et al. (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2:346-352.
    15. Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, et al. (2001) Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 69:1477-1482.
    16. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, et al. (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167:416-423.
    17. Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y (2000) Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J Immunol 165:5767-5772.
    18. Yang RB, Mark MR, Gray A, Huang A, Xie MH, et al. (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284-288.
    19. Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M (1998) Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 188: 2091-2097.
    20. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099-1103.
    21. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740-745.
    22. Hacker H, Mischak H, Hacker G, Eser S, Prenzel N, et al. (1999) Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. Embo J 18:6973-6982.
    23. Hajjar AM, O'Mahony DS, Ozinsky A, Underhill DM, Aderem A, et al. (2001) Cutting edge:functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166:15-19.
    24. Bulut Y, Faure E, Thomas L, Equils O, Arditi M (2001) Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein:role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 167: 987-994.
    25. An H, Yu Y, Zhang M, Xu H, Qi R, et al. (2002) Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 106: 38-45.
    26. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3-9.
    27. O'Neill LA, Fitzgerald KA, Bowie AG (2003) The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 24:286-290.
    28. Siren J, Pirhonen J, Julkunen I, Matikainen S (2005) IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol 174:1932-1937.
    29. Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, et al. (2006) MyD88 adapter-like (Mal) is phosphorylated by Bruton's tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem 281:10489-10495.
    30. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, et al. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301: 640-643.
    31. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, et al. (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4:1144-1150.
    32. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, et al. (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7:1074-1081.
    33. Ghosh S (1999) Regulation of inducible gene expression by the transcription factor NF-kappaB. Immunol Res 19:183-189.
    34. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195-2224.
    35. Turjanski AG, Vaque JP, Gutkind JS (2007) MAP kinases and the control of nuclear events. Oncogene 26:3240-3253.
    36. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911-1912.
    37. Hollenbach E, Neumann M, Vieth M, Roessner A, Malfertheiner P, et al. (2004) Inhibition of p38 MAP kinase-and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. Faseb J 18:1550-1552.
    38. Hertz CJ, Kiertscher SM, Godowski PJ, Bouis DA, Norgard MV, et al. (2001) Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. J Immunol 166:2444-2450.
    39. Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, et al. (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 166: 249-255.
    40. Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, et al. (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162-10167.
    41. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, et al. (1999) Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 163:3920-3927.
    42. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, et al. (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603-607.
    43. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, et al. (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544-1547.
    44. Beutler B, Poltorak A (2001) Sepsis and evolution of the innate immune response. Crit Care Med 29:S2-6; discussion S6-7.
    45. Zhang G, Ghosh S (2000) Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res 6: 453-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700