功能化离子液体的研究及其在缩合反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是一类具有溶解和催化复合功能、兼有有机物和无机物特性的新型极性溶剂材料。由于一些独特的物理化学性质,如常温液态、高稳定性、选择溶解性、低挥发性和适度酸碱性等而广泛地应用于有机合成研究,并逐步向实际的生产应用拓展。离子液体的另一特性:较强的针对性和较宽的可设计性为这类物质的合成和应用研究提供了广阔的空间,提供了越来越多的选择。针对不同的反应,设计和制备相应结构和性能的离子液体已成为当前化学领域的热点。本文顺应这一发展趋势,着重在离子液体的设计与制备及其在有机合成中的应用方面进行研究,以寻求一系列具有广泛应用价值、结构新颖、性能优异的新型功能化离子液体。
     首先,制备碱性功能化离子液体氢氧化1-丁基-3-甲基咪唑盐([bmim]OH)。研究离子液体[bmim]OH催化芳香醛和丙二腈/氰基乙酸乙酯/罗丹宁的Knoevenagel缩合反应和催化芳香醛、环己酮和芳香胺的Mannich反应。实验表明,该方法具有过程简单、反应速度快、副反应少、产率高等优点。
     研究了离子液体[bmim]OH催化芳香醛、丙二腈和α-萘酚或β-萘酚三组分“一锅法”合成2-氨基-2-色烯衍生物和催化芳香醛、丙二腈和1,3-环己二酮类化合物的缩合反应合成4H-苯并[b]吡喃衍生物。同时,探索了以绿色溶剂——水为助溶剂,实验表明该合成方法具有工艺简单、反应条件温和、反应时间短、产率高、[bmim]OH/H2O的催化体系可以循环使用等优点。
     其次,制备了咪唑型酸性功能化离子液体1-甲基-3-丙磺酸基咪唑硫酸氢盐([MIMPS]HSO4).1-甲基-3-丙磺酸基咪唑磷酸二氢盐([MIMPS]H2PO4)、1-甲基-3-丙磺酸基咪唑四氟硼酸盐([MIMPS]BF4),并讨论了其催化芳香醛或脂肪族醛与β-萘酚的缩合反应合成相应地14-芳基或烷基-14H-芳苯并[a,j]氧杂蒽衍生物、催化芳香醛与二甲酮或1,3-环己二酮的缩合反应制备相应地9-芳基-2,3,4,5,6,7-六氢-2H-氧杂蒽-1,8-二酮衍生物。实验结果表明,[MIMPS]HSO4是一种有效、良好、绿色的催化剂。同时,将微波技术和离子液体相结合,在此反应体系下合成了9-芳基-2,3,4,5,6,7-六氢-2H-氧杂蒽-1,8-二酮衍生物,微波能较好地促进反应的进行,缩短反应时间、提高反应的产率和选择性。
     最后,设计、制备了基于脂肪族二元胺的新型酸性功能化离子液体N,N,N’,N’-四甲基-N,N’-二磺酸丙基乙二胺硫酸氢盐([TMEDAPS][HSO4]、N, N, N',N'-四甲基-N,N’-二磺酸丙基丙二胺硫酸氢盐([TMPDAPS][HSO4])、N, N, N',N'-四甲基-N,N’-二磺酸丙基己二胺硫酸氢盐([TMHDAPS] [HSO4])等,并用UV-vis光谱法(Hammett法)测定了其酸度函数H_0。与咪唑型酸性离子液体1-甲基-3-丙磺酸基咪唑硫酸氢盐[MIMPS][HSO4]相比,它们的酸度函数H_0值较小,其酸性更强。在无溶剂条件下,以[TMHDAPS][HSO4]为催化剂,催化一系列芳香醛、β-萘酚和酰胺化合物的缩合反应制备1-酰胺基烷基-2-萘酚衍生物。在离子液体用量为5 mol%,原料摩尔比n(芳香醛):n(酰胺):n(伊萘酚)=1:1:1.2,在100℃、无溶剂条件下,反应6-20 min,产率为88~98%。该方法具有催化剂用量少、反应时间短、产率高等优点,离子液体易于回收使用,且循环使用5次以上,其催化活性并未明显降低。
Ionic liquids, considered as novel solvents/catalysts compounded functionalized materials, have been widely used in organic reactions because of their unique chemical and physical properties of low melting points, high thermally stability, controlled miscibility, nonvalatility, moderate acidity or alkalescence and so on. Another feature of high pertinence and a wide range of designability of ionic liquids provide a broad space for its sythesis and application. For different reactions, design and preparation of corresponding structure and properties of ionic liquids have become a hot area of current chemistry. To conform to this trend of development, we focused on the design, preparation and application in organic synthesis of ionic liquids, aiming at searching for a series of new functionalized ionic liquids with a value of broad applications, novel structures and high-performances in our dissertation.
     Firstly, a basic task-specific ionic liquid, 1-butyl-3-methylimidazolium hydroxide [bmim]OH, has been synthesized. It has been introducted as a catalyst for the Knoevenagel condensation reactions of aromatic aldehydes with malononitrile or ethyl cyanoacetat or rhodanine, and the Mannich-type reactions of aromatic aldehydes, cyclohexanone, and aromatic amines. The present protocol offers several advantages, including simple work-up procedure, short reaction time and high yields.
     Furthermore, ionic liquid [bmim]OH catalyzed three-component condensation reaction of aromatic aldehydes, malononitrile andα-orβ-naphthol proceeded rapidly in water at reflux to afford corresponding 2-amino-2-chromenes in high yields, catalyzed three-component condensation reaction of aromatic aldehydes, malononitrile and active methylene carbonyl compounds for the synthesis of 4H-benzo[b]pyrans at room temperature in aqueous media. In addition, water was chosen as a green solvent. The attractive features of this protocol are simple procedure, mild conditions, short reaction time, excellent yields, mild conditions and the easy workup procedure.
     Secondly, some acidic ionic liquids that bear imidaolium cation, such as [MIMPS]HSO4, [MIMPS]H2PO4 and [MIMPS]BF4, have been synthesized. And then, the ionic liquid [MIMPS]HSO4 was empolyed as catalyst for the synthesis of 14-alkyl-or aryl-14H-dibenzo[a,j]xanthenes via the one-pot condensation ofβ-naphthol with aliphatic or aromatic aldehydes and the synthesis of 1,8-dioxo-octahydroxanthenes by a one-pot condensation of aromatic aldehydes and active methylene carbonyl compounds. It was indicated that [MIMPS]HSO4 is an efficient, novel and green catalyst. Simultaneously, the synthesis of 1,8-dioxo-octahydroxanthenes in the same reaction conditions was carried out under microwave irradiation. It is an efficient method to reduce reaction time, increase yields and improve selectivity.
     Lastly, some novel SO3H-functional Br(?)nsted-acidic ionic liquids that bear an alkene sulfonic acid group in acyclic diamine cations have been synthesized via two-step atom economic reactions. The Br(?)nsted acidities of these ionic liquids were evaluated from the determination of the Hammett acidity functions, using UV-visible spectroscopy. Compared with 1-methyl-3-propane sulfonic-imidazolium hydrosulfate [MIMPS][HSO4], the Hammett acidity functions of these ionic liquids are smaller, in other words, the Br(?)nsted acidities of these ionic liquids are stronger. An efficient and direct proceduce has been developed for the preparation of amidoalkyl naphthols by a one-pot condensation of aryl aldehydes,β-naphthol and amides, in the presence of [TMHDAPS][HSO4] as catalyst under solvent-free conditons. Under the optimum conditions as n(aromatic aldehydes):n(β-naphthol):n(amides)=1:1:1.2, and in the presence of 5 mol%, the yields of amidoalkyl naphthols was obtained with 88~98% at 100℃for 6-20 min under solvent-free conditions. This novel synthesis method offers several advantages such as excellent yields, short reaction times and simple procedure. The catalyst could be recycled and reused at least five times without noticeably decrease in catalytic activity.
引文
[1]张锁江,吕兴梅.离子液体—从基础研究到工业应用[M].北京:科学出版社,2006.
    [2]邓友全.离子液体—性质、制备与应用[M].北京:中国石化出版社,2006.
    [3]Welton T. Room-temperature ionic liquid. Solvents for synthesis and catalysis [J]. Chem Rev,1999,99:2071~2083.
    [4]Seddon K R. Ionic liquids for clean technology [J]. Chem Biotechnol,1997,2:351~356.
    [5]Holbery J D, Seddon K R. The phase behavior of 1-alkyl-3-methy imidazolium tetrafluoroborates:ionic liquid crystal [J]. J Chem Soc, Dalton Trans,1999,13: 2133~2139.
    [6]Wasserscheid P, Keim W. Ionic liquids—new "solutions" for transition metal catalysis [J]. Angew Chem Int Ed,2000,39:3773~3789.
    [7]Tait S, Osteryong R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity [J]. Inorg Chem,1984,23:4352~4360.
    [8]Wilkes J S. A short history of ionic liquids—from molten salts to neoteric solvents [J]. Green Chem,2002,4(2):73~80.
    [9]Chum H L, Koch V R, Miller L L, et al. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt [J]. J Am Chem Soc,1975,97(11):3264~3265.
    [10]Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium choroaluminata melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis [J]. Inorg Chem,1982,21(3):1263~1624.
    [11]Hussey C L. Room temperature haloaluminate ionic liquids—novel solvents for transition metal solution chemistry [J]. Pure Appl Chem,1988,60(12):1763~1772.
    [12]Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methlimidazolium based ionic liquids [J]. J Chem Soc, Chem Commun,1992, (13):965~966.
    [13]Bonhote P D, Dias A P. Hydrophobic, highly conductive ambient-temperature molten [J]. Inorg Chem,1996,35:1168~1178.
    [14]杨雅立,王晓化,寇元等.不断壮大的离子液体家族[J].化学进展,2003,15(6):471~476.
    [15]Cole A C, Jensen J L, Ntai I, et al. Novel Br(?)nsted acidic ionic liquids and their use as dual solvent-catalysts [J]. J Am Chem Soc,2002,124:5962~5963.
    [16]Ni B K, Headley A D, Li G G. Design and synthesis of C-2 substituted chiral imidazolium ionic liquids from amino acid derivatives [J]. J Org Chem,2005,70: 10600~10602.
    [17]Zhao D B, Fei Z F, Williams M F et al. Nitrile-functionslized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions [J]. J Am Chem Soc,2003,126(48):218~222.
    [18]Leone A M, Weatherly S C, Williams M E, et al. An ionic liquid form of DNA: redox-active molten salts of nucleic acids [J]. J Am Chem Soc,2001,123(2):218~222.
    [19]Huang J, Jiang T, Gao H X, et al. Active and stable catalyst-Pd nanoparticles immobilized onto molecular sieve by ionic liquid as heterogenerous catalyst for solvent-free hydrogenation [J]. Angew Chem Int Ed,2004,43:1397~1399.
    [20]Dai L Y, Yu S Y, Shan Y K et al. Novel room temperature inorganic ionic liquids [J]. Eur J Inog Chem,2004,237~241.
    [21]顾彦龙,时峰,邓友全.室温离子液体:一类新型的软介质和功能材料[J].科学通报,2004,49(6):515~521.
    [22]王均凤,张锁江,陈慧萍等.离子液体的性质及在催化反应中的应用[J].过程工程学报,2003,3(2):177~185.
    [23]Zhang J, Sun N,Zhang X, et al. Periodicity and map for discovery of new ionic liquids [J]. Sci China Ser B,2006,49(2):103~105.
    [24]Zhang J, Zhang S, Dong K, et al. Supported absorption of CO2 by tetrabutyl-phosphonium amino acids ionic liquids [J]. Chem Eur J,2006,12:4021~4026.
    [25]Seddon K R. Ionic liquid—a taste of the future [J]. Nature Mater,2003,2(6):363~365.
    [26]Wilkes J S. Ionic liquids in synthesis [M]. Weinheim:Wiley-VCH,2003.
    [27]Rogers R D, Seddon K R. Ionic liquids—solvents of the future? [J]. Science,2003,302: 792~793.
    [28]Zhao D B, Wu M, Kou Y. Ionic liquids:applications in catalysis [J]. Catal Today,2002, 74(1-2):157~189.
    [29]Freemantle M. Designer solvents—ionic liquids may boost clean technology development [J]. Chem Eng News,1998,76:32~37.
    [30]Davis J H. Task-specific ionic liquids [J]. Chem Lett,2004,33(9):1072~1077.
    [31]Cole A C, Jensen J L, Ntai I, et al. Novel Br(?)nsted acidic liquids and their use as dual solvents-catalysts [J]. J Am Chem Soc,2002,124:5962~5963.
    [32]Bao W L, Wang Z M, Li Y X. Synthesis of chiral ionic liquids from natural amino acids [J]. J Org Chem,2003,68:591~593.
    [33]Zhao D B, Fei Z F, Geldbach T J, et al. Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions [J]. J Am Chem Soc,2004,126(48):15876~15882.
    [34]Branco L C, Rosa J N, Ramos J J M, et al. Preparation and Characterization of New Room Temperature Ionic Liquids [J]. Chem Eur J,2002,2(16):3671~3677.
    [35]Holbrey J D, Turner M B, Reichert W M. New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide [J]. Green Chem,2003,5:731~736.
    [36]Song G H, Cai Y Q, Peng Y Q. Amino-functionalized ionic liquid as a nucleophilic scavenger in solution phase combinatorial synthesis [J]. J Comb Chem 2005,7:561~566.
    [37]Mi X L, Luo S Z, Cheng J P. Ionic liquid-immobilized quinuclidine-catalyzed Morita-Baylis-Hillman reactions [J]. J Org Chem 2005,70:2338~2341.
    [38]Ishida Y, Sasaki D, Miyauchi H, et al. Design and synthesis of novel imidazolium-based ionic liquid with a pseudo crown-ether moiety:diastereomeric interaction of a racemic ionic liquid with enantiopure europium complexes [J]. Tetrahedron Lett,2004,45: 9455~9459.
    [39]Liu H, Wang H, Tao G, et al. Novel imidazolium-based ionic liquids with a crown-ether moiety [J]. Chem Lett,2005,34(8):1184~1185.
    [40]Fei Z, Zhao D, Geldbach T J, et al. Br(?)nsted acidic ionic liquid and their zeitterions: synthesis, characterization and pKa determination [J]. Chem Eur J,2004,10:4886~4893.
    [41]Mu Z, Zhou F, Zhang S, et al. Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact [J]. Tribol Int,2005,38:725~731.
    [42]Wasserscheid P, DrieBen-Holscher B, Hal R, et al. New, functionalised ionic liquids from Michael-type reactions—a chance for combinatorial ionic liquid development [J]. Chem Commun,2003, (16):2038-2039.
    [43]Zhao D B, Fei Z F, Dyson P J. Synthesis and characterization of ionic liquids incorporating the nitrile functionality [J]. Inorg Chem,2004,43,2197~2205.
    [44]Zhao D B, Fei Z F, Dyson P J. Dual-functionalised ionic liquids:synthesis and characterisation of imidazolium salts with a nitrile-functionalised anion [J]. Chem Commun,2004,2500~2501.
    [45]Kin K, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquid [J]. Langmuir,2004,20 (3): 556~560.
    [46]Ranu B C, Banerjee S. Ionic Liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles [J]. Org Lett, 2005,7(14):3094~3052.
    [47]Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids [J]. J Am Chem Soc,2005,127(8),2398~2399.
    [48]Wasserscheid P, Van H R, Bosmann A. 1-n-butyl-3-methylimidazoliu ([bmim]) octylsufate—an even "greener" ionic liquid [J]. Green Chem,2002,4(4):400~404.
    [49]Liu H, Wang H, Tao G, et al. Novel imidazolium-based ionic liquids with crown-ether moiety [J]. Chem Lett 2005,34(8):1184~1185.
    [50]Gui J Z, Ban H Y, Cong X H, et al. Selective alkylation of phenol with tert-butyl alcohol catalyzed by Bronsted acidic imidazolium salts [J]. J Mol Catal A-Chem,2005,225(1): 27~31.
    [51]Xing H B, Wang T, Zhou Z H, et al. The sulfonic acid-functionalized ionic liquids with pyridinium cations:acidities and their acidity-catalytic activity relationships [J]. J Mol Catal A-Chem,2007,264:53~59.
    [52]Fang D, Gong K, Liu Z L, et al. A green procedure for the protection of carbonyls catalyzed by novel task-specific room-temperature ionic liquid [J]. Catal Commun,2007, 8:1463~1466.
    [53]Walker A J, Bruce N C. Combined biological and chemical catalysis in the preparation of oxycodone [J]. Tetrahedron,2004,60 (3):561~568.
    [54]Qian W X, Jin E, Bao W L, et al. Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water [J]. Tetrahedron,2006,62:556~562.
    [55]Xu J M, Liu B K, Wu W B, et al. Basic ionic liquid as catalysis and reaction medium:a novel and green protocol for the Markovnikov addition of N-heterocycles to vinyl esters, using a task-specific ionic liquid, [bmIm]OH [J]. J Org Chem,2006,71:3991~3993.
    [56]Cai Y Q, Peng Y Q, Song G H. Amino-functionalized ionic liquid as an efficient and recyclable catalyst for Knoevenagel reactions in water [J]. Catal Lett,2006,109:61~64.
    [57]Peng Y Q, Song G H. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans [J]. Catal Commun,2007,8:111~114.
    [58]方东,刘祖亮,周新利.功能化离子液体室温催化合成乙酸苄酯[J].应用化学,2007,24(1):85~89.
    [59]Wang R H, Xiao J C, Shreeve J M. Efficient Heck reactions catalysted by a highly recyclable palladium(II) complex of a pyridyl-functionalized imidazolium-based ionic liquid [J]. Org Biomol Chem,2007,5:671~678.
    [60]方东,施群荣,巩凯,刘祖亮.离子液体催化甲苯绿色硝化反应研究[J].含能材料,2007,15(2):122~124.
    [1]闻韧.药物合成反应[M].第二版,北京:化学工业出版社,2003,213.
    [2]郑清.醋酸—乙二胺催化丙二酸二乙醋与苯甲醛的Knoevenagel反应[J].江西化工2004,2:97~98.
    [3]程力惠,李毅群.微波促进下N,N-二甲基甲酰胺中的Knoevenagel反应[J].合成化学,2002,6:504~506.
    [4]郭敏飞,胡焱.离子液体中芳香醛和丙二酸亚异丙酯的Knoevenagel缩合反应研究[J].化工时刊,2006,20(3):33~34.
    [5]Lehnert W. Verbesserte variante der Knoevenagel-condensation mit TiCl4/THF/pyridin (I). alkyliden-und arylidenmalonester bei 0-25℃ [J]. Tetrahedron Lett,1970,11(54):4723-4724.
    [6]Cabello J A, Campelo J M, Garcia A, et al. Knoevenagel condensation in the heterogen-eous phase using AlPO4-Al2O3 as a new catalyst [J]. J Org Chem,1984,49:5195~5197.
    [7]Rao P S, Venkataratnam R V. Zinc chloride as a new catalyst for Knoevenagel condensation [J]. Tetrahedron Lett,1991,32(41):5821~5822.
    [8]Deng G S, Ren T G. Indium trichloride catalyzes Aldol-condensations of aldehydes and ketones [J]. Synth Commun,2003,33(17):2995~3001.
    [9]王利民,盛佳,张亮等.无溶剂条件下Yb(OTf)3催化的亚甲基化合物和醛的 Knoevenagel反应[J].有机化学,2005,25(8):964~968.
    [10]Moison H, Texier-Boullet F, Foucaud A. Knoevenagel, Wittig and Wittig-horner reactions in the presence of magnesium oxide or zinc oxide [J]. Tetrahedron,1987,43(3): 537~542.
    [11]Texier-boullet F, Villemin D, Ricard M, et al. Reactions de wittig, wittig-horner et knoevenagel par activation anionique avec l'alumine ou le fluorure de potassium depose sur l'alumine, sans solvent [J]. Tetrahedron,1985,41(7):1259~1266.
    [12]肖立伟,李慧章,刘卉闵.无溶剂微波辐射下的Knoevenagel缩合反应[J].河北大学学报(自然科学版),2003,23(2):167~169.
    [13]戴桂元,史达清,周龙虎.氟化钾催化下的克脑文格尔反应[J].化学试剂,1996,18(1):39-40.
    [14]Li Y Q. Potassium phosphate as catalyst for the Knoevenagel condensation [J]. J Chem Res,2000,11:524~525.
    [15]刘雄伟,姜恒,宫红.室温无溶剂条件下醋酸锌催化的Knoevenagel缩合反应[J].有机化学,2007,27(1):131~133.
    [16]李毅群,叶海鸿.阴离子交换树脂支载氟阴离子试剂催化Knoevenagel反应[J].有机化学,2002,22(9):678~680.
    [17]曾仁权,傅相锴,龚成斌.取代氨乙基膦酸钡负载新型固体碱制备及催化性能研究[J].化学研究与应用,2004,16(6):822~824.
    [18]王奂玲,闫亮,赵睿.氨丙基官能化SBA215介孔分子筛的合成及催化性能的研究[J].分子催化,2005,19(1):1-6.
    [19]张妹,陈景,史达清等.水溶剂中羰基与活性亚甲基化合物的缩合反应[J].徐州师范大学学报(自然科学版),2003,21(2):42-45.
    [20]Wang S, Ren Z, Cao W. The Knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of CTMAB in water [J]. Synth Commun,2001,31(5):673~677.
    [21]王官武,王宝亮.微波辐射和加热条件下的无催化剂无溶剂Knoevenagel缩合反应[J].有机化学,2004,24(1):85~87.
    [22]候敏,余波,李志良.微波辐射下肉桂酸的合成研究[J].合成化学,2002,10(3):211~215.
    [23]刘卉闵,刘卉凌,袁永军等.超声波作用下芳亚甲基丙二酸亚异丙酯的合成[J].有机化学,23(10):1159~1161.
    [24]Wang Y, Shang Z C, Wu T X. Synthetic and theoretical study on proline-catalyzed Knoevenagel condensation in ionic liquid [J]. J Mol Catal A:Chem,2006,253:212~221
    [25]徐欣明,李毅群,周美云.功能化离子液体氯化1-(2-羟乙基)-3-甲基咪唑盐催化的Knoevenagel缩合反应[J].有机化学,2004,24(10):1253~1256.
    [26]徐欣明,李毅群,周美云.室温离子液体作为微波吸收剂用于促进Knoevenagel反应[J].有机化学,2004,24(2):184~186.
    [27]Ranu B C, Banerjee S. Ionic Liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles [J]. Org Lett, 2005,7(14):3049~3052.
    [28]Xu J M, Liu B K, Lin X F. Basic ionic liquid as catalysis and reaction medium:a novel and green protocol for the Markovnikov addition of N-heterocycles to vinyl esters, using a task-specific ionic liquid, [bmIm]OH [J]. J Org Chem,2006,71:3991~3993.
    [29]Momose Y, Meguro K, Ikeda H, et al. Studies on antidiabetic agents, X:synthesis and biological activities of pioglitazone and related compounds [J]. Chem Pharm Bull,1991, 39 (6):1440~1445.
    [30]Jin H A, Seung J K, Woul S P, et al. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors [J]. Bioorg Med Chem Lett,2006,16(11):2996~2999.
    [31]Cheng, L L, Mui M S. Solid-phase combinatorial synthesis of 5-aryakylidene rhodanine [J]. Tetrahedron Lett,2000,41(30):5729~5732.
    [32]Maximiliano S, Paula D, Sabina J, Jairo Q, et al. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines [J]. Bioorg Med Chem,2007,15(1):484~494.
    [33]Sudo K, Matsumoto Y, Matsushima M, et al. Novel hepatitis C virus protease inhibitors: thiazolidine derivatives [J]. Biochem Biophys Res Commun,1997,238(2):643~647.
    [34]Bruno G, Costantino L, Curinga C, et al. Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinedionesy [J]. Bioorg Med Chem,2002,10(4): 1077~1084.
    [35]Grant E B, Guiadeen D, Baum E Z, and et al. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors [J]. Bioorg Med Chem Lett,2000,10(19):2179-2182.
    [36]Neil S C, Christine O, Marina P. Rhodanine derivatives as inhibitors of JSP-1 [J]. Bioorg Med Chem Lett,2005,15(14):3374~3379.
    [37]Tang E, Yang G, Yin J. Studies on the synthesis of 5-(p-aminobenzyl-idene)-rhodanine and its properties [J]. Spectrochimica Acta Part A,2003,59(3):651~656.
    [38]Frances C B, Charles K B, Sara M B, Marny P. Rhodanine derivatives [J]. J Am Chem Soc,1951,73(5):2357~2359.
    [39]Whitesitt C A, Simon R L, Reel J K, et al. Synthesis and structure-activity relationships of benzo-phenones as inhibitors of cathepsin D [J]. Bioorg Med Chem Lett,1996,6 (18): 2157~2162.
    [40]Michael G O, Judi C N, Carl M S G, et al. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1) [J]. Bioorg Med Chem Lett, 2004,14(15):3975~3978.
    [41]李贵深,王春,李敬慈等.芳香醛与噻唑酮衍生物的固相缩合反应[J].应用化学,2001,21(10):1069~1071.
    [42]张明,王存德,于示龙等.微波干法催化芳香醛与绕丹宁及N-苯基绕丹宁的缩合反应[J].高等学校化学学报,1994,15(11):1647~1650.
    [43]Zhou J, Song Y, Zhu F, Zhu Y. Facile synthesis of 5-benzylidene rhodamine derivatives under Microwave irradiation [J]. Synth Commun,2006,36(22):3297~3303.
    [44]练习中,李毅群,周美云.离子液体/水混合溶剂促进芳香醛与罗丹宁的缩合反应[J].有机化学,2006,26(9):1272~1274.
    [1]Gary B E, Richard H F, Peter C T, et al. Synthesis of a transition state analogue inhibitor of purine nucleoside phosphorylase via the Mannich reaction [J]. Org Lett,2003,5(20): 3639~3640.
    [2]张美惠,周乐,徐莉英等.2-(E)-(4-甲磺酰氨基)亚苄基环戊酮Mannich碱类化合物的合成及抗炎活性[J].中国药物化学杂志,2004,14(6):340~343.
    [3]Craig J C, Moyle M, Johnson L M. Amine exchange reaction. mannich bases from aromatic amines [J]. J Org Chem,1964,29(2):410~415.
    [4]Blatt A H, Gross N. The addition of ketones to Schiff bases [J]. J Org Chem,1964,29(11): 3306~3311.
    [5]徐秀娟,陈光旭.芳香胺参加的Mannich反应[J].化学学报,1982,40(5):463~468.
    [6]Yi L, Lei H S, Zou J H, et al. The Mannich reaction between aromatic ketones, aromatic aldehydes and aromatic amines [J]. Synthesis,1991, (9):717~718.
    [7]Zou J H. The Mannich reaction of dialkyl ketones, aromatic aldehydes and aromatic amines [J]. Synth Commun,1996,28(5):618~622.
    [8]邹君华.间硝基苯甲醛或氯苯甲醛与芳香胺和芳香酮的Mannich反应[J].有机化学,1996,16(2):218~222.
    [9]Manabe K, Kobayashi S. Mannich-type reactions of aldehydes, amines, and ketones in a colloidal dispersion system created by a Br(?)nsted acid-surfactant combined catalyst in water [J]. Org Lett,1999,1(12):1965~1967.
    [10]Manabe K, Kobayashi S. A Br(?)nsted acid-surfactant combined catalyst for Mannich-type reactions of aldehydes, amines, and ketones in water [J]. Synlett,1999, (9):1401~1402.
    [11]Limura S, Nobutou D, Manabe K, et al. Mannich-type reactions in water using a hydrophobic polymer-supported sulfonic acid catalyst [J]. Chem Commun,2003, (14): 1644~1645.
    [12]Loh T P, Tan K L, Wei L L, et al. Three component synthesis of β-amino carbonyl compounds using indium trichloride-catalyzed one-pot Mannich-type reaction in water [J]. Tetrahedron,2000,56(20):3227~3237.
    [13]Yi W B, Cai C. Mannich-type reactions of aromatic aldehydes, anilines, and methyl ketones in fluorous biphase systems created by rare earth (Ⅲ) perfluorooctane sulfonates catalysts in fluorous media [J]. J Fluorine Chem,2006,127:1515~1521.
    [14]George W K, Zhou L L, Wang L, Richard M P. A microwave-enhanced, solventless Mannich condensation of terminal alkynes and secondary amines with para-formaldehyde on cuprous iodide doped alumina [J]. Tetrahedron,2006,62:857~867.
    [15]Satoshi K, Takayuki K, Yukihiko H. Reductive Mannich-type reaction using the composite reagents of phosphine and Lewis acid [J]. Tetrahedron Lett,2006,47: 1973~1975.
    [16]Yang YY, Shou W G, Wang Y G. Synthesis of β-amino carbonyl compounds via a Zn(OTf)2-catalyzed cascade reaction of anilines with aromatic aldehydes and carbonyl compounds [J]. Tetrahedron,2006,69:10079~10086.
    [17]蒙团结,辛丽,王进贤.碘催化芳香酮、芳香醛和芳香胺德Mannich反应:三组分“一锅法”[J].商丘师范学院学报,2005,22(2):101~103.
    [18]Belen R, Carsten B. Thermal effects in the organocatalytic asymmetric Mannich reaction [J]. J Org Chem,2006,71:2888~2891.
    [19]Takashi O, Minoru K, Jun-ichi F Keiji M. Catalytic asymmetric synthesis of a nitrogen analogue of dialkyl tartrate by direct Mannich reaction under phase-transfer condition [J]. Org Lett,2004,6(14):2397~2399.
    [20]胡德禹,宋宝安,张国平等.超声辐射下O,O’-二正丁基-α-(4-三氟甲基苯胺基)-2-氟苯基磷酸酯德合成与晶体结构[J].有机化学,2005,25(7):854~858.
    [21]刘宝友,许丹倩,罗书平等.Bronsted酸离子液体催化的醛、酮、胺三组分Mannich反应[J].化工学报,2004,55(12):2043~2046.
    [22]Fang D, Luo J, Zhou X L, et al. Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst [J]. Catal Lett,2007,116(1-2):76~80.
    [23]Sahoo S, Joseph T, Halligudi S B. Mannich reaction in Br(?)nsted acidic ionic liquid:A facile synthesis of β-amino carbonyl compounds [J]. J Mol Catal A-Chem,2006,244: 179~182.
    [24]Li J Z, Peng Y Q, Song G H. Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueous media [J]. Catal Lett,2005,102(3-4):159~162.
    [25]闻韧.药物合成反应[M].第二版,北京:化学工业出版社,2003.p213.
    [26]张锁江,袁小亮,陈玉焕等.醇胺羧酸盐功能化离子液体.CN 200510069408.5.
    [27]Yuan X L, Zhang S J, Lu X M. J Chem Eng Data [J],2007,52:596.
    [1]Green G R, Evans J M, Vong A K. Comprehensive heterocyclic chemistry Ⅱ; Katritzky A R, Rees C W, Scriven E F V, (Eds.); Pergamon Press:Oxford,1995,5:469~490.
    [2]庄启亚,史达清,屠树江等.2-氨基-3-氰基-4-芳基-4H-苯并[h]苯并吡喃的一步合成[J].应用化学,2002,19(10):1018~1020.
    [3]Jason B, Colin P D, Colin W S. Preparation of some new benzylidenemalono-nitriles by an SNAr reaction:appliction to naphtho[1,2-b]pyran synthesis [J]. Heterocycles,1994, 38(2):399~308.
    [4]庄启亚,荣良策,王菊仙等.取代萘并吡喃的合成和晶体结构研究[J].有机化学,2003,23(7):671~673.
    [5]Wang X S, Shi D Q, Tu S J, et al. Synthesis of 2-aminochromene derivatives catalyzed by KF/Al2O3 [J]. Synth Commun,2004,34(3):509~514.
    [6]史达清,张姝,庄启亚等.水溶剂中取代肉桂腈与/β-萘酚的反应[J].有机化学,2003,23(8):809~812.
    [7]Ballini R, Bosica G, Conforti M L, et al. Three-component process for the synthesis of 2-amino-2-chromenes in aqueous media [J]. Tetrahedron,2001,57:1395~1398.
    [8]章明,张爱琴,黄仁生等.无溶剂CTAB催化制备取代2-氨基-2-色烯[J].化学试剂,2006,28(8):491~492.
    [9]Shestopalov A M, Emelianova Y M, Nesterov V N. One-step synthesis of substituted 2-amino-4H-chromenes and 2-amino-4H-benzo[f]chromenes. Molecular and crystal structure of 2-amino-3-cyano-6-hydroxy-4-phenyl-4H-benzo[f]chromene [J]. Russ Chem Bull, Inter Ed,2002,51(12):2238~2243.
    [10]Kumar B S, Srinivasulu N, Udupi R H, et al. Efficient synthesis of benzo[g]-and benzo [h]chromene derivatives by one-pot three-component condensation of aromatic aldehydes with active methylene compounds and naphthols [J]. Russ J Org Chem,2006,42(12): 1813~1815.
    [11]Maggi R, Ballini R, Sartori G. Basic alumina catalysed synthesis of substituted 2-amino-2-chromenes via three-component reaction [J]. Tetrahedron Lett,2004,45: 2297~2299
    [12]Kumar D, Reddy V B, Mishra B G, et al. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes [J] Tetrahedron,2007,63: 3093~3097.
    [13]Zhang A Q, Zhang M, Chen H H, et al. Convenient Method for Synthesis of Substituted 2-Amino-2-chromenes [J]. Synth Commun,2007,37:231~235.
    [14]张爱琴,章明,余义开等.无溶剂碱催化制备取代2-氨基-2-色烯[J].化学试剂,2006,28(12):736~738.
    [15]Kidwai M, Saxena S, Khalilur M, et al. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents [J] Bioorg Med Chem Lett,2005,15:4295~4298.
    [16]史达清,王香善,屠树江.KF/Al2O3催化下4H-色烯衍生物的合成[J].有机化学,2002,22(12):1053~1056.
    [17]Elinson M N, Dorofeev A S, Feducovich S K, et al. Electrochemically induced chain transformation of salicylaldehydes and alkyl cyanoacetates into substituted 4H-chro-menes [J]. Tetrahedron Lett,2006,47:7629~7633.
    [18]史达清,张姝,王香善等.水中苯并[h]色烯衍生物的洁净合成[J].有机化学,2003,23(12):1419~1421.
    [19]蒋虹,屠树江,王香善等.微波辐射下“一锅煮”法合成2-氨基-3-氰基-4-芳基-4H,5H-吡喃-[3,2-c]苯并吡喃-5-酮[J].有机化学,2004,24(14):1458~1460.
    [20]王香善,曾兆森,史达清等.KF/Al2O3催化下2-氨基-4-芳基-4H-吡喃并[3,2-c]香豆素衍生物的一步合成[J].有机化学,2005,25(9):1138-1141.
    [21]Shahrzad A, Saeed B. Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media [J]. Tetrahedron Lett,2007,48: 3299~3303.
    [22]史达清,王静,庄启亚等.水介质中1,6-二氧-5-氧代-1,4,5,6-四氢化菲衍生物的三组分一锅合成[J].有机化学,2006,26(5):634~647.
    [1]Green G R, Evans J M, Vong A K. Comprehensive heterocyclic chemistry II; Katritzky A R, Rees C W, Scriven E F V, (Eds); Pergamon Press:Oxford,1995,5:469~490.
    [2]Bonsignore L, Loy G, Secci D, et al. Synthesis and pharmacological activaty of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives [J]. Eur J Med Chem,1993,28:517~520.
    [3]Witte E C, Neubert P, Roesch A. Synthesis of new 2H-benzopyrzn-2-one derivatives. Chem Abstr 1986,104,224915f, Ger. Offen DE.3427985.
    [4]Foye W O. Prinicipi di Chemico Farmaceutica; Piccin:Padova, Italy,1991, p416.
    [5]Ellis G P. In the chemistry of heterocyclic compounds. Weissber A; Taylor E C.; Eds.; chromenes, chromenes and chromenes; Willy:New York,1977, p13.
    [6]Armesto D, Horpool W M, Ramos A, et al. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans [J].J Org Chem,1989,54:3069~3072.
    [7]Hatakeyama S, Ochi N, Numata H, et al. A new route to substituted 3-methoxy- carbonyldihyropyrans [J]. J Chem Soc, Chem Commun,1988,17:1202~1204.
    [8]Cingolani G M, Gualtieri F, Pigini M. Researches in the field of antivirial compounds: Manich bases of 3-hydrroxycoumarin [J]. J Med Chem,1969,12:531~532.
    [9]史达清,张姝,庄启亚等.水中2-氨基-3-氰基-4-芳基-7,7-二甲基-5-氧代-4H-5,6,7,8-四氢苯并[b]吡喃的洁净合成[J].有机化学,2003,23(8):877~879.
    [10]Wang X S, Shi D Q, Tu S J. A convenient synthesis of 5-oxo-5,6,7,8-tetrahydro-4H-benzo-[b]-pyran Derivatives Catalyzed by KF-Alumina [J]. Synth Commun,2003, 33(1):119~126.
    [11]庄启亚,吴楠,史达清等.KF-蒙脱土催化下2-氨基-3-氰基-4-芳基-7,7-二甲基-5-氧代-4H-5,6,7,8-四氢苯并[b]吡喃的合成[J].有机化学,2006,26(9):1217~1220.
    [12]Shi D Q, Mou J, Zhuang Q Y, et al. One-pot synthesis of 2-amino-4-aryl-5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyran-3-carbonitriles in aqueous media [J]. J Chem Res,2004,12: 821~823.
    [13]Jin T S, Wang A Q, Wang X, et al. A clean one-pot synthesis of tetra-hydrobenzo-[b]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media [J]. Synlett,2004,5:0871~0873.
    [14]Balalaie S, Bararjanian M, Amani A M, et al. (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media [J]. Synlett,2006,2:0263~0266.
    [15]Guo S B, Wang S X, Li J T. D,L-Proline-catalyzed one-pot synthesis of pyrans and pyrano[2,3-c]pyrazole derivatives by a grinding method under solvent-Free conditions [J]. Synth Commun,2007,37:2111~2120.
    [16]Wang L M, Shao J H, Tian H, et al. Rare earth perfluorooctanoate [Re(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives [J]. J Fluorine Chem,2006,127:97~100.
    [17]Balalaie S, Bararjanian M, Sheikh-Ahmadi M. Diammonium hydrogen phosphate:an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media [J]. Synth Commun,2007,37(7):1097~1108.
    [18]Balalaie S, Sheikh-Ahmadi M, Bararjanian M. Tetra-methyl ammonium hydroxide:an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media [J]. Catal Commun,20078,8:1724~1728.
    [19]Hekmatshoar R, Majedi S, Bakhtiari K. Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives [J]. Catal Commun,2008,9:307~310.
    [20]Devi I, Bhuyan P J. Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo [b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions [J]. Tetrahedron Lett,2004,45:8625~8627.
    [21]Saini A, Kumar S, Sandhu J S. A new LiBr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[aj]xanthenes and tetrahydrobenzo[b]pyrans under solvent-free conventional and microwave heating [J]. Synlett,2006,12:1928~1932.
    [22]屠树江,蒋虹,庄启亚等.超声辐射下一步法合成2-氨基-3-氰基-4-芳基-7,7-二甲基-5-氧代-5,6,7,8-四氢-4H-苯并[b]吡喃[J].有机化学,2003,23(5):488~490.
    [23]Fotouhi L, Heravi M M, Fatehi A, et al. Electrogenerated base-promoted synthesis of tetrahydrobenzo[b]pyran derivatives [J]. Tetrahedron Lett,2007.48:5379~5381.
    [24]Rong L C, Li X Y, Wang H Y, et al. Efficient synthesis of tetrahydro-benzo[b]pyrans under solvent-Free conditions at room temperature [J]. Synth Commun,2006,36(16): 2363~2369.
    [1]Jamison J M, Krabill K, Hatwalkar A, et al. Potentiation of the antiviral activity of poly r(A-U) by xanthene dyes [J]. Cell Biol Int Rep,1990,14(12):1075~1084.
    [2]El-Brashy A M, Metwally M E, El-Sepai F A. Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes [J]. IL Farmaco,2004,59(10):809~817.
    [3]Chibale K, Visser M, Schalkwyk D V, et al. Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents [J]. Tetrahedron,2003,59(13):2289~2296.
    [4]Bhowmik B B, Ganguly P. Photophysics of xanthene dyes in surfactant solution [J]. Spectrochim Acta A Mole Biomole Spectr 2005,61(9):1997~2003.
    [5]Ahmad M, King T A, Cha B H, et al. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases [J]. J Phys D Appl Phys,2002; 35(13): 1473~1476.
    [6]Jha A, Beal J. Convenient synthesis of 12H-benzo[a]xanthenes from 2-tetralone [J]. Tetrahedron Lett,2004,45(49):8999~9001.
    [7]Kuo C W, Fang J M. Synthesis of xanthenes, indanes, and tetrahydrona-phthalenes via intramolecular phenylcarbonyl coupling reactions [J]. Synth Commun,2001,31(6): 877~892.
    [8]Sen R N, Sarkar N J. The condensation of primary alcohols with resorcinol and other hydroxy aromatic compounds [J]. J Am Chem Soc,1925,47(4):1079~1091.
    [9]Knight D W, Little P B. The first high-yielding benzyne cyclisation using a phenolic nucleophile:a new route to xanthenes [J]. Synlett,1998,10:1141~1143.
    [10]Sarma R J, Baruah J B. One step synthesis of dibenzoxanthenes [J]. Dyes Pigments, 2005,64:91~92.
    [11]Khosropour A R, Khodaei M M, Moghannian H. A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[aj] xanthenes catalyzed by p-TSA in solution and solvent-free conditions [J]. Synlett,2005,6:955~958.
    [12]Rajitha B, Sunil K B, Reddy Y T, et al. Sulfamic acid:a novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a,j] xanthenes under conventional heating and microwave irradiation [J]. Tetrahedron Lett,2005,46:8691~8693.
    [13]Liu D, Yu Y, Shi W Z, et al. A highly efficient solvent-free synthesis of benzoxanthenes catalyzed by methanesulfonic acid [J]. Prep Biochem Biotech,2007,37:77~81.
    [14]Das B, Ravikanth B, Ramu R, Laxminarayana K, et al. Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo[a,j]xanthenes [J]. J Mol Catal A-Chem,2006,255:74~77.
    [15]Pasha M A, Vaderapura P. Molecular iodine catalyzed synthesis of aryl-14H-dibenzo[a,j] xanthenes under solvent-free condition [J]. Bioorg Med Chem Lett,2007,17:621~623.
    [16]Shakibaei G I, Mirzaei P, Bazgir A. Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j]xanthene and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions [J]. Appl Catal A-Gen,2007,325:188~192.
    [17]Ko S K, Yao C F. Heterogeneous catalyst:Amberlyst-15 catalyzes the synthesis of 14-substituted-14H-dibenzo[a,j]xanthenes under solvent-free conditions [J]. Tetrahedron Lett,2006,47:8827~8829.
    [18]Bigdeli M A, Heravi M M, Mahdavini G H. Silica supported perchloric acid (HClO4-SiO2):A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14-H-dibenzo[a,j]xanthenes [J]. J Mol Catal A-Chem,2007, 275:25~29.
    [19]Shaterian H R, Ghashang M, Hassankhani A. One-pot synthesis of aryl 14H-dibenzo [aj]xanthene leuco-dye derivatives [J]. Dyes Pigments,2008,76:564~568.
    [20]Amini M M, Seyyedhamzeh M, Bazgir A. Heteropolyacid:An efficient and eco-friendly catalyst for the synthesis of 14-aryl-14H-dibenzo[aj]xanthene [J]. Appl Catal A- Gen,2007,323:242~245.
    [21]Heravi M M, Bakhtiari K, Daroogheha Z, et al. Facile heteropolyacid-promoted synthesis of 14-substituted-14-H-dibenzo[aj]xanthene derivatives under solvent-free conditions [J]. J Mol Catal A-Chem,2007,273:99~101.
    [22]Nagarapu L, Kantevari S, Mahankhali V C, et al. Potassium dodecatungstocobaltate trihydrate (K5CoW12O403H2O):a mild and efficient reusable catalyst for the synthesis of aryl-14H-dibenzo[a,j]xanthenes under conventional heating and microwave irradiation [J]. Catal Commun,2007,8:1173~1177.
    [23]Shaterian H R, Ghashang M, Mir N. Aluminium hydrogensulfate as an efficient and heterogeneous catalyst for preparation of aryl 14H-dibenzo[a,j]xanthene derivatives under thermal and solvent-free conditions [J]. ARKIVOC,2007, (xv):1~10.
    [24]Dabiri M, Baghbanzadeh M, Nikcheh M S, et al. Eco-friendly and efficient one-pot synthesis of alkyl-or aryl-14H-dibenzo[a,j]xanthenes in water [J]. Bioorg Med Chem Lett,2008,18(1):436~438.
    [25]刘迪,于杨,张少华,等.硫酸氢钠催化合成14-烷基(芳基)-14H-二苯并[aj]氧杂蒽类化合物[J].合成化学,2007,15(4):516~518.
    [26]Kakade G, Madje B, Ware M, et al. Phase transfer catalyzed one-pot synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes in aqueous medium [J]. B Catal Soc India,2007,6: 99~103.
    [27]Saini A, Kumar S, Sandhu J S. A new LiBr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[aj]xanthenes and tetrahydrobenzo [b]pyrans under solvent-free conventional and microwave heating [J]. Synlett,2006,12:1928~1932.
    [28]Khoramabadi-zad A, Akbari S A, Shiri A. One-pot synthesis of 14H-dibenzo[a,j] xanthene and its 14-substituted derivatives [J]. J Chem Res,2005,5:277~279.
    [29]Dimmock J R, Raghavan S K, Bigam G E. Evaluation of Mannich bases of 2-arylidene-1,3-diketones versus murine P388 leukemia [J]. EurJ Med Chem,1988,23(2): 111~117.
    [30]史达清,庄启亚,陈景等.水溶液中芳香醛与1,3—环己二酮类衍生物的反应[J].有机化学,2003,23(7):694~696.
    [31]靳通收,张建设,王爱卿等.水中3,3,6,6-四甲基-9-芳基-1,8-二氧代-1,2,3,4,5,6,7,8-八氢化氧杂蒽的合成[J].有机化学,2005,25(3):335~338.
    [32]华国平,李团结,朱松磊等.无催化剂条件下经微波辐射一步合成9-芳基-3,4,5,6,7,9-六氢-1H-氧杂蒽-1,8(2H)-二酮[J].有机化学,2005,25(6):716~719.
    [33]Jin T S, Zhang J S, Xiao J C, et al. Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecyl-benezenesulfonic acid in aqueous media [J]. Synlett, 2004,5:0866~0870
    [34]Das B, Thirupathi P, Mahender I, et al. Amberlyst-15:an efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydro xanthenes and 1,8-dioxo-decahydroacridines [J]. J Mol Catal A-Chem,2006,247:233~239.
    [35]Kantevari S, Bantu R, Nagarapu L. HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions:scope and limitations [J]. J Mol Catal A-Chem,2007,269:53~57.
    [36]Das B, Thirupathi P, Reddy K R, et al. An efficient synthesis of 1,8-dioxo-octahydro-xanthenes using heterogeneous catalysts [J]. Catal Commun,2007,8:535~538.
    [37]John A, Yadav P J P, Palaniappan S. Clean synthesis of 1,8-dioxo-dodecahydro-xanthene derivatives catalyzed by polyaniline-p-toluenesulfonate salt in aqueous media [J]. J Mol Catal A-Chem,2006,248:121~125.
    [38]Darviche F, Balalaie S, Chadegani F. Diammonium hydrogen phosphate as a neutral and efficient catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives in aqueous media [J]. Synth Commun,2007,37:1059~1066.
    [39]Hitendra N. Karade, Manisha Sathe, Kaushik M P. An efficient synthesis of 1,8-dioxo-octahydroxanthenes using tetrabutylammonium hydrogen sulfate [J]. ARKIVOC, 2007, xiii:252~258.
    [40]Hu X Y, Fan X S, Zhang X Y, et al. A green and eficient synthesis of xanthenedione derivatives promoted by InCl3-4H2O in ionic liquid [J]. Chin Chem Lett,2005,16(3): 293-295.
    [41]范学森,李艳贞,张新迎等.离子液体介质中FeCl3·6H2O催化下芳香醛与5,5-二甲基-1,3-环己二酮的缩合反应[J].有机化学,2005,25(11):1482~1486.
    [42]马晶军,李敬慈,唐然肖等.离子液体中NaHSO4催化芳香醛与1,3-环己二酮的缩合反应[J].有机化学,2007,27(5):640~642.
    [43]徐海波.酸性离子液体催化芳香醛与1,3-环己二酮类衍生物的反应[J].宜宾学院学报,2007,6:50~51.
    [44]唐然肖,何红岩,杨旭哲等.微波辐射下酸性离子液体促进氧杂蒽二酮类衍生物的合成[J].化学试剂,2007,29(3):173~174.
    [45]Dabiri M, Baghbanzadeh M, Arzroomchilar E.1-Methylimidazolium triflouroacetate ([Hmim]TFA):an efficient reusable acidic ionic liquid for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines [J]. Catal Commun,2008,9(5): 939~942.
    [46]屠树江,高原,刘小红等.微波辐射下芳醛与5,5-甲基-1,3-环己二酮的固相和液相反应[J].有机化学,2001,21(12):1164~1167.
    [47]Jin T S, Zhang J S, Wang A Q, et al. Ultrasound-assisted synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media [J]. Ultrason Sonochem,2006,13:220~224.
    [48]Venkatesan K, Pujari S S, Lahoti R J, et al. An efficient synthesis of 1,8-dioxo-octahydro-xanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation [J]. Ultrason Sonochem,2008,15(4):548~553.
    [49]Jin T S, Zhang J S, Wang A Q, et al. Solid-state condensation reactions between aldehydes and 5,5-dimethyl-1,3-cyclohexanedione by grinding at room temperature [J]. Synth Commun,2005,35(17):2339~2345.
    [50]方东,刘祖亮,周新利.功能化离子液体室温催化合成乙酸苄酯[J].应用化学,2007,24(1):85~89.
    [51]方东,巩凯,刘祖亮等.咪唑型室温离子液体的绿色合成研究[J].化学试剂,2007,29(1):4~6.
    [1]Liu S W, Xie C X, Yu S T, et al. Polymerization of a-pinene using Lewis acidic ionic liquid as catalyst [J]. Catal Commun,2009,10:986~988.
    [2]Zhu H P, Yang F, Tang J, et al. Br(?)nsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate:a green catalyst and recyclable medium for esterification [J]. Green Chem,2003,5:38~39.
    [3]Zhao G Y, Jiang T, Han B X, et al. Mannich reaction using acidic ionic liquids as catalysts and solvents [J]. Green Chem,2004,6:75~77.
    [4]Singh V, Kaur S, Sapehiyia V, et al. Microwave accelerated preparation of [bmim][HSO4] ionic liquid:an acid catalyst for improved synthesis of coumarins [J]. Catal Commun, 2005,6:57~60.
    [5]寇元,杨雅立.功能化的酸性离子液体[J].石油化工.2004,33(4):297~302.
    [6]Thomazeau C, Olivier-Bourbigou H, Gilbert B, et al. Determination of an acidic scale in room temperature ionic liquids [J]. J Am Chem Soc,2003,125:5264~5265.
    [7]Gu Y L, Zhang J, Deng Y Q, et al. Pechmann reaction in non-chloroaluminate acidic ionic liquids under solvent-free conditions [J]. Adv Synth Catal,2005,347:512~516.
    [8]Bao Q X, Qiao K, Tomida D, et al. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid [J]. Catal Commun,2008,9: 1383~1388.
    [9]Wang Y Y, Jiang D, Dai L Y. Novel Br(?)sted acidic ionic liquids based on benzimidazolium cation:synthesis and catalyzed acetalization of aromatic aldehydes with diols [J]. Catal Commun,2008,9:2475~2480.
    [10]Zhao Y W, Long J X, Peng J J, et al. Catalytic amounts of Br(?)sted acidic ionic liquids promoted esterification:Study of acidity-activity relationship [J]. Catal Commun,2009, 10:732~736.
    [11]赖文忠.溶液酸度的三种标度方法比较分析[J].三明学院学报,2006,23(2):182~186.
    [12]Ritter J J, Minieri P P. A new reaction of nitriles. I. amides from alkenes and mononitriles [J]. J Am Chem Soc,1948,70(12):4045~4048.
    [13]Ritter J J, Kalish J. A new reaction of nitriles. II. synthesis of t-carbinamines [J]. J Am Chem Soc,1948,70(12):4048~4050.
    [14]Li JJ(原著),荣国斌(译).有机人名反应[M].第二版,上海:华东理工大学出版社,2003.p339.
    [15]Shaterian H R, Yarahmadi H. A modified reaction for the preparation of amidoalkyl naphthols [J]. Tetrahedron Lett,2008,49:1297~1300.
    [16]Selvam N P, Perumal P T. A new synthesis of acetamido phenols promoted by Ce(SO4)2 [J]. Tetrahedron Lett,2006,47:7481~7483.
    [17]Das B, Laxminarayana K, Thirupathi P, et al. An improved synthesis of amidoalkyl phenols involving a Ritter-type reaction [J]. Synlett,2007,20:3103~3106.
    [18]Khodaei M M, Khosropour A R, Moghanian H. A simple and efficient procedure for the synthesis of amidoalkyl naphthols by p-TSA in solution or under solvent-free conditions [J]. Synlett,2006,6:0916~0920.
    [19]Shaterian H R, Amirzadeh A, Khorami F, et al. Environmentally friendly preparation of amidoalkyl naphthols [J]. Synth Commun,200838:2983~2994.
    [20]Shaterian H R, Yarahmadi H, Ghashang M. An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as "drug like" molecules for biological screening [J]. Bioorg Med Chem Lett,2008,18:788~792.
    [21]Nagawade R R, Shinde D B. Sulphamic acid (H2NSO3H)-catalyzed multicomponent reaction of β-naphthol:an expeditious synthesis of amidoalkyl naphthols [J]. Chin J Chem, 2007,25(11):1710~1714.
    [22]Khodaei M M, Khosropour, A R, Moghanian, H. A simple and efficient procedure for the synthesis of amidoalkyl naphthols by p-TSA in solution or under solvent-free conditions [J]. Synlett,2006,6:916~920.
    [23]Nagawade R R, Shinde D B. Synthesis of amidoalkyl naphthols by an iodine-catalyzed multicomponent reaction of β-naphthol [J]. Mendeleev Commun,2007,17:299~300.
    [24]Nagarapu L, Baseeruddin M, Apuri S, et al. Potassium dodecatungstocobaltate trihydrate (K5CoW12O40·3H2O):a mild and efficient reusable catalyst for the synthesis of amidoalkyl naphthols in solution and under solvent-free conditions [J]. Catal Commun,2007,8: 1729~1734.
    [25]Kantevari S, Vuppalapati S V N, Nagarapu L. Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions [J]. Catal Commun,2007, 8:1857~1862.
    [26]Shaterian H R, Hosseinian A, Ghashang M. A three-component novel synthesis of 1-carbamato-alkyl-2-naphthol derivatives [J]. Tetrahedron Lett,2008,49:5804~5806.
    [27]Srihari G, Nagaraju M, Murthy M M. Solvent-free one-pot synthesis of amidoalkyl naphthols catalyzed by silica sulfuric acid [J]. Helv Chim Acta,2007,90:1497~1504.
    [28]Shaterian H R, Hosseinian A, Ghashang M. PPA-SiO2-catalyzed multicomponent synthesis of amidoalkyl naphthols [J]. Synth Commun,2008,38:3375~3389.
    [29]Mahdavinia G H, Bigdeli M A, Heravi M M. Silica supported perchloric acid (HClO4-SiO2):a mild, reusable and highly efficient heterogeneous catalyst for the synthesis of amidoalkyl naphthols [J]. Chin Chem Lett,2008,19:1171~1174.
    [30]An, L T, Lu, X H, Zou, J P. Polymer-supported sulphonic acid catalyzed three-component one-pot synthesis of a-amidoalkyl-β-naphthols [J]. Chin J Chem,2008,26:2117~2119.
    [31]Patil S B, Singh P R, Surpur M P, Samant S D. Ultrasound-promoted synthesis of 1-amidoalkyl-2-naphthols via a three-component condensation of 2-naphthol, ureas/ amides, and aldehydes, catalyzed by sulfamic acid under ambient conditions [J]. Ultrason Sonochem,2007,14:515~518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700