拟南芥冷敏感突变体rpp4-1d抑制子的鉴定及其功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病害和极端温度是降低农作物产量和品质的两大因素。植物的抗病防卫机制在长期与病原体的较量过程中进化得复杂而严密。温度作为重要的环境因素之一,影响着植物生长发育的同时,也调节着植物的抗病防卫反应。R蛋白是介导植物识别并抵抗病原菌的一类重要抗病蛋白,一些R蛋白可以受低温诱导激活,比如,拟南芥中的SNCl和烟草中的N蛋白,它们在NB-ARC结构域特殊位点的突变造成R蛋白在22℃激活,植株叶片表现细胞死亡等抗病防卫反应激活的表型。而拟南芥的CHS2/RPP4(Recognition of Hyaloperonospora Parasitica4)也是这一类蛋白。突变体chs2(rpp4-1d)在R蛋白RPP4的NB-ARC结构域处的功能获得性突变,导致在低温条件下抗病防卫反应组成型激活,植株表现卷缩、矮小,叶片细胞死亡,严重至整株植物死亡的冷敏感表型。
     为了进一步研究rpp4介导的冷响应和抗病防卫反应之间的关系,我们筛选了rpp4-1d的抑制子。在rpp4-1d的EMS诱变库中筛选到了抑制子rarl、sgt1b、hsp90.2和hsp90.3。突变体hsp90基本抑制了rpp4-1d的低温诱导防卫反应激活和相关的冷敏感表型。突变的hsp90蛋白对正常HSP90的功能有干扰作用,并且这一干扰作用有剂量依赖效应。突变体hsp90在由RPM1(Resistance to Pseudomonas Maculicola1)、RPS4(Resistant to P. Syringae4)和RPP4介导的病原菌抗病反应中表现出比野生型较易感病的表型。但是,这些R蛋白介导的抗病反应对HSP90的依赖程度是不一样的。
     已有研究报道,伴侣蛋白复合体RAR1-SGT1B-HSP90可以与一些R蛋白相互作用,是维持R蛋白正常结构和生理功能所必需的(Hubert et al.,2003; Takahashi et al.,2003; Zhang et al.,2004)。本研究也证明野生型的RPP4和突变型的rpp4蛋白都能够与HSP90蛋白互相作用形成蛋白复合体,并且低温不影响rpp4与HSP90之间复合体的形成。在sp90突变体中,rpp4蛋白的稳定性也没有受到影响。另外,RPP4和rpp4蛋白在正常温度条件下在细胞质和细胞核中都有积累,但是与RPP4不同,低温会降低rpp4突变蛋白在细胞核中的积累。在hsp90突变体中,rpp4蛋白低温细胞核积累降低的现象也没有改变。对rpp4-1d的基因内抑制子进行遗传分析,结果表明TIR结构域可以部分激活抗病反应,而NB-ARC和LRR结构域对RPP4介导的温度依赖的防卫反应信号转导有重要的作用。另外,rpp4-1d的冷敏感表型基本不依赖WRKY70和MOS (modifier of snc1)基因。
     综合以上结果,本研究证明RPP4介导的冷响应和抗病信号都依赖HSP90蛋白,HSP90与rpp4蛋白在体内以复合体形式存在,hsp90功能的缺失不影响rpp4蛋白的稳定性和亚细胞定位。rpp4的作用机制与同源蛋白sncl不同。rpp4介导的冷敏感细胞死亡类似于抗病过程中的超敏反应。突变体hsp90编码的突变蛋白对正常HSP90的功能有干扰作用。它不仅抑制了rpp4介导的低温信号响应,而且影响了多个R蛋白介导的抗病防卫反应。本研究对探索温度对植物抗病的影响提供了实验证据,给研究多种形式的R蛋白介导的抗病机理提供了新的线索。
Disease and extreme temperature are negative factors that affect the yield and quality of crops. During the long time competing with pathogens, plants have developed complicated mechanisms to defend themselves against disease. And this plant defense response can be regulated by temperature, an important factor of environment that affects plant growth and development. In the course of identifying pathogen, R proteins play an important role. Some R proteins can be activated under low temperature, such as SNC1in Arabidopsis and N protein in tobacco. A specific site mutations in NB-ARC domain of SNC1or N protein cause R proteins to be activated and the leaves to perform cell death at22℃. The CHS2/RPP4(Recogition of Hyaloperonospora Parasitica4) in Arabidopsis is also this kind of R protein. We found that a gain-of-function mutation in NB-ARC domain of RPP4leads to constitutive activation of the defense response under low temperature. And this rpp4-1d mutant exhibits chilling sensitive phenotypes, including curling, dwarfism, cell death, or even the death of whole plant.
     To further study the relationship between rpp4-mediated disease resistance and cold response, the suppressors of rpp4-1d was screened from an EMS mutagenesis library of rpp4-1d mutant. Suppressors rar1, sgt1b, hsp90.2and hsp90.3have been identified. The hsp90mutants largely suppress the activation of defense response and chilling sensitive phenotypes of rpp4-1d. The mutated hsp90could interfere with the wild-type HSP90in a dose-dependent manner. The hsp90mutants exhibited compromised RPM1(Resisance to Pseudomonas Maculcola1)-, RPS4(Resistant of Pseudomonas Syringae4)-and RPP4-mediated pathogen resistance, compared to the wild-type. However, the requirement degrees of HSP90in the pathogen resitance mediated by these R proteins are different.
     It has been reported that chaperonin complex RAR1-SGT1B-HSP90could interact with some R proteins to maintain the normal structures and physiological functions of proteins. Our study also proved the both wild-type RPP4and the mutated form rpp4can interact with HSP90to form protein complexes. And the formation of this complex could not be affected by low temperature. Further more, the stability of rpp4protein in hsp90mutant had not changed as well. RPP4and rpp4proteins were localized in both cytoplasm and nucleus under normal temperature, Nevertheless, not like RPP4, low temperature reduced the accumulation of rpp4protein in nucleus, which was not affected in hsp90mutants. Genetic analysis of the intra-genic suppressors of rpp4-1d revealed the auto-activation of TIR domain and the important functions of the NB-ARC and LRR domains of RPP4in temperature-dependent defense signaling. In addition, the chilling sensitivity of rpp4-1d was largely independent of the WRKY70or MOS (Modifier of snc1) genes.
     In summary, this study suggests that RPP4-mediated disease resistance and cold response both depend on HSP90proteins. HSP90and rpp4proteins form a complex in vivo. The mutated hsp90does not affect the stability and subcellular localization of rpp4protein. The mechanisms of rpp4and sncl-mediated responses are different. The chilling-sensitive cell death mediated by rpp4is similar to the hypersensitivity in disease resistance. The mutated hsp90protein has interfering effect on the wild-type HSP90, which not only inhibits rpp4-mediated chilling sensitive phenotypes, but also reduces R protein-mediated defense resistance. Our research has provided experimental evidence to the influence of temperature on disease resistance and a new clue to study various mechanisms of R protein-mediated disease resistance.
引文
Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X., and Zhu, J.K. (2006). AR2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281,37636-37645.
    Airaki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M., Barroso, J.B., Del Rio, L.A., Palma, J.M., and Corpas, F.J. (2012). Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35, 281-295.
    Alcazar, R., Garcia, A.V., Parker, J.E., and Reymond, M. (2009). Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc Natl Acad Sci USA 106,334-339.
    Alcazar, R., and Parker, J.E. (2011). The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. Trends Plant Sci 16,666-675.
    Ali, M.M., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Prodromou, C., and Pearl, L.H. (2006). Crystal structure of an Hsp90-nucleotide-p23/Sbal closed chaperone complex. Nature 440,1013-1017.
    Allen, G.J., Chu, S.P., Schumacher, K., Shimazaki, C.T., Vafeados, D., Kemper, A., Hawke, S.D., Tallman, G., Tsien, R.Y., Harper, J.F., et al. (2000). Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289,2338-2342.
    Ansari, M.M., and Sridhar, R. (2000). Some tryptophan pathways in the phytopathogen Xanthomonas oryzae pv. oryzae. Folia Microbiol (Praha) 45,531-537.
    Antikainen, M., Griffith, M., Zhang, J., Hon, W.C., Yang, D., and Pihakaski-Maunsbach, K. (1996). Immunolocalization of antifreeze proteins in winter rye leaves, crowns, and roots by tissue printing. Plant Physiol 110,845-857.
    Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C., and Thomashow, M.F. (1996). Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93,13404-13409.
    Austin, M.J., Muskett, P., Kahn, K., Feys, B.J., Jones, J.D., and Parker, J.E. (2002). Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295,2077-2080.
    Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6,973-979.
    Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K., and Schulze-Lefert, P. (2002). The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295,2073-2076.
    Bai, S., Liu, J., Chang, C., Zhang, L., Maekawa, T., Wang, Q., Xiao, W., Liu, Y, Chai, J., Takken, F.L., et al. (2012). Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 8, e1002752.
    Bartsch, M., Gobbato, E., Bednarek, P., Debey, S., Schultze, J.L., Bautor, J., and Parker, J.E. (2006). Salicylic acid-independent enhanced disease susceptibility 1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. Plant Cell 18,1038-1051.
    Bendahmane, A., Kanyuka, K., and Baulcombe, D.C. (1999). The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11,781-792.
    Bender, C.L., Alarcon-Chaidez, F., and Gross, D.C. (1999). Pseudomonas syringae phytotoxins:mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63,266-292.
    Bernoux, M., Ve, T., Williams, S., Warren, C., Hatters, D., Valkov, E., Zhang, X., Ellis, J.G., Kobe, B., and Dodds, P.N. (2011). Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9,200-211.
    Boter, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C., Moore, G., Kleanthous, C., Ochsenbein, F., Shirasu, K., et al. (2007). Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19,3791-3804.
    Boyer, J.S. (1982). Plant productivity and environment. Science 218,443-448.
    Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martinez, J., Alberdi, M., Close, T. J. and Corcuera, L. J. (2003). Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol Plant 118,262-269.
    Broekaert, W.F., Delaure, S.L., De Bolle, M.F., and Cammue, B.P. (2006). The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44,393-416.
    Burch-Smith, T.M., Schiff, M., Caplan, J.L., Tsao, J., Czymmek, K., and Dinesh-Kumar, S.P. (2007). A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5, e68.
    Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6,1583-1592.
    Catala, R., Santos, E., Alonso, J.M., Ecker, J.R., Martinez-Zapater, J.M., and Salinas, J. (2003). Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15,2940-2951.
    Chen, Z., Agnew, J.L., Cohen, J.D., He, P., Shan, L., Sheen, J., and Kunkel, B.N. (2007). Pseudomonas syringae type Ⅲ effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104,20131-20136.
    Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., and He, P. (2013). Plant immune response to pathogens differs with changing temperatures. Nat Commun 4,2530.
    Cheng, Y.T., Germain, H., Wiermer, M., Bi, D., Xu, E, Garcia, A.V., Wirthmueller, L., Despres, C., Parker, J.E., Zhang, Y., et al. (2009). Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21, 2503-2516.
    Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17, 1043-1054.
    Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci 12,444-451.
    Chinnusamy, V., Zhu, J.K., and Sunkar, R. (2010). Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639,39-55.
    Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Host-microbe interactions:shaping the evolution of the plant immune response. Cell 124,803-814.
    Chung, K.R., Shilts, T., Erturk, U., Timmer, L.W., and Ueng, P.P. (2003). Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 226,23-30.
    Cook, D., Fowler, S., Fiehn, O., and Thomashow, M.F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101,15243-15248.
    Cui, F., Wu, S., Sun, W., Coaker, G., Kunkel, B., He, P., and Shan, L. (2013). The Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis auxin/indole acetic acid protein turnover. Plant Physiol 162,1018-1029.
    Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y, and Chong, K. (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143,1739-1751.
    Dangl, J.L., and Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature 411,826-833.
    Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., and Sarhan, F. (1998). Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10,623-638.
    de Torres-Zabala, M., Truman, W., Bennett, M.H., Lafforgue, G., Mansfield, J.W., Rodriguez Egea, P., Bogre, L., and Grant, M. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26,1434-1443.
    Dietrich, R.A., Richberg, M.H., Schmidt, R., Dean, C., and Dangl, J.L. (1997). A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88,685-694.
    Dodd, A.N., Jakobsen, M.K., Baker, A.J., Telzerow, A., Hou, S.W., Laplaze, L., Barrot, L., Poethig, R.S., Haseloff, J., and Webb, A.A. (2006). Time of day modulates low-temperature Ca2+ signals in Arabidopsis. Plant J 48,962-973.
    Dodds, P.N., and Rathjen, J.P. (2010). Plant immunity:towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11,539-548.
    Doherty, C.J., Van Buskirk, H.A., Myers, S.J., and Thomashow, M.F. (2009). Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21,972-984.
    Dong, C.H., Agarwal, M., Zhang, Y, Xie, Q., and Zhu, J.K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103,8281-8286.
    Dowgert, M.F., and Steponkus, P.L. (1984). Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle. Plant Physiol 75,1139-1151.
    Droillard, M.J., Boudsocq, M., Barbier-Brygoo, H., and Lauriere, C. (2004). Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett 574, 42-48.
    Epple, P., Mack, A.A., Morris, V.R., and Dangl, J.L. (2003). Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci USA 100,6831-6836.
    Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18,265-276.
    Fowler, S., and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14,1675-1690.
    Fu, Z.Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S.H., Tada, Y, Zheng, N., et al. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486,228-232.
    Furbank, R.T., and Hatch, M.D. (1987). Mechanism of C4 photosynthesis:the size and composition of the inorganic carbon pool in bundle sheath cells. Plant Physiol 85,958-964.
    Fursova, O.V., Pogorelko, G.V., and Tarasov, V.A. (2009). Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429,98-103.
    Gechev, T., Willekens, H., Van Montagu, M., Inze, D., Van Camp, W., Toneva, V., and Minkov, I. (2003). Different responses of tobacco antioxidant enzymes to light and chilling stress. J Plant Physiol 160, 509-515.
    Gilmour, S.J., Fowler, S.G., and Thomashow, M.F. (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54,767-781.
    Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43,205-227.
    Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R., and Ausubel, F.M. (1997). Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146,381-392.
    Glickmann, E., Gardan, L., Jacquet, S., Hussain, S., Elasri, M., Petit, A., and Dessaux, Y. (1998). Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 11,156-162.
    Goritschnig, S., Zhang, Y., and Li, X. (2007). The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant J 49,540-551.
    Gray, W.M., Muskett, P.R., Chuang, H.W., and Parker, J.E. (2003). Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell 15,1310-1319.
    Greenberg, J.T. (1997). Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48,525-545.
    Greenberg, J.T., and Yao, N. (2004). The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6,201-211.
    Griffith, M., Elfman, B., and Camm, E.L. (1984). Accumulation of plastoquinone A during low temperature growth of winter rye. Plant Physiol 74,727-729.
    Griffith, M., Lumb, C., Wiseman, S.B., Wisniewski, M., Johnson, R.W., and Marangoni, A.G. (2005). Antifreeze proteins modify the freezing process in planta. Plant Physiol 138,330-340.
    Guan, Q., Wu, J., Zhang, Y, Jiang, C., Liu, R., Chai, C., and Zhu, J. (2013). A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25,342-356.
    Gusta, L.V., Wisniewski, M., Nesbitt, N.T., and Gusta, M.L. (2004). The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves. Plant Physiol 135,1642-1653.
    Hara, M., Terashima, S., Fukaya, T., and Kuboi, T. (2003). Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217,290-298.
    Heidrich, K., Wirthmueller, L., Tasset, C., Pouzet, C., Deslandes, L., and Parker, J.E. (2011). Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334,1401-1404.
    Hendrickson, L., Vlckova, A., Selstam, E., Huner, N., Oquist, G., and Hurry, V. (2006). Cold acclimation of the Arabidopsis dgdl mutant results in recovery from photosystem I-limited photosynthesis. FEBS Lett 580,4959-4968.
    Holub, Beynon, and Crute (1994). Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol Plant Microbe Interact 7,223-239.
    Hou, X., Ding, L., and Yu, H. (2013). Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Rep 32,1067-1074.
    Howe, C.J., Auffret, A.D., Doherty, A., Bowman, C.M., Dyer, T.A., and Gray, J.C. (1982). Location and nucleotide sequence of the gene for the proton-translocating subunit of wheat chloroplast ATP synthase. Proc Natl Acad Sci USA 79,6903-6907.
    Hu, Y, Jiang, L., Wang, R, and Yu, D. (2013). Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factorl cascade and freezing tolerance in Arabidopsis. Plant Cell 25,2907-2924.
    Hua, J., Grisafi, P., Cheng, S.H., and Fink, G.R. (2001). Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15,2263-2272.
    Huang, X., Li, J., Bao, R, Zhang, X., and Yang, S. (2010). A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. Plant Physiol 154, 796-809.
    Hubert, D.A., He, Y, McNulty, B.C., Tornero, P., and Dangl, J.L. (2009). Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc Natl Acad Sci USA 106,9556-9563.
    Hubert, D.A., Tornero, P., Belkhadir, Y, Krishna, P., Takahashi, A., Shirasu, K., and Dangl, J.L. (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22,5679-5689.
    Hurry, V., Strand, A., Furbank, R., and Stitt, M. (2000). The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant J 24,383-396.
    Ichimura, K., Casais, C., Peck, S.C., Shinozaki, K., and Shirasu, K. (2006). MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281,36969-36976.
    Ivanov, A.G., Hendrickson, L., Krol, M., Selstam, E., Oquist, G., Hurry, V., and Huner, N.P. (2006). Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations. Plant Cell Physiol 47,1146-1157.
    Jabs, T., Dietrich, R.A., and Dangl, J.L. (1996). Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273,1853-1856.
    Jirage, D., Tootle, T.L., Reuber, T.L., Frost, L.N., Feys, B.J., Parker, J.E., Ausubel, F.M., and Glazebrook, J. (1999). Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 96,13583-13588.
    Johnson, J.L., and Toft, D.O. (1994). A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J Biol Chem 269,24989-24993.
    Kaminaka, H., Nake, C., Epple, P., Dittgen, J., Schutze, K., Chaban, C., Holt, B.F.,3rd, Merkle, T., Schafer, E., Harter, K., et al. (2006). bZIP10-LSDl antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 25,4400-4411.
    Kaplan, F., and Guy, C.L. (2004). Beta-amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135,1674-1684.
    Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, R., and Guy, C.L. (2007). Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50,967-981.
    Karlson, D., and Imai, R. (2003). Conservation of the cold shock domain protein family in plants. Plant Physiol 131,12-15.
    Karlson, D., Nakaminami, K., Toyomasu, T., and Imai, R. (2002). A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277, 35248-35256.
    Kato, A., Takaiwa, F., Shinozaki, K., and Sugiura, M. (1985). Location and nucleotide sequence of the genes for tobacco chloroplast tRNAArg (ACG) and tRNALeu(UAG). Current genetics 9,405-409.
    Kazuo Nakashima, K.Y.-S. (2006). Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126,62-71.
    Kidokoro, S., Maruyama, K., Nakashima, K., Imura, Y., Narusaka, Y., Shinwari, Z.K., Osakabe, Y, Fujita, Y, Mizoi, J., Shinozaki, K., et al. (2009). The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol 151, 2046-2057.
    Kim, J.C., Lee, S.H., Cheong, Y.H., Yoo, C.M., Lee, S.I., Chun, H.J., Yun, D.J., Hong, J.C., Lee, S.Y., Lim, C.O., et al. (2001). A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25,247-259.
    Kim, J.Y., Park, S.J., Jang, B., Jung, C.H., Ann, S.J., Goh, C.H., Cho, K., Han, O., and Kang, H. (2007). Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J 50,439-451.
    Kim, Y.O., and Kang, H. (2006). The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant Cell Physiol 47,793-798.
    Knoth, C., Ringler, J., Dangl, J.L., and Eulgem, T. (2007). Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20,120-128.
    Kodama, H., Horiguchi, G., Nishiuchi, T., Nishimura, M., and Iba, K. (1995). Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiol 107,1177-1185.
    Koornneef, A., and Pieterse, C.M. (2008). Cross talk in defense signaling. Plant Physiol 146,839-844.
    Koster, K.L., and Lynch, D.V. (1992). Solute accumulation and compartmentation during the cold acclimation of Puma rye. Plant Physiol 98,108-113.
    Kumar, S.V., and Wigge, P.A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140,136-147.
    Lee, H., Guo, Y, Ohta, M., Xiong, L., Stevenson, B., and Zhu, J.K. (2002). LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21, 2692-2702.
    Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B., and Zhu, J.K. (2001). The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo--cytoplasmic partitioning. Genes Dev 15,912-924.
    Li, H., Wang, J., Liu, M., Liu, K., Zhang, Q., and Zou, J. (1997). Genetic basis of low-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis. Theor Appl Genet 95,1092-1097.
    Li, R., Afsheen, S., Xin, Z., Han, X., and Lou, Y. (2013). OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiol Plant 147,340-351.
    Li, Y., Dong, O.X., Johnson, K., and Zhang, Y. (2011). MOS1 epigenetically regulates the expression of plant resistance gene SNC1. Plant Signal Behav 6,434-436.
    Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10,1391-1406.
    Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and Dinesh-Kumar, S.P. (2004). Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279,2101-2108.
    Maekawa, T., Cheng, W., Spiridon, L.N., Toller, A., Lukasik, E., Saijo, Y., Liu, P., Shen, Q.H., Micluta, M.A., Somssich, I.E., et al. (2011). Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9,187-199.
    Malamy, J., Hennig, J., and Klessig, D.F. (1992). Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4, 359-366.
    Mantyla, E., Lang, V., and Palva, E.T. (1995). Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol 107,141-148.
    Manulis, S., Haviv-Chesner, A., Brandl, M.T., Lindow, S.E., and Barash, I. (1998). Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact 11,634-642.
    Manulis, S., Shafrir, H., Epstein, E., Lichter, A., and Barash, I. (1994). Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140,1045-1050.
    Maor, R., Haskin, S., Levi-Kedmi, H., and Sharon, A. (2004). In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70, 1852-1854.
    Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., and Yamaguchi-Shinozaki, K., (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38, 982-993.
    Mauch-Mani, B., and Slusarenko, A.J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8,203-212.
    Mayda, E., Mauch-Mani, B., and Vera, P. (2000). Arabidopsis dth9 mutation identifies a gene involved in regulating disease susceptibility without affecting salicylic acid-dependent responses. Plant Cell 12,2119-2128.
    McCully, M.E., Canny, M.J., and Huang, C.X. (2004). The management of extracellular ice by petioles of frost-resistant herbaceous plants. Ann Bot 94,665-674.
    McLaughlin, S.H., Smith, H.W., and Jackson, S.E. (2002). Stimulation of the weak ATPase activity of human hsp90 by a client protein. J Mol Biol 315,787-798.
    Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126,969-980.
    Miquel, M., James, D., Jr., Dooner, H., and Browse, J. (1993). Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90,6208-6212.
    Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2007). SIZ12-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19,1403-1414.
    Miura, K., Ohta, M., Nakazawa, M., Ono, M., and Hasegawa, P.M. (2011). ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J 67,269-279.
    Moffat, C.S., Ingle, R.A., Wathugala, D.L., Saunders, N.J., Knight, H., and Knight, M.R. (2012). ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS One 7, e35995.
    Moffett, P., Farnham, G., Peart, J., and Baulcombe, D.C. (2002). Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21,4511-4519.
    Mohr, P.G., and Cahill, D.M. (2007). Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7,181-191.
    Monaghan, J., Xu, E, Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y, and Li, X. (2009). Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 5, e1000526.
    Moreau, M., Tian, M., and Klessig, D.F. (2012). Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res 22,1631-1633.
    Mur, L.A., Kenton, P., Lloyd, A.J., Ougham, H., and Prats, E. (2008). The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59,501-520.
    Murata, N., and Los, D.A. (1997). Membrane fluidity and temperature perception. Plant Physiol 115, 875-879.
    Muskett, P.R., Kahn, K., Austin, M.J., Moisan, L.J., Sadanandom, A., Shirasu, K., Jones, J.D., and Parker, J.E. (2002). Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14,979-992.
    Nakayama, K., Okawa, K., Kakizaki, T., Honma, T., Itoh, H., and Inaba, T. (2007). Arabidopsis Corl5am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144,513-523.
    Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56,165-185.
    Nawrath, C., Heck, S., Parinthawong, N., and Metraux, J.P. (2002). EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14,275-286.
    Nawrath, C., and Metraux, J.P. (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393-1404.
    Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., and Hancock, J.T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53,1237-1247.
    Noel, L., Moores, T.L., van Der Biezen, E.A., Parniske, M., Daniels, M.J., Parker, J.E., and Jones, J.D. (1999). Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11,2099-2112.
    Novillo, E, Alonso, J.M., Ecker, J.R., and Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101,3985-3990.
    Novillo, E, Medina, J., and Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104,21002-21007.
    Orvar, B.L., Sangwan, V., Omann, E, and Dhindsa, R.S. (2000). Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity. Plant J 23,785-794.
    Palma, K., Zhang, Y, and Li, X. (2005). An importin alpha homolog, MOS6, plays an important role in plant innate immunity. Curr Biol 15,1129-1135.
    Palmer, J.D., Edwards, H., Jorgensen, R.A., and Thompson, W.F. (1982). Novel evolutionary variation in transcription and location of two chloroplast genes. Nucleic Acids Res 10,6819-6832.
    Parker, J.E., Holub, E.B., Frost, L.N., Falk, A., Gunn, N.D., and Daniels, M.J. (1996). Characterization of edsl, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8,2033-2046.
    Passavant, C.W., Stiegler, G.L., and Hallick, R.B. (1983). Location of the single gene for elongation factor Tu on the Euglena gracilis chloroplast chromosome. J Biol Chem 258,693-695.
    Pearl, L.H., and Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75,271-294.
    Plieth, C. (1999). Temperature sensing by plants:calcium-permeable channels as primary sensors-a model. J Membr Biol 172,121-127.
    Plieth, C., Hansen, U.P., Knight, H., and Knight, M.R. (1999). Temperature sensing by plants:the primary characteristics of signal perception and calcium response. Plant J 18,491-497.
    Prasinos, C., Krampis, K., Samakovli, D., and Hatzopoulos, P. (2005). Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56,633-644.
    Prodromou, C., Siligardi, G., O'Brien, R., Woolfson, D.N., Regan, L., Panaretou, B., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1999). Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J18,754-762.
    Puhakainen, T., Hess, M.W., Makela, P., Svensson, J., Heino, P., and Palva, E.T. (2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54, 743-753.
    Qi, T., Huang, H., Wu, D., Yan, J., Qi, Y., Song, S., and Xie, D. (2014). Arabidopsis DELLA and JAZ Proteins Bind the WD-Repeat/bHLH/MYB Complex to Modulate Gibberellin and Jasmonate Signaling Synergy. Plant Cell 26,1118-1133.
    Queitsch, C., Sangster, T.A., and Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic variation. Nature 417,618-624.
    Rairdan, G.J., and Moffett, P. (2006). Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18,2082-2093.
    Rinne, P.L., Kaikuranta, P.L., van der Plas, L.H., and van der Schoot, C. (1999). Dehydrins in cold-acclimated apices of birch (Betula pubescens ehrh.):production, localization and potential role in rescuing enzyme function during dehydration. Planta 209,377-388.
    Rohde, P., Hincha, D.K., and Heyer, A.G. (2004). Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Plant J 38,790-799.
    Ruelland, V., Zachowski,Hurry (2009). Cold signalling and cold acclimation in plants. Adv Bot Res 49, 35-150.
    Russell, D., Muskavitch, K.M., and Bogorad, L. (1987). Location and sequence of the maize chloroplast gene for tRNAser (GCU); a third serine isoaccepting tRNA. Nucleic Acids Res 15,370.
    Samakovli, D., Thanou, A., Valmas, C., and Hatzopoulos, P. (2007). Hsp90 canalizes developmental perturbation. J Exp Bot 58,3513-3524.
    Sangster, T.A., Salathia, N., Lee, H.N., Watanabe, E., Schellenberg, K., Morneau, K., Wang, H., Undurraga, S., Queitsch, C., and Lindquist, S. (2008a). HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci USA 105,2969-2974.
    Sangster, T.A., Salathia, N., Undurraga, S., Milo, R., Schellenberg, K., Lindquist, S., and Queitsch, C. (2008b). HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci USA 105,2963-2968.
    Sangwan, V., Foulds, I., Singh, J., and Dhindsa, R.S. (2001). Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27,1-12.
    Sasaki, K., Kim, M.H., and Imai, R. (2007). Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364,633-638.
    Satoh, R., Nakashima, K., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). ACTCAT, a novel cis-acting element for proline-and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol 130,709-719.
    Seo, P.J., Kim, M.J., Park, J.Y., Kim, S.Y., Jeon, J., Lee, Y.H., Kim, J., and Park, C.M. (2010). Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61,661-671.
    Shen, Q.H., Saijo, Y, Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ulker, B., Somssich, I.E., and Schulze-Lefert, P. (2007). Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315,1098-1103.
    Shi, Y, Tian, S., Hou, L., Huang, X., Zhang, X., Guo, H., and Yang, S. (2012). Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24,2578-2595.
    Shim, J.S., Jung, C., Lee, S., Min, K., Lee, Y.W., Choi, Y, Lee, J.S., Song, J.T., Kim, J.K., and Choi, YD. (2013). AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73,483-495.
    Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3,217-223.
    Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250,161-170.
    Siddiqui, K.S., and Cavicchioli, R. (2006). Cold-adapted enzymes. Annu Rev Biochem 75,403-433.
    Siligardi, G., Panaretou, B., Meyer, P., Singh, S., Woolfson, D.N., Piper, P.W., Pearl, L.H., and Prodromou, C. (2002). Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277,20151-20159.
    Skinner, J.S., von Zitzewitz, J., Szucs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., Stockinger, E.J., Thomashow, M.F., Chen, T.H., and Hayes, P.M. (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59,533-551.
    Song, S., Huang, H., Gao, H., Wang, J., Wu, D., Liu, X., Yang, S., Zhai, Q., Li, C., Qi, T., et al. (2014). Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between Jasmonate and Ethylene signaling in Arabidopsis. Plant Cell 26,263-279.
    Spoel, S.H., and Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3,348-351.
    Spoel, S.H., Koornneef, A., Claessens, S.M., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., et al. (2003). NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760-770.
    Staswick, P.E. (2008). JAZing up jasmonate signaling. Trends Plant Sci 13,66-71.
    Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J., and Thomashow, M.F. (1998). Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95,14570-14575.
    Strand, A., Hurry, V., Gustafsson, P., and Gardestrom, P. (1997). Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 12,605-614.
    Strand, A., Hurry, V., Henkes, S., Huner, N., Gustafsson, P., Gardestrom, P., and Stitt, M. (1999). Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol 119,1387-1398.
    Strand, A., Zrenner, R., Trevanion, S., Stitt, M., Gustafsson, P., and Gardestrom, P. (2000). Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Plant J 23, 759-770.
    Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35,259-270.
    Swiderski, M.R., Birker, D., and Jones, J.D. (2009). The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol Plant Microbe Interact 22, 157-165.
    Takagi, T., Nakamura, M., Hayashi, H., Inatsugi, R., Yano, R., and Nishida, I. (2003). The leaf-order-dependent enhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold-inducible transcription factors of CBF/DREB1. Plant Cell Physiol 44,922-931.
    Takahashi, A., Casais, C., Ichimura, K., and Shirasu, K. (2003). HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA100, 11777-11782.
    Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G., and Katagiri, E (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15,317-330.
    Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J.L., and Hirt, H. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15, 141-152.
    Thomashow, M.F. (1999). Plant cold acclimation:freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50,571-599.
    Torres, M.A., Dangl, J.L., and Jones, J.D. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99,517-522.
    Torres, M.A., Jones, J.D., and Dangl, J.L. (2005). Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37, 1130-1134.
    Tremblay, K., Ouellet, F., Fournier, J., Danyluk, J. and Sarhan, F. (2005). Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals. Plant Cell Physiol 46,884-891.
    Truman, W., de Zabala, M.T., and Grant, M. (2006). Type in effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J 46,14-33.
    Tsutsui, T., Kato, W., Asada, Y, Sako, K., Sato, T., Sonoda, Y., Kidokoro, S., Yamaguchi-Shinozaki, K., Tamaoki, M., Arakawa, K., et al. (2009). DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J Plant Res 122,633-643.
    Uemura, M., Joseph, R.A., and Steponkus, P.L. (1995). Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109,15-30.
    Uemura, M., and Steponkus, P.L. (1997). Effect of cold acclimation on the lipid composition of the Inner and outer membrane of the chloroplast envelope isolated from rye leaves. Plant Physiol 114, 1493-1500.
    Ulrich, H.D. (2005). Mutual interactions between the SUMO and ubiquitin systems:A plea of no contest. Trends Cell Biol,525-532.
    Upchurch, R.G., and Ramirez, M.E. (2011). Effects of temperature during soybean seed development on defense-related gene expression and fungal pathogen accumulation. Biotechnol Lett 33, 2397-2404.
    Uppalapati, S.R., Ayoubi, P., Weng, H., Palmer, D.A., Mitchell, R.E., Jones, W., and Bender, C.L. (2005). The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J 42,201-217.
    Ustun, S., Bartetzko, V., and Bornke, F. (2013). The Xanthomonas campestris type Ⅲ effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLoS Pathog 9, e1003427.
    van der Biezen, E.A., Freddie, C.T., Kahn, K., Parker, J.E., and Jones, J.D. (2002). Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J 29,439-451.
    Vandeputte, O., Oden, S., Mol, A., Vereecke, D., Goethals, K., El Jaziri, M., and Prinsen, E. (2005). Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71,1169-1177.
    Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., and Coraggio, I. (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37,115-127.
    Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41,195-211.
    Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., and Dong, X. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17,1784-1790.
    Wang, Y., Zhang, Y, Wang, Z., Zhang, X., and Yang, S. (2013). A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis. Plant J 75,553-565.
    Warren, R.F., Merritt, P.M., Holub, E., and Innes, R.W. (1999). Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152, 401-412.
    Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, K.M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414,562-565.
    Wirthmueller, L., Zhang, Y, Jones, J.D., and Parker, J.E. (2007). Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr Biol 17,2023-2029.
    Wisniewski, M., Webb, R., Balsamo, R., Close, T. J., Yu, X. M. and GriYth, M. (1999). Purification, immunolocalization, cryoprotective and antifreeze activity of PCA60:A dehydrin from peach (Prunus persica). Physiol Plant 105,600-608.
    Wu, Y, Zhang, D., Chu, J.Y., Boyle, P., Wang, Y, Brindle, I.D., De Luca, V., and Despres, C. (2012). The Arabidopsis NPRl protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1,639-647.
    Xia, S., Cheng, Y.T., Huang, S., Win, J., Soards, A., Jinn, T.L., Jones, J.D., Kamoun, S., Chen, S., Zhang, Y, et al. (2013). Regulation of transcription of nucleotide-binding leucine-rich repeat-encoding genes SNC1 and RPP4 via H3K4 trimethylation. Plant Physiol 162,1694-1705.
    Xin, Z., and Browse, J. (1998). Eskimol mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95,7799-7804.
    Xin, Z., Mandaokar, A., Chen, J., Last, R.L., and Browse, J. (2007). Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J 49,786-799.
    Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57,781-803.
    Yang, H., Shi, Y, Liu, J., Guo, L., Zhang, X., and Yang, S. (2010). A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J 63,283-296.
    Yang, S., and Hua, J. (2004). A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16,1060-1071.
    Yi, H., and Richards, E.J. (2007). A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19,2929-2939.
    Zbierzak, A.M., Porfirova, S., Griebel, T., Melzer, M., Parker, J.E., and Dormann, P. (2013). ATIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. Plant J 75,539-552.
    Zhang, M., Boter, M., Li, K., Kadota, Y., Panaretou, B., Prodromou, C., Shirasu, K., and Pearl, L.H. (2008). Structural and functional coupling of Hsp90-and Sgtl-centred multi-protein complexes. EMBO J 27,2789-2798.
    Zhang, M., Kadota, Y., Prodromou, C., Shirasu, K., and Pearl, L.H. (2010). Structural basis for assembly of Hsp90-Sgtl-CHORD protein complexes:implications for chaperoning of NLR innate immunity receptors. Mol Cell 39,269-281.
    Zhang, Y, Cheng, Y.T., Bi, D., Palma, K., and Li, X. (2005). MOS2, a protein containing G-patch and KOW motifs, is essential for innate immunity in Arabidopsis thaliana. Curr Biol 15,1936-1942.
    Zhang, Y, Dorey, S., Swiderski, M., and Jones, J.D. (2004). Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40,213-224.
    Zhang, Y, Goritschnig, S., Dong, X., and Li, X. (2003). A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15,2636-2646.
    Zhang, Y, and Li, X. (2005). A putative nucleoporin 96 Is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1,constitutive 1. Plant Cell 17, 1306-1316.
    Zheng, X.Y., Spivey, N.W., Zeng, W., Liu, P.P., Fu, Z.Q., Klessig, D.F., He, S.Y., and Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11,587-596.
    Zhu, J., Shi, H., Lee, B.H., Damsz, B., Cheng, S., Stirm, V., Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101,9873-9878.
    Zhu, S., Jeong, R.D., Venugopal, S.C., Lapchyk, L., Navarre, D., Kachroo, A., and Kachroo, P. (2011). SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog 7, e1002318.
    Zhu, Y, Qian, W., and Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6, e1000844.
    Zipfel, C., and Felix, G. (2005). Plants and animals:a different taste for microbes? Curr Opin Plant Biol 8,353-360.
    Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428,764-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700