纳米结构W及TM掺杂的DMS的结构与磁性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性材料的研究一直是很重要的一个领域,特别是材料在纳米尺度下的磁性,它们在电子学领域有非常重要的应用。纳米磁性在未来半导体材料,高集成化元件中都有重要应用,使它成为目前的一个非常活跃的研究领域。在同一种材料上同时使用电子的电荷和自旋的所谓自旋电子学也成为一个引人注目的研究方向。理论上,对磁性和结构的关系的研究可以揭示一些神奇的基本物理原理和发现一些重要的潜在应用。密度泛函理论的发展就为物质电子结构性质的理论研究打开了一个广阔的天地,提供了关键的方法步骤。本博士论文的研究工作应用基于密度泛函理论的第一原理方法,并在计算中引入轨道-自旋相互作用进行极化非共线计算,系统地对W的团簇(零维)、W的原子链(一维)、W的原子薄片(二维)以及过渡金属掺杂的稀磁半导体的结构稳定性、电子结构性质及磁性进行了计算,获得了一些有价值的信息,得到了一些重要的结果:
     1)对零维的W_n团簇(n=3~27)的结构性质进行了研究。通过对结构的优化计算,得到了W_n团簇(n=3~7)的最低能量结构和(n=8~27)的局域能量极小的典型结构。使用凝胶模型提出了团簇的电子组态,并很好地解释了幻数团簇的电子数和结构稳定性;得到并分析了团簇的HOMO-LUMO能隙,团簇的结合能、能量的一阶和二阶差分随原子数n变化;得到了团簇中原子的成键特点随团簇原子数的变化特征,指出了W团簇随着原子数的增加很快便出现金属性等性质。
     2)系统地研究了W的一维原子链的磁性。我们计算了一维线性链的铁磁、反铁磁和螺旋磁性(自旋波)三种结构的稳定性和磁性的变化。研究中,分别作了考虑轨道自旋相互作用和不考虑轨道自旋相互作用两种情况的计算。结果显示,稳定的一维W线性原子链具有磁性,而且反铁磁链的相对稳定性高。原子间距很近时没有磁矩,而随着原子间距的增加,原子磁矩在一个很小的变化范围内跃升,最终随着原子间距的增大趋于单原子磁矩。轨道磁矩在有近邻原子作用时出现,且极化方向与自旋极化方向相反。稳定的W一维反铁磁链具有磁性且具有金属性,磁矩主要是d-电子的贡献。随着原子链的原子间距的增加,逐渐从金属性向半导体性变化,电子的局域程度增加,原子链上原子的磁矩变大,同时,s电子对磁矩的贡献增大。
     3)对二维的W原子面的结构与磁性进行了计算。对于平面结构,进行了从斜方、六角、长方、到正方结构的计算,不同结构下也进行了不同的晶格常数下性质的计算。计算的磁性结构包含铁磁,反铁磁以及部分近邻反铁磁性结构。我们对不同结构的稳定性、磁性、电荷密度、电子态密度以及磁密度进行了比较。结果发现,不管是铁磁,反铁磁以及部分近邻反铁磁性的W平面结构,近六角(由于Jahn-Teller效应使其相对于六角结构产生了一些畸变)的平面结构最稳定;反铁磁的结构比铁磁的结构稳定;铁磁结构的磁性在某些结构上出现奇异;而稳定的W平面结构没有磁性或磁性很弱;其中正方结构的反铁磁稳定结构表现出弱磁性,其输运电子也表现出弱极化;稳定的W原子薄片是金属性的。在晶格被拉伸的情况下W原子面出现磁性,反铁磁结构比铁磁结构更早出现磁性,正方结构比斜方结构更快出现磁性。此外,还比较了W原子面在六角结构和正方结构下的电荷密度、电子态密度和磁密度,讨论了它们的电子结构性质,并对自旋轨道作用和非共线耦合的作用进行了讨论。
     4)对3d过渡金属(TM=V、Cr、Mn、Fe、Co和Ni)掺杂的Ⅲ-Ⅴ半导体(GaAs和GaP)的电磁性质进行了第一原理的计算。结果发现:V、Cr和Mn掺杂的Ⅲ-Ⅴ将出现铁磁状态(FM),Fe掺杂的Ⅲ-Ⅴ将出现反铁磁状态(AFM),而Co和Ni掺杂时,其磁性不稳定。其中Cr掺杂的Ⅲ-Ⅴ将可能是具有较高居里温度Tc的稀磁半导体(DMS)。在TM掺杂的Ⅲ-ⅤDMS中,当TM-3d自旋朝上的t_(2g)轨道全空时,TM离子的磁矩将大于理论期待值;当TM-3d自旋朝上的t_(2g)轨道全满时,TM离子的磁矩将小于理论期待值:当TM-3d自旋朝上的t_(2g)轨道部分填充时,TM离子的磁矩与期待值的差距取决于晶体的对称性和磁性离子的能带情况。Si与Mn对Ⅲ-ⅤDMS进行共掺杂时,将有利于DMS出现FM状态,并使得TC提高。
The studies on the magnetism of materials,especially in the nano-structured scale,have been an important field,because of their very important applications in electronics and other realm of science.The nano-magnetism has become a stirring region of study because of their potential important applications in future semiconductors and highly integrated devices.Also,the spintronics,with the study of spontaneously employing the charge and spin of an electron in some bulk semiconductor materials,has become a very attractive research realm.Theoretically, the investigation of the relationship between the structure and the magnetism can also reveal some basic physical principles and discover important potential applications. The development of density functional theory(DFT) has opened a wide realm for the studies of electronic structures,and provided a pivotal scheme.In this dissertation,by using the first-principles calculations based on the density functional theory and by introducing the non-collinear calculations with the spin-orbital coupling,the structural stabilities,electronic structures and magnetic properties of zero-dimensional W clusters,one-dimensional W atomic chain,two-dimensional W atomic sheet and some TM-doped semiconductor materials have been systematically studied.As a result, some valuable information has been obtained and some important results have been achieved,i.e.:
     (1) The structural properties of W_n clusters(n = 3~27) has been studied.The most stable structures of clusters(n = 3~7) with global energy minimum and typical structures of clusters(n = 8~27) with local energy minimum are determined by the ab initio calculations of optimizing the structures.Based on the jellium model,the electronic configuration is proposed which can explain well the electronic magic numbers and the relative stabilities of W clusters.The binding energies,the first and second differences of binding energies and the HOMO-LUMO gaps versus the number of atoms in the clusters are obtained and analyzed.The character of the variety of the properties of bonding between the atoms versus the number of atoms in the cluster has been obtained,indicating that W clusters become metallic very quickly with the increase of cluster size.
     (2) The magnetism of free standing W atomic chains is studied.The calculations have been performed on the diversification of structural stability and the magnetism of ferromagnetic,anti-ferromagnetic and spiral polarized(spin wave) states.The chains with and without the spin-orbit(L-S) coupling are taken into account, respectively.It is shown that the stable W atomic chains are magnetic,and the anti-ferromagnetic is shown to be the most stable one.There is no magnetism in the chains when the atomic distance is small,however,the magnetic moment increases rapidly within a small region of atomic distance when the distance is larger than a certain value,and then approaches the value of a single atom.The orbital magnetic moment emerges when the inter-atomic exchange interaction emerges,and the orbital polarized direction is opposite to the spin polarized one.The stable anti-ferromagnetic W chain is metallic besides magnetic,and the magnetic moment is primarily contributed by d-electrons.When the atomic distance increases,the chain transforms gradually from metal to semiconductor,the atomic magnetic moment increases and the electrons are more localized,in the meantime,the s-electrons contributes more to the magnetism of the chain.
     (3) The structural and magnetic properties of two-dimensional W atomic sheet are studied.The calculations are performed for the plain structures with rhombic, hexagonal,rectangle and square and with variant lattice constants.The calculated magnetic structures include ferromagnetism,anti-ferromagnetism and partial anti-ferromagnetism.The structural stability,magnetism and electronic structure properties of different structures are compared.The main results are:the near-hexagonal structure(a structure with small distortion from hexagonal structure due to the John-Teller effect) is the most stable one in all the plain structures;the anti-ferromagnetism is more stable than ferromagnetism;the magnetism of some ferromagnetism structure appears oddity;the stable atomic sheets are nonmagnetic or with week magnetism;the stable square-structure appears week magnetism,and the transportation electrons also appears dilute polarization;the stable W atomic sheets are metallic.The magnetism appears in the sheets when the lattice constant is elongated,moreover,the magnetism appears more early in anti-ferromagnetism structures and more quickly in the square structure.The charge densities,the electronic density of states,and the magnetization density of hexagonal and square structures are also compared.The electronic structure properties and the effect of spin-orbit non-collinear coupling are discussed.
     (4) The magnetic properties ofⅢ-Ⅴsemiconductor(GaAs,GaP) doped by 3d-TM(TM=V,Cr,Mn,Fe,Co and Ni) are studied.It is shown that the ferromagnetic state(FM) will be realized in V,Cr and Mn doped GaAs and GaP;the antiferromagnetic(AFM) state is favored when doped by Fe,whereas,the materials show unstable magnetism when doped by Co and Ni.TheⅢ-Ⅴsemiconductor doped by Cr is a candidate with high Curie temperature(T_C).Furthermore,it shows that the magnetic moment of TM is larger than theoretical expected value when the spin-up t_(2g)-orbitals of TM are empty,whereas,the magnetic moment of TM become smaller than expected value when the spin-up t_(2g)-orbitals are fully occupied.When the spin-up t_(2g)-orbitals are partially occupied,the difference between TM's magnetic moment and expected value leans heavily on the crystal symmetry and the band structures of the magnetic ions.Finally,GaAs and GaP co-doped by Si and Mn are studied,it shows that co-doping will show better stability of FM state and higher T_C.
引文
[1]国家科技图书文献中心(NSTL),美国2008财年联邦研发预算[J].全球科技投入要览,2007,(7):1.
    [2]国家科技图书文献中心(NSTL),德国启动纳米行动计划[J].全球科技投入要览,2006,(22):2
    [3]国家科技图书文献中心(NSTL),印度2006-07年度科学预算[J].全球科技投入要览,2006,(22):1
    [4]Kreibig U.,Kramers Kronig analysis of optical properties of small silver particles[J].Z.Phys,1970,A234:307.
    [5]E.J.Robbins,R.E.Leckenby,and P.Willis,The ionization potentials of clustered sodium atoms[J].Adv.Phys.,1967,16:739.
    [6]O.F.Hagena,Formation of silver clusters in nozzle expansions[J].Z.Phys.1991,D20:425.
    [7]S.Bjφmholm,J.Borggreen,O.Ech,K.Hansen,J.Pedersen,and H.D.Rasmussen,1991,The influence of shells,electron thermodynamics,and evaporation on the abundance spectra of large sodium metal clusters[J].Z.Phys.,D19:47.
    [8]J.Blanc,M.Broyer,J.Chevalayre,P.Dugourd,H.Kuhling,P.Labastie,M.Ulbricht,J.P.Wolf,and L.W(o|¨)ste,High resolution spectroscopy of small metal cluster[J].Z.Phys.,1991 D 19:7.
    [9]P.Dugourd,1991,Ph.D.thesis(Université de Lyon).
    [10]D.Rayane,P.Melinon,B.Tribollet,B.Chabaud,A.Hoareau,and M.Broyer,Binding energy and electronic properties in antimony clusters:Comparison with bismuth clusters[J].J.Chem.Phys.,1989,91:3100.
    [11]H.G.Limberger,and T.P.Martin,Photoionization spectra of cesium and cesium oxide clusters[J].J.Chem.Phys.1989,90:2979.
    [12]P.Milani,W.A.de Heer,and A.Chatelain,Electronic properties of aluminum clusters compared with the jellium model[J].Z.Phys.,1991,D19:133.
    [13]P.Fayet,J.P.Wolf,and L.Woste,Temperature measurement of sputtered metal dimmers[J].Phys.Rev.,1986,B33:6792.
    [14] W.A. Saunders, and S. Fredrigo, Fission of small multiply charged gold clusters [J]. Chem. Phys. Lett., 1989,156: 14
    [15] Knight W.D., K. Clemenger, W.A. de Heer, W. A. Saunders, M.Y. Chou, and M.L. Cohen, Electronic Shell Structure and Abundances of Sodium Clusters [J]. Phys. Rev. Lett., 1984, 52: 2141
    [16] W. Ekardt, Dynamical Polarizability of Small Metal Particles: Self-Consistent Spherical Jellium Background Model [J]. Phys. Rev. Lett., 1984, 52: 1925
    [17] W. Ekardt., Work function of small metal particles: Self-consistent spherical jellium-background model [J]. Phys. Rev., 1984, B29: 1558.
    [18] W.A. de Heer, W.D. Knight, M.Y. Chou, and M.L.Cohen, 1987,in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, New York), Vol.40, p.93
    [19] J. Pederson, S. Bj(?)rnholm, J. Borggreen, K. Hansen, T.P. Martin, and H.D. Rasmussen, Observation of quantum supershells in clusters of sodium atoms [J]. Nature, 1991,353: 733
    [20] M.Y. Chou, A. Cleland, and M.L. Cohen, Total energies, abundances, and electronic shell structure of lithium, sodium, and potassium clusters [J]. Solid State Commun., 1984, 52: 645
    [21] H.A. Jahn and E. Teller, 1937, Proc. R. Soc. London Ser.A 161,220
    [22] K. Clemenger, Ellipsoidal shell structure in free-electron metal clusters [J]. Pys.Rev.,1985, B32: 1359
    [23] K. Clemenger, 1985, Ph.D thesis (University of California Berkeley)
    [24] V. Bonacic-Koutecky, P. Fantucci and J. Koutecky, Systematic ab initio configuration-interaction study of alkali-metal clusters. II. Relation between electronic structure and geometry of small sodium clusters [J]. Phys. Rev., 1988, B37: 4369
    [25] W.A. de Heer, The physics of simple metal clusters: experimental aspects and simple models [J]. Rev. Mod. Phys., 1993,65: 611
    [26] Jun Nakamura, Tomonobu Nakayama, Satoshi Watanabe and Masakazu Aono, Structural and Cohesive Properties of a C60 Monolayer [J], Phys. Rev. Lett., 2001, 87: 048301
    [27] Jinlan Wang, Guanghou Wang, and Jijun Zhao, Density-functional study of Aun(n=2 -20) clusters: Lowest-energy structures and electronic properties[J]. Phys. Rev., 2002, B 66: 035418
    [28] Andrey Lyalin, Ilia A. Solov'yov, Andrey V. Solov'yov, and Walter Greiner, Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size [J]. Phys. Rev., 2003, A 67: 063203
    [29] Zhong-Yi Lu, Cai-Zhuang Wang, and Kai-Ming Ho, Structures and dynamical properties of C_n, Si_n, Ge_n , and Sn_n clusters with n up to 13[J]. Phys. Rev., 2000, B61:2329
    
    [30] Jinlan Wang, Guanghou Wang, and Jijun Zhao, Nonmetal-metal transition in Zn_n (n=2-20) clusters [J]. Phys. Rev., 2003, A 68: 01320
    
    [31] M. Calleja, C. Rey, M. M. G. Alemany, and L. J. Gallego, Self-consistent density-functional calculations of the geometries, electronic structures, and magnetic moments of Ni-Al clusters [J]. Phys. Rev., 1999, B60:2020
    
    [32] G Rubio, N. Agrait, and S. Vieira, Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport [J]. Phys. Rev. Lett., 1996,76: 2302
    
    [33] H. Ohnishi, Y. Kondo, and K. Takayanagi, Quantized conductance through individual rows of suspended gold atoms [J]. Nature (London) ,1998,395:780
    
    [34] A.I. Yanson, G. Rubio-Bollinger, H.E. van den Brom, N. Agrait, and J.M. van Ruitenbeek, Formation and manipulation of a metallic wire of single gold atoms [J]. Nature (London), 1998, 395: 783
    
    [35] H.J. Elmers, J. Hauschild, H. Hoche, U. Gradmann, H. Bethge, D. Heuer, and U. Kohler, Submonolayer Magnetism of Fe(110) on W(110): Finite Width Scaling of Stripes and Percolation between Islands [J]. Phys. Rev. Lett. 1994,73: 898
    
    [36] T. Jung, R. Schlittler, J.K. Gimzewski, and F.J. Himpsel, One-dimensional metal structures at decorated steps [J]. Appl. Phys. A: Mater. Sci. Process., 1995,61: 467
    
    [37] J. Shen, R. Skomski, M. Klaua, H. Jenniches, S. Sundar Manoharan,and J. Kirschner, Magnetism in one dimension: Fe on Cu(111) [J]. Phys. Rev., 1997, B 56: 2340
    
    [38] V. Repain, J.M. Berroir, S. Rousset, and J. Lecoeur, Growth of self-organized cobalt nanostructures on Au(111) vicinal surfaces [J]. Surf. Sci., 2000,447: L152
    
    [39] P. Gambardella, M. Blanc, H. Brune, K. Kuhnke, and K. Kern, One-dimensional metal chains on Pt vicinal surfaces [J]. Phys. Rev., 2000, B61: 2254
    
    [40] P. Gambardella, M. Blanc, L. Bu¨rgi, K. Kuhnke, and K. Kern, Co growth on Pt(997): from monatomic chains to monolayer completion [J]. Surf. Sci., 2000,449: 93
    
    [41] P. Gambardella, A. Dallmeyer, K. Maiti, M.C. Malagoll, W. Eberhardt, K. Kern, and C. Carbone, Ferromagnetism in one-dimensional monatomic metal chains [J]. Nature (London) ,2002,416: 301
    [42] H. Bethge, D. Heuer, C. Jensen, K. Reshoft, U. Kohler, Misfit-related effects in the epitaxial growth of iron on W(110) [J]. Surf. Sci., 1995, 331-333: 878
    
    [43] H.J. Elmers, J. Hauschild, U. Gradmann, Onset of perpendicular magnetization in nanostripe arrays of Fe on stepped W(110) surfaces [J]. Phys. Rev., 1999, B59: 3688.
    
    [44] H.J. Elmers, J. Hauschild, H. Fritzsche, G. Liu, U. Gradmann, U. Kohler, Magnetic Frustration in Ultrathin Fe Films [J]. Phys. Rev. Lett., 1995,75: 2031.
    [45] R. Kurzawa, K.-P. Kamper, W. Schmitt, G. Guntherodt, Spin-resolved photoemission study of in situ grown epitaxial Fe layers on W(110) [J]. Solid State Commun., 1986,60 :777.
    [46] U. Gradmann, J. Korecki, G. Waller, In-plane magnetic surface anisotropies in Fe(110) [J]. Appl. Phys. A, 1986,39: 101.
    [47] K. von Bergmann, M. Bode, R. Wiesendanger, Coverage-dependent spin reorientation transition temperature of the Fedouble-layer on W(110) observed by scanning tunneling microscopy [J]. Journal of Magnetism and Magnetic Materials, 2006,305: 279
    [48] P. Sen, S. Ciraci, A .Buldum, and I. P. Batral, Structure of aluminum atomic chains [J]. Phys. Rev., 2001, B64: 195420
    [49] D. S. Portal, E. Atracho, J. Junquera, A. Garcfa and J. M. Soler, Zigzag equilibrium structure in monatomic wires [J], Surf. Sci., 2001,482-485: 1261
    [50] Y. S. Lin, A.Y. Li and Z. Z. Zhu , Atomic and electronic structures of zr atoimic chains [J]. Chin. Phys. Lett., 2004,21: 1791
    [51] 沈汉鑫,蔡娜丽,文玉华,朱梓忠,Nb原子链的结构稳定性和电子性质[J].Acta.Phys.Sin.,2005,54:5362
    [52]D. S. Portal, E. Artacho, J. Junquera ,A. Garcia and J. M. Soler, Stiff Monatomic Gold Wires with a Spinning Zigzag Geometry [J]. Phys. Rev. Lett., 2001, 83:3884
    [53]R. Hoffmann, Solids and surfaces: A chemist's view of bonding in Extended Structures [M]. VCH press, Germany, 1988.
    [54] S. R. Bahn and K. W. Jacobsen, Chain Formation of Metal Atoms [J]. Phys. Rev. Lett, 2001, 87: 266101
    [55] F. J. Ribeiro and M. L. Cohen, Ab initio pseudopotential calculations of infinite monatomic chains of Au, Al, Ag, Pb, Rh, and Ru [J]. Phys. Rev., 2003, B68: 35423
    [56] A. Delin. E. Tosatti, R. Weht, Magnetism in Atomic-Size Palladium Contacts and Nanowires [J]. Phys. Rev. Lett., 2004,92: 057201
    [57] T. Ono and K. Hirose, First-principles study of Peierls instability in infinite single row Al wires [J]. Phys. Rev., 2003, B68: 045409
    [58] D. SpiSak and J. Hafner, Magnetism of ultrathin wires suspended in free space and adsorbed on vicinal surfaces[J]. Phys. Rev., 2003, B67: 214416
    [59] S. Blu¨gel, Magnetism of 4d and 5d transition metal adlayers on Ag(001): Dependence on the adlayer thickness [J]. Phys. Rev., 1995, B51: 2025
    [60] V. Bellini, N. Papanikolaou, R. Zeller, and P.H. Dederichs, Magnetic 4d monoatomic rows on Ag vicinal surfaces [J]. Phys.Rev., 2001, B64: 094403
    [61] Tatsuki Oda, Alfredo Pasquarello. And Roberto Car, Fully Unconstrained Approach to Noncollinear Magnetism: Application to Small Fe Clusters [J]. Phys.Rev.Lett., 1998, 80: 3622
    [62] L. Nordstrom and D. J. Singh, Noncollinear Intra-atomic Magnetism [J]. Phys. Rev. Lett., 1996, 76: 4420
    [63] Kohji Nakamura* and Tomonori Ito, A. J. Freeman, Enhancement of magnetocrystalline anisotropy in ferromagnetic Fe films by intra-atomic noncollinear magnetism [J]. Phys. Rev., 2003, B67: 014420
    [1]P.Hohenberg and W.Kohn,Inhomogeneous electron gas[J].Phys.Rev.B,1964,136:864-871.
    [2]N.David Mermin,Thermal properties of the inhomogeneous electron gas[J].Phys.Rev.A,1965,137:1441-1443.
    [3]W.Kohn and L.J.Sham,Self-consistent equations including exchange and correlation effects[J].Phys.Rev.A,1965,140:1133-1138.
    [4]L.H.Thomas,The calculation of atomic fields[J].Proc.Cambridge Phil.Roy.Soc.,1972,23:542-548.
    [5]E.Fermi,Un metodo statistico per la determinazione di alcune priorieta dell'atome[J].Rend.Accad.Naz Lincei,1927,6:602-607.
    [6]G.Vignale and M.Rasolt,Current- and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields[J].Phys.Rev.B,1988,37:10685-10696.
    [7]G.Vignale and W.Khon,Current-dependent exchange-correlation potential for dynamical linear response theory[J].Phys.Rev.Lett.,1996,77:2037-2040.
    [8]K.Capelle and E.K.U.Gross,Spin-density functionals from current-density functional theory and vice versa:A road towards new approximations[J].Phys.Rev.Lett.,1997,78:1872-1875.
    [9]R.Van Leeuwen,Causality and symmetry in time-dependent density-functional theory[J].Phys.Rev.Lett.,1998,80:1280-1283.
    [10]U.Von Barth and L.Hedin,A local exchange-correlation potential for the spin polarized case[J].J.Phys.C,1972,5:1629-1642.
    [11]R.O.Jones and O.Gunnarsson,The density functional formalism,its applications and prospects[J].Rev.Mod.Phys.,1989,61:689-746.
    [12]O.Gunnarsson,B.I.Lundqvist,and J.W.Wilkins,Contribution to the cohesive energy of simple metals:Spin-dependent effect[J].Phys.Rev.B,1974,10:1319-1327.
    [13]W.Kohn and L.J.Sham,Self-Consistent Equations Including Exchange and Correlation Effects[J].Phys.Rev.A,1965,140:1133-1138.
    [14]J.M.Seminario,Recent Developments and Applications of Density Functional Theory[M].Amsterdam:Elsevier,1996,p.391.
    [15] V. I. Anisimov, Strong Coulomb Correlations in Electronic Structure: Beyond the Local Density Approximation [M]. Tokyo: Gorden & Breach, 1998.
    [16] D. M. Bylander and L. Kleinman, The optimized effective potential for atoms and semiconductors [J]. Int. J. Mod. Phys., 1996, 10: 399-425.
    [17] G. D. Mahan, Many Particle Physics [M]. New York: Kluwer Academic\Plenum Publishers, 2000.
    [18] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B, 1981,23: 5048-5079.
    [19] D. M. Ceplerley and B. J. Alder, Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett. 1980,45:566-569.
    [20] F. Herman, J. P. Van Dyke, and I. P. Ortenburger, Improved statistical exchange approximation for inhomogeneous many-electron systems [J]. Phys. Rev. Lett., 1969, 22: 807.
    [21] P. S. Svendsen and U. von Barth, Gradient expansion of the exchange energy from second-order density response theory [J]. Phys. Rev. B, 1996, 54: 17402-17413.
    [22] J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992,45: 13244-13249.
    [23] C. Lee, W. Yang, R.C. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37: 785-789.
    [24] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988,38: 3098-3100.
    [25] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
    [26] K. M. Ho, C. Elsasser, C. T. Chan, and M. Fahnle, First-principles pseudopotential calculations for hydrogen in 4d transition metals. I. Mixed-basis method for total energies and forces[J]. J. Phys.: Condens. Matter., 1992,4: 5189-5206.
    [27] E. H. Lieb, and S. Oxford, An improved lower bound on the indirect Coulomb energy [J]. Int. J. Quant. Chem., 1981, 19: 427-439.
    [28] V. P. Antropov, M. I. Katsnelson, M. van Schilfgaarde, and B. N. Harmon, Ab initio spin dynamics in magnets [J]. Phys. Rev. Lett., 1995, 75: 729-732.
    [29] M. Uhl and J. Kubler, Exchang-coupled spin-fluctuation theory: Application to Fe, Co, and Ni [J]. Phys. Rev. Lett., 1996, 77: 334-337.
    [30] T. Oda, A. Pasquarello, and R. Car, Fully unconstrained approach to noncollinear magnetism: Application to small Fe cluster [J]. Phys. Rev. Lett., 1996,77: 334-337.
    
    [31] D. M. Bylander, Q. Niu, and L. Kleinman, Fe magnon dispersion curve calculated with the frozen spin-wave method [J]. Phys. Rev. B, 2000, 61: R11875-R11878.
    
    [32] M. S. Hybersten, and S. G Louie, Spin-orbit splitting in semiconductors and insulators from the ab initio pseudopotential [J]. Phys. Rev. B, 1986,34: 2920.
    [33] G. Theurich, and N. A. Hill, Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials [J]. Phys. Rev. B, 2001,64: 073106.
    [34] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics [M]. New York: McGraw-Hill, 1964.
    
    [35] J. Kubler, Theory of Itinerant Electron Magnetism [M]. Oxford: Oxford University Press, 2001.
    [36] K. H. J. Buschow, Electronic and Magnetic Properties of Metals and Ceramics [M]. Weinheim: VCH-Verlag, 1992, p.1.
    
    [37] D. D. Koelling and B. N. Harmon, A technique for relativistic spin-polarized calculations [J]. J. Phys.C, 1977, 10:3107-3114.
    [38] A. H. MacDonald, W. E. Pickett, and D. Koelling, A linearised relativistic augmented-plane-wave method utilizing approximate pure spin basis functions [J]. J. Phys. C: Solid State Phys., 1980, 13: 2675-2683.
    [39] G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. J. Phys.: Condens. Matter., 1994,6: 8245-8257.
    [40] P. E. Blochl, Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50: 17953-17979.
    [41] S. G. Louie, S. Froyen, and M. L. Cohen, Nonlinear ionic pseudopotentials in spin-density-functional calculations [J]. Phys. Rev. B, 1982, 26: 1738-1742.
    
    [42] W. C. Topp and J. J. Hopfiel, Chemically Motivated Pseudopotential for Sodium [J]. Phys. Rev. B, 1973,7: 1295-1303.
    
    [43] D. R. Hamann, M. Schluter, and C. Chiang, Norm-Conserving Pseudopotentials [J]. Phys. Rev. Lett., 1979,43: 1494-1497.
    
    [44] W. A. Harrison, Pseudopotentials in the Theory of Metals [M]. New York: Benjamin, 1966.
    [45] H. Ehrenreich, F. Seitz, and D. Turnbull, Solid State Physics [M]. New York: Academic, 1970.
    [46] P. E. Blochl, Generalized separable potentials for electronic-structure calculations [J]. Phys. Rev. B, 1990,41:5414-5416.
    [47] W. C. Herring, A new Method for calculating wave functions in crystals [J]. Phys. Rev., 1940, 57: 1169.
    
    [48] W. C. Herring and A. G Hill, The theoretical constitution of metallic beryllium [J]. Phys. Rev., 1940, 58: 132.
    [49] G. Kress and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B, 1999, 59: 1758-1775.
    [50] N. A. W. Holzwarth, G. H. Matthews, A. R. Tackett, and R. B. Dunning, Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-function calculations of solids [J]. Phys. Rev. B, 1997, 55: 2005-2017.
    [51] N. A. W. Holzwarth, A. R. Tackett, G. H. Matthews, A projector augmented wave(PAW) code for electronic structure calculations, part I: atompaw for generating atom-centered functions [J]. Comp. Phys. Commun., 2001, 135: 329-347.
    [52] J. C. Slater, An augmented plane wave method for the periodic potential problem [J]. Phys. Rev., 1953, 92:603-607.
    [53] H. Hellmann, Einfuhrung in die Quantumchemie [M]. Leipzig: Deuticke, 1937.
    [54] R. P. Feynman, Forces in molecules [J]. Phys. Rev., 1939, 56: 340-343.
    [55] M. T. Yin and M. L. Cohen, Theory of lattice-dynamical properties of solids: Application to Si and Ge [J]. Phys. Rev. B, 1982,26: 3259-3272.
    
    [56] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing, 2 ed. [M]. Cambridge: Cambridge University Press, 1996.
    [57] K. M. Ho, C. L. Fu, and B. N. Harmon, Microscopic analysis of interatomic forces in transition metals with lattice distortions [J]. Phys. Rev. B, 1983,28: 6687-6694.
    [58] G. Kresse and J. FurthmUlIer, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169-11186.
    [59] G.Kresse and J. FurthmUlIer, VASP the GUIDE [EB/01]. http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
    
    [60] E. Polak, Computational Methods in Optimization[M]. New York: Academic, 1971.
    [61] E. R. Davidson, In G. H. F. Diercksen, and S. Wilson, eds., Methods in Computational Molecular Physics, vol 113 of NATO Advanced Study Institute, Series C: Mathematical and Physical Sciences [M]. New York:Plenum,1983.p.95.
    [62]P.Pulay,Covergence acceleration of iterative sequences:The case of SCF iteration[J].Chem.Phys.Lett.,1980,73:393-398.
    [63]H.J.Monkhorst and J.D.Pack,Special points for Briliouin-zone integrations[J].Phys.Rev.B,1976,13:5188-5192.
    [64]P.E.BlOchl,O.Jepsen and O.K.Andersen,Improved tetrahedron method for Brillouin-zone integrations[J].Phys.Rev.B,1994,49:16223-16233.
    [65]C.-L.Fu and K.-M.Ho,First-principles calculation of the equilibrium ground-state properties of transition metals:Applications to Nb and Mo[J].Phys.Rev.B,1983,28:5480-5486.
    [66]M.Methfessel and A.T.Paxton,High-precision sampling for Brillouin-zone integration in metals [J].Phys.Rev.B,1989,40:3616-3621.
    [1]Cluster Physics,edited by Wang G H,2003 Shanghai Science and Technology Press(in chinese)[王广厚,“团簇物理学”2003上海科学技术出版社].
    [2]Metal Clusters,edited by Ekardt W 1999 Wiley,New York.
    [3]de Heer W A,The physics of simple metal clusters:experimental aspects and simple models[J].Rev.Mod.Phys.,1993,65:611.
    [4]Brack M,The physics of simple metal clusters:self-consistent jellium model and semiclassical approaches[J].Rev.Mod.Phys.,1993,65:677.
    [5]Condensed State Physics,edited by Feng D,Jin G J,2003 Higher Education Press(in Chinese)[冯端,金国钧,“凝聚态物理学”2003高等教育出版社]
    [6]Moyano G E,Wesendrup R,Sohnel T and Schwerdtfeger P,Properties of Small- to Medium-Sized Mercury Clusters from a Combined ab initio,Density-Functional,and Simulated-Annealing Study[J].Phys.Rev.Lett.,2002,89:103401.
    [7]Busani R,Folkers M and Cheshnovsky O,Direct Observation of Band-Gap Closure in Mercury Clusters[J].Phys.Rev.Lett.,1998,81:3836.
    [8]Lee G H,Huh S H,Park Y,Hayakawa C,Negishi Y,Nakajima A and Kaya K,Photoelectron spectra of small nanophase W metal cluster anions[J].Chem.Phys.Lett.,1999,299:309.
    [9]Oh S J,Huh S H,Kim H K,Park J W and Lee G H,Structural evolution of W nano clusters with increasing cluster size[J].J.Chem.Phys.,1999,111:7402.
    [10]Wang H Y,Li C Y,Tang Y J,Zhu Z H,Geometry and electronic properties of Cu2(n≤9)[J].Chin.Phys.,2004,13:0677.
    [11]Mao H P,Yang L R,Wang H Y,Zhu Z H,Tang Y J,Calculation of ionization potential and geometry of small yttrium metal clusters[J].Acta Phys.Sin.,2005,54:5126(in Chinese)[毛华平,杨兰蓉,王红艳,朱正和,唐永建,2005物理学报54 5126].
    [12]Kresse G and Hafner J,Ab initio molecular dynamics for liquid metals[J].Phys.Rev.,1993,B47:558.
    [13]Kresse G and Furthmüller J,Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys.Rev.,1996,B54:11169.
    [14]Perdew J P and Wang Y,Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.,1992,B45:13244.
    [15]Li Y,Blaisten-Barojas E and Papaconstantopoulos D A,Structure and dynamics of alkali-metal clusters and fission of highly charged clusters[J].Phys.Rev.,1998,B57:15519.
    [16]Lai S K,Hsu P J,Wu K L,Liu W K and Iwamatsu M 2002 J.Chem,Phys.117 10715
    [17]Wang J,Wang G and Zhao J,Nonmetal-metal transition in Zn_n(n=2-20) clusters[J].Phys.Rev.,2003,A68:013201.
    [1]Yan L,Przybylski M,Lu Yet al.Fabrication and uniaxial magnetic anisotropy of Co nanowires on a Pd(110) surface[J].Appl.Phys.Lett.,2005,86:102503(3)
    [2]Hammer L,Meier W,Schmidt Aet al.Magnetic properties of finite Co chains on Pt(111)[J].Phys.Rev.B,2003,67:125422(6)
    [3]Hong J and Wu R Q.First principles calculations of magnetic anisotropy energy of Co monatomic wires[J].Phys.Rev.B,2003,67:020406(R)(4)
    [4]Bergara A,Neaton J B,Ashcrofi N W.2003,Ferromagnetic Instabilities in Atomically Thin Lithium and Sodium Wires[J].Intl.J.Quant.Chem.91:239-244
    [5]Dag S,Tongay S,Yildirim T et al.Half-metallic properties of atomic chains of carbon-transition-metal compounds[J].Phys.Rev.B,2005,72:155444(5)
    [6]Durgun E,Senger R.T,Mehrez H,et al.Nanospintronic properties of carbon-cobalt atomic chains [J].Europhys.Lett.,,2006,73(4):642-648
    [7]Hong Jisang,Nearly half-metallic one-dimensional Fe atomic chain on NiAI,,110...and its magnetic properties[J].Phys.Rev.B,2006,73:092413(4)
    [8]Vindignia A,Rettori A,Bogani L,et al.Fast switching of bistable magnetic nanowires through collective spin reversal[J]Appl.Phys.Lett.,2005,87:073102(3)
    [9]Delin A.Tosatti E,Weht R.Magnetism in Atomic-Size Palladium Contacts and Nanowires[J].Phys.Rev.Lett.,2004,92(5):057201(4)
    [10]Mokrousov Y,Bihlmayer G,Blügel S,et al.Magnetic order and exchange interactions in monoatomic 3d transition-metal chains[J].Phys.Rev.B,2007,75:104413(10)
    [11]Tosatti E,Prestipino S,Kostlmeier S,et al.,String Tension and Stability of Magic Tip-Suspended Nanowires[J].Science,2001,291(5502):288-290
    [12]Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals[J].Phys.Rev.B,1993,47:558-561
    [13]Kresse G and Furthm(u|¨)ller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys.Rev.B,1996,54:11169-11186
    [14]Perdew J P and Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B,1992,45:13244-13249
    [1]U.Gradmann,J.Magn.Magn.Mater.1991,100:481.
    [2]J.Thomassen,B.Feldmann,and M.Wuttig,Growth,structure and morphology of ultrathin iron films on Cu(100)[J].Surf.Sci.,1992,264:406.
    [3]U.Gradmann,in Handbook of Magnetic Materials,Vol.Ⅶ,edited by K.H.J.Buschow[M].Amsterdam:Elsevier,1993.
    [4]R.Allenspach,J.Magn.Magn.Mater.1994,129:160.
    [5]B.Heinrich,in Ultrathin Magnetic Structures,Vol.Ⅱ,edited by B.Heinrich and J.A.C.Bland[M].Berlin:Springer-Verlag,1994,and references therein.
    [6]J.Shen and J.Kirschner,Tailoring magnetism in artificially structured materials:the new frontier [J].Surf.Sci.,2002,500:300.
    [7]F.Bisio,R.Moroni,F.Bautier de Mongeot,M.Canepa,and L.Mattera,Isolating the Step Contribution to the Uniaxial Magnetic Anisotropy in Nanostructured Fe/Ag(001) Films[J].Phys.Rev.Lett.,2006,96:057204.
    [8]S.Rusponi,T.Cren,N.Weiss,M.Epple,P.Buluschek,L.Claude,and H.Brune,The remarkable difference between surface and perimeter atoms in the magnetic anisotropy of 2D nanostructures[J].Nat.Mater.,2003,2:546.
    [9]K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,1 S.V.Dubonos,I.V.Grigorieva,and A.A.Firsov,Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306:666-669.
    [10] K. S. Novoselovl, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieval, S. V. Dubonos and A. A. Firsov,Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438: 197-200.
    [11] Johan Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Electronic Properties of Graphene Multilayers [J]. Phys. Rev. Lett., 2006,97: 266801.
    [12] Y. H. Chiu, Y. H. Lai, J. H. Ho, D. S. Chuu and M. F. Lin, Electronic structure of a two-dimensional graphene monolayer in a spatially modulated magnetic field: Peierls tight-binding model [J]. Phys. Rev. B, 2008,77: 045407.
    [13]A. Enders, D. Peterka, D. Repetto, N. Lin, A. Dmitriev, and K.Kern, Temperature Dependence of the Surface Anisotropy of Fe Ultrathin Films on Cu(001) [J], Phys. Rev. Lett., 2003,90: 217203.
    [14]A. Enders, D. Repetto, D. Peterka, and K. Kern, Temperature dependence of the magnetism in Fe/Cu(001) [J]. Phys. Rev. B, 2005, 72: 054446.
    [15] D. Repetto T. Y. Lee, S. Rusponi, J. Honolka, K. Kuhnke, V. Sessi, U. Starke, H. Brune, P. Gambardella, C. Carbone, A. Enders, and K. Kern, Structure and magnetism of atomically thin Fe layers on flat and vicinal Pt surfaces [J]. Phys, Rev. B, 2006, 74: 054408.
    [16] J. G. Gay and R. Richter, Spin Anisotropy of Ferromagnetic Films [J]. Phys. Rev. Lett., 1986, 56: 2728.
    [17] J. G. Gay and R. Richter, Spin anisotropy of ferromagnetic slabs and overlayers [J]. J. Appl. Phys., 1987,61:3362.
    [18] P. Bruno, Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers [J]. Phys. Rev. B, 1989, 39: 865.
    [19] C. Li, A. J. Freeman, H. J. F. Jansen, and C. L. Fu, Magnetic anisotropy in low-dimensional ferromagnetic systems: Fe monolayers on Ag(001), Au(001), and Pd(001) substrates [J]. Phys. Rev. B, 1990,42: 5433.
    [20] D. S. Wang, R. Wu, and A. J. Freeman, State-tracking first-principles determination of magnetocrystalline anisotropy [J]. Phys. Rev. Lett., 1993, 70: 869.
    [21] D. S. Wang, R. Wu, and A. J. Freeman, First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model [J]. Phys. Rev. B, 1993,47: 14932.
    [22] X. Wang, R. Wu, D. S. Wang, and A. J. Freeman, Torque method for the theoretical determination of magnetocrystalline anisotropy [J]. Phys. Rev. B, 1996, 54: 61.
    [23]Lessard,T.H.Moos,and W.Hu"bner,Magnetocrystalline anisotropy energy of transition-metal thin films:A nonperturbative theory[J].Phys.Rev.B,1997,56:2594.
    [24]Kohji Nakamura,Tomonori Ito,A.J.Freeman,Lieping Zhong and Juan Fernandez-de-Castro,Enhancement of magnetocrystalline anisotropy in ferromagnetic Fe films by intra-atomic noncollinear magnetism[J].Phys.Rev.B,2003,67:014420.
    [25]Kohji Nakamura,Yoshifumi Takeda,Toru Akiyama,and Tomonori Ito,A.J.Freeman,Atomically Sharp Magnetic Domain Wall in Thin Film Fe(110):A First Principles Noncollinear Magnetism Study [J].Phys.Rev.Lett.,2004,93:057202.
    [26]Kohji Nakamura,a_ Naoki Mizuno,Toru Akiyama,and Tomonori Ito,A.J.Freeman,Spin-spiral structure in free-standing Fe(110) monolayers[J].J.Appl.Phys.,2006,99:08N501.
    [27]陈鲁倬,王晓春,文玉华,朱梓忠,二维原子薄片中的Jahn-Teller效应[J],物理学报,2007,56:2920.
    [28]Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals[J].Phys.Rev.B,1993,47:558-561.
    [29]Kresse G and Furthm(u|¨)ller J,Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys.Rev.B,1996,54:11169-11186.
    [30]Perdew J P and Wang Y,Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B,1992,45:13244-13249.
    [1]Ohno H,Chiba D,Matsukura F,Omiya T,Abe E,Dietl T,Ohno Y and Ohtani K.Electric-field control of ferromagnetism[J].Nature,2000,408 944-9446.
    [2]H.Akai,Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor(In,Mn)As[J].Phys.Rev.Lett.1998,81:3002-3005.
    [3]K.Sato,P.H.Dederichs and H.Katayama-Yoshida.Curie temperatures of Ⅲ-Ⅴ diluted magneticsemiconductors calculated from first principles[J].Europhys.Lett.2003,61;403-408.
    [4]Ku K C,Potashnik S J,Wang R F,Chun S H.Highly enhanced Curie temperature in low-temperature annealed[Ga,Mn]As epilayers[J].Appl.Phys.Lett.2003,82:2302-2304.
    [5]P.Mahadevan and A.Zunger.Room-Temperature Ferromagnetism in Mn-Doped Semiconducting CdGeP2[J].Phys.Rev.Lett.88:047205.
    [6]G.Kresse and D.Jouber,From ultrasoft pseudopotentials to the projector augmented-wave method [J].Phys.Rev.B,1999,59(3):1758-1775.
    [7]Akinaga H,Manago T and Shirai M.Japan.J.Appl.Phys.2000,39:1118.
    [8]A.Zunger,in Solid State Physics[M],edited by F.Seitz,D.Tumbull,and H.Ehrenreich.New York:Academic,1986,Vol.39:275.
    [9]P Kacman.Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures [J]. Semicond. Sci. Technol. 2001, 16: R25-R39.
    [10] B. Beschoten, P. A. Crowell, I. Malajovich, and D. D. Awschalom. Magnetic Circular Dichroism Studies of Carrier-Induced Ferromagnetism in (Ga_(1-x)Mn_x)As [J]. Phys. Rev. Lett. 1999, 83: 3073-3076
    [11] H. Ohno, A. Shen, F. Matsukura et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs [J]. Appl. Phys. Lett. 1996,69: 363-365.
    [12] S. Haneda, M. Yamaura, Y. Takatani, et al. Preparation and characterization of Fe-based III-V diluted magnetic semiconductor (Ga, Fe)As [J]. Jpn. J. Appl. Phys. 2000, 39: L9-L12.
    [13] T. Dietl, H. Ohno, F. Matsukura, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science, 2000,287: 1019-1022.
    [14] K. M. Yu, W. Walukiewicz, T. Wojtowicz et at. Effect of the location of Mn sites in ferromagnetic Gal-XMnXAs on its Curie temperature [J]. Phys. Rev. B, 2002,65: 201303.
    [15] W. T. Geng. Cr segregation at the Fe-Cr surface: A first-principles GGA investigation [J]. Phys. Rev. B,2003,68: 233402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700