基于候选基因的慢性乙型肝炎、肝癌和鼻咽癌的遗传关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是人口大国,有世界上最丰富的疾病人群,疾病谱兼有发达国家和发展中国家的特征。我国特有或高发的疾病如肝癌、鼻咽癌的发生率即使在我国较发达地区亦明显高于西方;尤其是病毒性肝炎,仍是我国最严重、最广泛的传染病。上述对我国公众健康造成巨大危害的疾病的发生均有其遗传基础,其主要形式是单核苷酸多态性(single nucleotide polymorphism,SNP)。如果检测和确定与上述疾病相关基因的易感SNP、致病SNP以及具诊断价值的SNP,将有助于上述疾病的诊断,治疗和预防。
     乙型肝炎病毒(Hepatitis B virus,HBV)感染是世界范围内主要的传染病之一。人群感染HBV后有约有10%的个体发展为持续感染者,持续感染者个体间临床转归不一,可表现为无症状携带者、慢性乙型肝炎、肝硬化甚至肝癌。HBV持续感染后导致肝炎的主要机制是由于免疫细胞对病毒抗原诱导的肝细胞的杀伤作用。共刺激分子做为免疫应答的第二信号,在免疫调节中起重要作用。有大量研究报道,共刺激分子基因多态性与许多免疫相关的疾病关联,但与HBV持续感染的疾病严重程度的关联研究尚未见报道。我们研究的目的是在共刺激分子基因中寻找与HBV持续感染严重程度的易感基因和易感SNP。我们共选取了15个共刺激分子基因,包括TNFRSF4(tumor necrosis factor receptor superfamily,member 4,肿瘤坏死因子受体超家族成员4)及其配体TNFSF4,TNFRSF9(tumor necrosis factorreceptor superfamily,member 9,肿瘤坏死因子受体超家族成员9)及其配体TNFSF9,ICOS(inducible T-cell co-stimulator,可诱导T细胞共刺激因子)及其配体ICOSL,PDCD1(programmed cell death 1,程序性细胞死亡因子1)及其配体CD274和PDCD1LG2,CD28和CTLA4(cytotoxic T-lymphocyte-associated antigen 4,细胞毒T淋巴细胞相关抗原4)及其配体CD80和CD86,CD40及其配体CD40L,共41个SNP位点。用多聚酶链式反应—限制酶切片段长度多态(polymerase chain reaction-restriction fragment length polymorphism,PCR-RFLP)法和测序法在192例无症状携带者、73例慢性乙肝患者中进行分型。通过非条件logistical回归分析,校正性别和年龄,并对P值进行多重检验校正。研究结果表明,CTLA4启动子区的T-1722C位点与疾病严重程度相关,与携带至少一个C等位型的个体相比,携带TT基因型的个体HBV持续感染后发生慢性炎症的风险显著增加(OR=2.66,95%CI=1.46-4.88,P=0.001)。CTLA4为慢性乙型肝炎的易感基因,其启动子区的T-1722C为易感SNP。
     肝癌主要由HBV、HCV(Hepatitis C virus)感染,黄曲霉毒素污染的食物和水源及过度饮酒导致,但并不是所有的风险因素暴露者都患癌,提示机体的遗传因素也对致癌机制有重要的影响。鼻咽癌也是在我国比较流行的有明显的种族地域性的恶性肿瘤,尤其在中国南方,发病率高达15-50/100000,几乎是白种人发病率的100倍。鼻咽癌的发生是由EB病毒感染、环境风险因素和基因易感性共同作用的结果。而越来越多的证据表明DNA合成缺陷和基因的异常甲基化会增加患癌风险。而5,10-亚甲基四氢叶酸还原酶(5,10-methylenetetrahydrofolate reductase,MTHFR)在其中起关键作用。我们因而推测该基因的多态性与肝癌和鼻咽癌的易感性相关。我们选取了MTHFR的两个功能性位点C677T和A1298C,在328例HBV相关的肝癌病例、593例鼻咽癌病例和480例健康对照中通过PCR-RFLP法进行了分型。采用非条件logistical回归分析,校正性别、年龄、吸烟和饮酒状态、吸烟水平因素,结果表明C677T和A1298C与肝癌易感性、鼻咽癌易感性及其严重程度均无关联。进一步按性别、年龄、吸烟和饮酒状态、吸烟水平因素进行分层分析,结果仍无关联。我们的研究表明MTHFR的C677T和A1298C位点可能在肝癌和鼻咽癌的易感性机制中不发挥重要作用。
Our country with the largest population has most abundant disease population in the world. Spectrums of disease in China have both characteristics of developed countries and developing countries. Some proper or high incidence disease in China, such as nasopharyngeal carcinoma(NPC), hepatocellular carcinoma(HCC) and chronic hepatitis B(CHB), which is the most serious and common infectious in China, remain higher incidence in developed region of China than in western country. Above-mentioned diseases, which endanger public health, all have its heredity. The main form of this heredity is single nucleotide polymorphism (SNP). The identification of susceptibility genes contributing to these disorders may help to clarify the pathogenesis and improve the prevention and treatment of these malignancies.
     Hepatitis B virus (HBV) infection is one of the major infectious diseases. The clinical course of HBV infection varies from spontaneous recovery after acute hepatitis to chronic persistent infection, including asymptomatic carrier, chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The immune response initiated by the T-cell response to HBV antigens is thought to be fundamental for viral clearance and disease pathogenesis in HBV infection. Activation of lymphocytes requires a second signal through constitutively expressed co-stimulatory receptors and ligands. We evaluated 41 htSNP of 15 co-stimulators genes (include TNFRSF4, TNFSF4, CD40, CD40L, TNFRSF9, TNFSF9, CD80, CD86, CD28, CTLA4, PDCD1, CD274, PDCD1LG2, ICOS, and ICOSL) and their effects on the diseases progression of HBV infection association in a population-based case-control study of 192 asymptomatic carriers (ASC), 73 chronic hepatitis B (CHB) patients. The polymorphisms were genotyped with Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The association between these polymorphisms and disease status was evaluated with unconditional logistic regression and adjusted for age, sex, status of smoking and drinking, and pack-years of smoking. Considering multiple testing, we adjusted P value by Bonferroni and False discovery rate (FDR) method. Our study shows that T-1722C polymorphism in CTLA4 promoter region is associated with CHB susceptibility. Individuals with the T/T homozygous were over twice as likely (OR = 2.66, 95% CI = 1.46-4.88, P = 0.0015) to develop the disease compared with those C/T or T/T genotypes. Our results implicate that CTLA4 in susceptibility to CHB, while T-1722C is susceptible SNP for CHB. CTLA4 may play an important role in pathogenesis of CHB.
     In China, hepatitis B virus infection is main risk factor, together with aflatoxin intake from contaminated food. However, not all individuals explored to risk factor develop HCC. NPC is the serious health problems in southern Chinese, with an incidence rate ranging from 15 to 50/100000. These incidence rates are almost 100-fold higher than in the Caucasian populations. So host genetic factors may play important roles in these disease progressions. There is growing evidence that chromosomal and genetic alterations arising from flawed DNA synthesis or altered methylation of oncogenes and tumor suppressor genes may influence susceptibility to cancers. The 5,10-methylenetetrahydrofolate reductase (MTHFR) acts at a critical juncture in DNA synthesis and methylation. We examined whether these two functional polymorphisms, i.e. C677T and A1298C, were related to the risk of hepatocellular carcinoma (HCC) and nasopharyngeal carcinoma (NPC) in Chinese population. The C677T and A1298C polymorphism were genotyped in 328 patients with HBV related HCC, 593 patients with NPC and 480 control by PCR-RFLP method. The association between these polymorphisms and disease status was evaluated while controlling for confounding factors. However, we found no evidence for significant association between the C677T and A1298C polymorphism and risk of HCC and NPC. When the analyses were stratified by age, sex, status of smoking and drinking, and pack-years of smoking, the association remained negative. Our findings therefore suggest that the MTHFR C677T and A1298C polymorphisms may not play a major role in mediating susceptibility to HCC and NPC.
引文
1. Venter JC, Adams MD, Myers EW. The sequence of the human genome. Science, 2001, 291(5507);1304-1351.
    2. Consortium IHGS. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822);860-921.
    3. Chakmvarti A. Population genetics-making sense out of sequence. Nat Genet, 1999, 21(1 suppI):56-60.
    4. Lander ES. The new genomics; global views of biology. Science, 1996, 274(5287):536- 539.
    5. Lohmueller KE, Parme CL, Pike M, el al. Meta-analysis of genetic association studies supports a contribution of commo variants to susceptibility to common disease. Nat Genet, 2003, 33 (2):177-182.
    6. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical consideration. Nat Rev Genet, 2002, 3(5):391-397.
    7. Carlson CS, Eberle MA, Kruglyak L, et al. Mapping camplex disease loci in whole-genome association studies. Nature, 2004, 429(6990):446-452.
    8. B Keavney. Genetic association studies in complex diseases. J Hum Hypertens, 2000, 14:361-367.
    9. Genton B, al-Yaman F, Mgone CS, et al. Ovalocytosis and cerebral malaria. Nature, 1995, 378(6557):564-565.
    
    10. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 1996, 382(6593):722-5.
    
    11. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 2003, 423(6939):506-511.
    12. Skibola CF, Smith MT, Kane E, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A, 1999, 96:12810-12815.
    13. Deng G, Zhou G, Zhai Y, et al. Association of estrogen receptor alpha polymorphisms with susceptibility to chronic hepatitis B virus infection. Hepatology, 2004, 40(2):318-326.
    14. Zhang H, Zhou G, Zhi L, et al. Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect Dis, 2005, 192(8): 1355-1361.
    15.郭存三,魏文杰。当前传染病及其免疫预防的新挑战。2000年全国分子流行病学学术会议论文集,2000,15-19。
    16. Lee WM. Hepatitis B virus infection. N Engl J Med, 1997, 337(24): 1733-1745.
    17. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet, 2003, 362(9399): 1907-1917.
    18. Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet, 2005, 365(9476): 2041-2054.
    1. Bansal-Pakala P, Halteman BS, Cheng MH, Croft M. Costimulation of CD8 T cell responses by OX40. J Immunol, 2004, 172(8):4821-4825.
    2. Pan PY, Zang Y, Weber K, Meseck ML, Chen SH. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther, 2002, 6(4):528-536.
    3. Alderson MR, Smith CA, Tough TW, Davis-Smith T, Armitage RJ, Falk B, Roux E, Baker E, Sutherland GR, Din WS. Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol, 1994, 24(9):2219-2227.
    4. Grewal IS, Flavell RA. The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev, 1996, 153(10): 85-106.
    5. Magott-Procelewska M. Costimulatory pathways as a basic mechanisms of activating a tolerance signal in T cells. Ann Transplant, 2004, 9(3): 13-18.
    6. McAdam AJ, Greenwald RJ, Levin MA, et al. ICOS is critical for CD40-mediated antibody class switching. Nature, 2001,409(1): 102-105.
    7. Okazaki T,Iwai Y, Honjo T. New regulatory co-receptors: inducible co-stimulator and PD-1. Current Opinion in Immunology, 2002, 14:779-782.
    8. Kashizuka H, Sho M, Nomi T, et al.Role of the ICOS-B7h costimulatory pathway in the pathophysiology of chronic allograft rejection. Transplantation, 2005, 79(9):1045-1050.
    9. Holsti MA, Chitnis T, Panzo RJ, et al. Regulation of postsurgical fibrosis by the programmed death-1 inhibitory pathway. J Immunol, 2004, 172(9):5774-5781.
    10. Salama AD, Chitnis T, Imitola J, et al. Critical role of the programmed death-1(PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med, 2003, 198(1):71-78.
    11. Okazaki T, Nakao A, Nakano H, et al. Impairment of bleomycin-induced lung fibrosis in CD28-deficient mice. J Immunol, 2001, 167(4): 1977-1981.
    12. Futamatsu H, Suzuki J, Kosuge H, et al. Attenuation of experimental autoimmune myocarditis by blocking activated T cells through inducible costimulatory molecule pathway. Cardiovasc Res, 2003, 59(1):95-104.
    13. Wang X, Ria M, Kelmenson PM, et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet, 2005, 37(4):365-372.
    14. Yoshihiro O, Sakura O, Mayumi T, et al. CD40 ligand gene and Kawasaki disease.European Journal of Human Genetics, 2004, 12:1062-1068.
    15. Bonferroni CE. Theoria statistica classi e calcolo delle probabilit a. Pubbl R Int Super Sci Econ Comm, 1936, 8:1-62.
    16. Benjamini Y, Y Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc B, 1995, 57:289-300.
    17. Ogawa S, Nitta K, Hara Y, Horita S, Nihei H, Abe R. CD28 knockout mice as a useful clue to examine the pathogenesis of chronic graft-versus-host reaction. Kidney Int, 2000, 58(5):2215-2220
    18. Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev, 2005, 204:102-115.
    19. Jung MC, Pape GR. Immunology of hepatitis B infection. Lancet Infect Dis, 2002, 2(1):43-50.
    20. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4~+CD25~+ regulatory T cells control Leishmania major persistence and immunity. Nature, 2002, 420:502-507.
    21. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25~+CD4~+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med, 2000, 192:303-310.
    22. Hurwitz AA, Sullivan TJ, Sobel RA, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc Natl Acad Sci U S A, 2002, 99(5):3013-3017.
    23. Luhder F, Chambers C, Allison JP, Benoist C, Mathis D. Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc Natl Acad Sci U S A, 2000, 97(22): 12204-121209.
    24. Walker LS, Ausubel LJ, Chodos A, Bekarian N, Abbas AK. CTLA-4 differentially regulates T cell responses to endogenous tissue protein versus exogenous immunogen. J Immunol, 2002, 169(11):6202-6209.
    25. Davidson A, Diamond B, Wofsy D, Daikh D. Block and tackle: CTLA4Ig takes on lupus. Lupus, 2005, 14(3): 197-203.
    26. Hudson LL, Rocca K, Song YW, Pandey JP. CTLA-4 gene polymorphisms in systemic lupus erythematosus: a highly significant association with a determinant in the promoter region. Hum Genet, 2002, 111(4-5):452-455.
    27. Thio CL, Mosbruger TL, Kaslow RA,et al. Cytotoxic T-lymphocyte antigen 4 gene and recovery from hepatitis B virus infection. J Virol, 2004, 78(20): 11258-11262.
    28. Ligers A, Teleshova N, Masterman T, Huang WX, Hillert J. CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Genes Immun, 2001,2(3):145-152.
    29. Maurer M, Loserth S, Kolb-Maurer A, et al. A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics, 2002, 54:1-8.
    30. Fernandez-Bianco L, Perez-Pampin E, Gomez-Reino JJ, Gonzalez A. A CTLA-4 polymorphism associated with susceptibility to systemic lupus erythematosus. Arthritis Rheum, 2004, 50(1):328-329.
    1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153-6.
    2. McGlynn KA, London WT. Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 2005; 19:3-23.
    3. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362: 1907-17.
    4. Chen CJ, Chen DS. Interaction of hepatitis B virus, chemical carcinogen, and genetic susceptibility: multistage hepatocarcinogenesis with multifactorial etiology. Hepatology 2002;36:1046-9.
    5. Parkin DM, Laara E, Muir CS. Estimates of the worldwide frequency of sixteen major cancers in 1980. Int J Cancer 1988; 41: 184-97.
    6. Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet 2005;365:2041-54.
    7. Baker SG, Kaprio J. Common susceptibility genes for cancer: search for the end of the rainbow. BMJ 2006;332:1150-2.
    8. Zingg JM, Jones PA. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 1997;18:869-82.
    9. Kim YI. Folate and carcinogenesis: evidence, mechanisms, and implications. J Nutr Biochem 1999; 10:66-88.
    10. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 2000;71: 121-38.
    11. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111-3.
    12. van der Put NM, Gabreels F, Stevens EM, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998;62:1044-51.
    13. Li D, Ahmed M, Li Y, et al. 5,10-Methylenetetrahydrofolate reductase polymorphisms and the risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2005;14:1470-6.
    14. Graziano F, Kawakami K, Ruzzo A, et al. Methylenetetrahydrofolate reductase 677C/T gene polymorphism, gastric cancer susceptibility and genomic DNA hypomethylation in an at-risk Italian population. Int J Cancer 2006;118:628-32.
    15. Song C, Xing D, Tan W, Wei Q, Lin D. Methylenetetrahydrofolate reductase polymorphisms increase risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Res 2001;61:3272-5.
    16. Shen M, Rothman N, Berndt SI, et al. Polymorphisms in folate metabolic genes and lung cancer risk in Xuan Wei, China. Lung Cancer 2005;49:299-309.
    17. Chen J, Gammon MD, Chan W, et al. One-carbon metabolism, MTHFR polymorphisms, and risk of breast cancer. Cancer Res 2005;65:1606-14.
    18. Lin J, Spitz MR, Wang Y, et al. Polymorphisms of folate metabolic genes and susceptibility to bladder cancer: a case-control study. Carcinogenesis 2004;25:1639-47.
    19. Sharp L, Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 2004; 159:423-43.
    20. Skibola CF, Smith MT, Kane E, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A. 1999;96:12810-5.
    21. Matsuo K, Suzuki R, Hamajima N, et al. Association between polymorphisms of folate- and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood 2001 ;97:3205-9.
    22. Cicek MS, Nock NL, Li L, Conti DV, Casey G, Witte JS. Relationship between methylenetetrahydrofolate reductase C677T and A1298C genotypes and haplotypes and prostate cancer risk and aggressiveness. Cancer Epidemiol Biomarkers Prev 2004;13:1331-6.
    23. Weinstein SJ, Gridley G, Harty LC, et al. Folate intake, serum homocysteine and methylenetetrahydrofolate reductase (MTHFR) C677T genotype are not associated with oral cancer risk in Puerto Rico. J Nutr 2002;132:762-7.
    24. Shen H, Spitz MR, Wang LE, Hong WK, Wei Q. Polymorphisms of methylene-tetrahydrofolate reductase and risk of lung cancer: a case-control study. Cancer Epidemiol Biomarkers Prev 2001;10:397-401.
    25. Paynter RA, Hankinson SE, Hunter DJ, De Vivo I. No association between MTHFR 677 C->T or 1298 A->C polymorphisms and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 2004; 13:1088-9.
    26. Fleming ID, Cooper JS, Henson DE. American Joint Committee on Cancer. AJCC cancer staging manual. 5th ed. Philadelphia (PA): Lippincott-Raven; 1997.
    27. Zhou G, Zhai Y, Dong X, et al. Haplotype structure and evidence for positive selection at the human IL13 locus. Mol Biol Evol 2004;21:29-35.
    28. Deng G, Zhou G, Zhai Y, et al. Association of estrogen receptor alpha polymorphisms with susceptibility to chronic hepatitis B virus infection. Hepatology 2004;40:318-26.
    29. Stover PJ. Physiology of folate and vitamin B12 in health and disease. Nutr Rev 2004;62 (6 Pt 2):S3-12; discussion S13.
    30. Saffroy R, Pham P, Chiappini F, et al. The MTHFR 677C > T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis. Carcinogenesis 2004;25:1443-8.
    31. Zhu ZZ, Cong WM, Liu SF, Xian ZH, Wu WQ. A study on the association of MTHFR C677T polymorphism with genetic susceptibility to hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi 2006; 14:196-8.
    32. Shrubsole MJ, Gao YT, Cai Q, et al. MTHFR polymorphisms, dietary folate intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 2004; 13:190-6.
    33. Chen J, Giovannucci EL, Hunter DJ. MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U.S. men and women: an example of gene-environment interactions in colorectal tumorigenesis. J Nutr 1999;129(2S Suppl):560S-564S.
    34. Slattery ML, Potter JD, Samowitz W, Schaffer D, Leppert M. Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 1999;8:513-8.
    35. Yin G, Kono S, Toyomura K, et al. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci 2004;95:908-13.
    36. Schneider JA, Rees DC, Liu YT, Clegg JB. Worldwide distribution of a common methylenetetrahydrofolate reductase mutation. Am J Hum Genetl998;62:1258-60.
    1. Clark LB, Foy TM, Noelle RJ. CD40 and its ligand. [J]. Adv Immunol, 1996, 63: 43-78.
    2. Buchner K, Henn V, Grafe M, et al. CD40 ligand is selectively expressed on CD4+ T cells and platelets: implications for CD40-CD40L signalling in atherosclerosis. [J]. J Pathol, 2003, 201(2): 288-295
    3. Kaufman J, Sime PJ, Phipps RP. Expression of CD154 (CD40 ligand) by human lung fibroblasts: differential regulation by IFN-gamma and IL-13, and implications for fibrosis. [J]. J Immunol, 2004, 172(3): 1862-1871.
    4. Purkerson JM, Smith RS, Pollock SJ, et al. The TRAF6, but not the TRAF2/3, binding domain of CD40 is required for cytokine production in human lung fibroblasts. [J]. Eur J Immunol, 2005, 35(10): 2920-2928
    5. Vosters O, Beuneu C, Nagy N, et al. CD40 expression on human pancreatic duct cells: role in nuclear factor-kappa B activation and production of pro-inflammatory cytokines. [J]. Diabetologia, 2004, 47(4): 660-668.
    6. Klein D, Barbe-Tuana F, Pugliese A, et al. A functional CD40 receptor is expressed in pancreatic beta cells. [J]. Diabetologia, 2005, 48(2): 268-276.
    7. Bishop GA, Hostager BS. Signaling by CD40 and its mimics in B cell activation. [J]. Immunol Res, 2001, 24(2): 97-109.
    8. Jeannin P, Delneste Y, Lecoanet-Henchoz S, et al. Interleukin-7 (IL-7) enhances class switching to IgE and IgG4 in the presence of T cells via IL-9 and sCD23. [J]. Blood, 1998, 15; 91(4): 1355-1361.
    9. Jeannin P, Lecoanet S, Delneste Y, et al. IgE versus IgG4 production can be differentially regulated by IL-10. [J]. J Immunol, 1998, 160(7): 3555-3561
    10. Rodriguez-Pinto D, Moreno J. B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. [J]. Eur J Immunol, 2005, 35(4): 1097-1105.
    11. Schoenberger SP, Toes RE, van der Voort EI, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. [J]. Nature, 1998, 393 (6684): 480 -483.
    12. Bennett SR, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. [J]. Nature, 1998, 393(6684): 478-480.
    13. Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. [J]. Nature, 1998, 393(6684): 474-478.
    14. Bachmann MF, Hunziker L, Zinkernagel RM, et al. Maintenance of memory CTL responses by T helper cells and CD40-CD40 ligand: antibodies provide the key. [J]. Eur J Immunol, 2004, 34(2): 317-326.
    15. Yasumi T, Katamura K, Yoshioka T, et al. Differential requirement for the CD40-CD154 costimulatory pathway during Th cell priming by CD8 alpha+ and CD8 alpha- murine dendritic cell subsets. [J]. J Immunol, 2004, 172(8): 4826-4833.
    16. Guiducci C, Valzasina B, Dislich H, et al. CD40/CD40L interaction regulates CD4+CD25+ T reg homeostasis through dendritic cell-produced IL-2. [J]. Eur J Immunol, 2005, 35 (2): 557-567.
    17. Grewal IS, Flavell RA. The role of CD40 ligand in costimulation and T-cell activation. [J]. Immunol Rev, 1996, 153: 85-106.
    18. Bleharski JR, Niazi KR, Sieling PA, et al. Signaling lymphocytic activation molecule is expressed on CD40 ligand-activated dendritic cells and directly augments production of inflammatory cytokines. [J]. J Immunol, 2001, 167(6): 3174-3181.
    19. Atochina O, Harn D. LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. [J]. Clin Diagn Lab Immunol, 2005, 12(9): 1041-1049.
    20. Li H, Nord EP. CD40/CD154 ligation induces mononuclear cell adhesion to human renal proximal tubule cells via increased ICAM-1 expression. [J]. Am J Physiol Renal Physiol, 2005, 289(1): F145-153.
    21. Cho CS, Cho ML, Min SY, et al. CD40 engagement on synovial fibroblast up-regulates production of vascular endothelial growth factor. [J]. J Immunol, 2000, 164(10): 5055-5061.
    22. Brouty-Boye D, Pottin-Clemenceau C, Doucet C, et al. Chemokines and CD40 expression in human fibroblasts. [J]. Eur J Immunol, 2000, 30(3): 914-919.
    23. Grammer AC, Slota R, Fischer R, et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. [J]. J Clin Invest, 2003, 112 (10): 1506 -1520.
    24. Delmas Y, Viallard JF, Solanilla A, et al. Activation of mesangial cells by platelets in systemic lupus erythematosus via a CD154-dependent induction of CD40. [J]. Kidney Int, 2005, 68(5): 2068-2078.
    25. Citores MJ, Rua-Figueroa I, Rodriguez-Gallego C, et al. The dinucleotide repeat polymorphism in the 3'UTR of the CD154 gene has a functional role on protein expression and is associated with systemic lupus erythematosus. [J]. Ann Rheum Dis, 2004, 63(3): 310-317.
    26. Laman JD, Claassen E, Noelle RJ. Functions of CD40 and its ligand, gp39 (CD40L). [J]. Grit Rev Immunol, 1996, 16(1): 59-108.
    27. Tamura N, Kobayashi S, Kato K, et al. Soluble CD154 in rheumatoid arthritis: elevated plasma levels in cases with vasculitis. [J]. J Rheumatol, 2001, 28(12): 2583-2590.
    28. Gotoh H, Kawaguchi Y, Harigai M, et al. Increased CD40 expression on articular chondrocytes from patients with rheumatoid arthritis: contribution to production of cytokines and matrix metalloproteinases. [J]. J Rheumatol, 2004, 31(8): 1506-1512.
    29. Wischhusen J, Schneider D, Mittelbronn M, et al. Death receptor-mediated apoptosis in human malignant glioma cells: modulation by the CD40/CD40L system. [J]. J Neuroimmunol, 2005,162(1-2): 28-42
    30. Szocinski JL, Khaled AR, Hixon J, et al. Activation- induced cell death of aggressive histology lymphomas by CD40 stimulation: induction of bax. [J]. Blood, 2002, 100(1): 217-223.
    31. Huang HI, Wu PY, Teo CY, et al. Improved immunogenicity of a self tumor antigen by covalent linkage to CD40 ligand. [J]. Int J Cancer, 2004, 108(5): 696-703.
    32. Costello A, Rey-Hipolito C, Patel A, et al. Thyroid cancers express CD-40 and CD-40 ligand: cancers that express CD-40 ligand may have a greater risk of recurrence in young patients. [J]. Thyroid, 2005, 15(2): 105-113.
    33. Batrla R, Linnebacher M, Rudy W, et al. CD40-expressing carcinoma cells induce down-regulation of CD40 ligand (CD154) and impair T-cell functions. [J]. Cancer Res, 2002, 62(7): 2052-2057.
    34. Schmilovitz-Weiss H, Belinki A, Pappo O, et al. Role of circulating soluble CD40 as an apoptotic marker in liver disease. [J]. Apoptosis, 2004, 9(2): 205-210.
    35. Mayo MJ, Mosby JM, Jeyarajah R, et al. The relationship between hepatic immunoglobulin production and CD154 expression in chronic liver diseases. [J]. Liver Int, 2006, 26(2): 187-196.
    1. Lee WM. Hepatitis B virus infection. N Engl J Med. 1997; 337:1733-1745.
    2. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol. 1995; 13:29-60.
    3. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001; 14(4):778-809.
    4. Kazuhiko N, Keisuke N, Mayumi Y, et al. p48 (ISGF-3 gamma) is involved in interferon-alpha -induced suppression of hepatitis B virus enhancer-1 activity. J Biol Chem. 1999; 274(40):28075-28078.
    5. Xiong W, Wang X, Liu X, et al. Interferon-inducible MyD88 protein inhibits hepatitis B virus replication. Virology. 2004; 319(2): 306-14.
    6. Kelly A, Powis SH, Glynne R, et al. Second proteasome-related gene in the human MHC class Ⅱ region. Nature 353,667-668
    7. Biron CA. Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innate and adaptive immune responses to viral infections. Semin Immunol. 1998; 10(5):383-390.
    8. Tang TJ, Kwekkeboom J, Mancham S, et al. Intrahepatic CD8+ T-lymphocyte response is important for therapy-induced viral clearance in chronic hepatitis B infection. J Hepatol. 2005; 43(1):45-52.
    9. Carotenuto P, van Riel D, Artsen A, et al. Antiviral treatment with alpha interferon up-regulates CD14 on liver macrophages and its soluble form in patients with chronic hepatitis B.Antimicrob Agents Chemother. 2005; 49(2): 590-599.
    10. Liang S, Wei H, Sun R, et al.IFN alpha regulates NK cell cytotoxicity through STAT 1 pathway. Cytokine. 2003; 23 (6): 190-199.
    11. Zhang C, Zhang J, Sun R, et al. Opposing effect of IFN gamma and IFNalpha on expression of NKG2 receptors: negative regulation of IFN gamma on NK cells. Int Immunopharmacol. 2005; 5(6): 1057-1067.
    12. Boehm U, Klamp T, Groot M, et al. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997; 15: 749-795.
    13. Gao J, Morrison DC, Parmely TJ, et al. An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem.1997; 272:1226-1230.
    14. Wong DK, Cheung AM, O'Rourke K, et al. Effect of alpha-interferon treatment in patients with hepatitis B e antigen-positive chronic hepatitis B. A meta-analysis. Ann Intern Med. 1993; 119(4):312-23.
    15. Manns MP. Current state of interferon therapy in the treatment of chronic hepatitis B. Semin Liver Dis. 2002; 22 Suppl 1:7-13.
    16. Niederau C, Heintges T, Lange S, et al. Long-term follow-up of HBeAg-positive patients treated with interferon alpha for chronic hepatitis B.N Engl J Med. 1996; 334:1422-1427.
    17. Lau DT, Everhart J, Kleiner DE, et al. Long-term follow-up of patients with chronic hepatitis B treated with interferon alpha. Gastroenterology 1997; 113: 1660-1667.
    18. Cooksley WG, Piratvisuth T, Lee SD, et al. Peginterferon alpha-2a (40 kDa): an advance in the treatment of hepatitis B e antigen-positive chronic hepatitis B. J Viral Hepat. 2003; 10(4):298-305.
    19. Manesis EK, Hadziyannis SJ. Interferon α treatment and retreatment of hepatitis B e antigen-negative chronic hepatitis B.Gastroenterology .2001; 121:101-109.
    20. Brunetto MR, Oliver F, Coco B, et al. Outcome of anti-HBe positive chronic hepatitis B in alpha-interferon treated and untreated patients: a long term cohort study. J Hepatol. 2002;36:263-270.
    21. Papatheodoridis GV, Manesis E, Hadziyannis SJ.The long-term outcome of interferon-α treated and untreated patients with HBeAg-negative chronic hepatitis B. J Hepatol. 2001; 34:306-313.
    22. Marcellin P, Lau GK, Bonino F, et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med. 2004;351(12):1206-1217.
    23. Thursz M. Genetic susceptibility in chronic viral hepatitis. Antiviral Res. 2001; 52:113-116.
    24. Chu CJ, Lok AS. Clinical significance of hepatitis B virus genotypes. Hepatology. 2002;35:1274-1276.
    25. Lok AS, Wu PC, Lai CL, et al. A controlled trial of interferon with or without prednisone priming for chronic hepatitis B. Gastroenterology. 1992; 2(6): 2091 -2097.
    26. Kao JH, Wu NH, Chen PJ, et al. Hepatitis B genotypes and the response to interferon therapy. J Hepatol. 2000; 33(6):998-1002.
    27. Wai CT, Chu CJ, Hussain M, et al. HBV genotype B is associated with better response to interferon therapy in HBeAg (+) chronic hepatitis than genotype C. Hepatology. 2002; 36(6): 1425-30.
    28. Erhardt A, Reineke U, Blondin D, Gerlich WH, Adams O, Heintges T, Niederau C, Haussinger D. Mutations of the core promoter and response to interferon treatment in chronic replicative hepatitis B. Hepatology. 2000; 31:716-725.
    29. Erhardt A, Blondin D, Hauck K, et al. Response to interferon alfa is hepatitis B virus genotype dependent: genotype A is more sensitive to interferon than genotype D. Gut. 2005; 54(7):1009-13.
    30. Janssen HL, van Zonneveld M, Senturk H, et al. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet. 2005; 365:123-129.
    31. Marrone A, Zampino R, Luongo G, et al. Low HBeAg serum levels correlate with the presence of the double A1762T/G1764A core promoter mutation and a positive response to interferon in patients with chronic hepatitis B virus infection. Intervirology. 2003; 46(4):222-226.
    32. Han YN, Yang JL, Zheng SG, et al. Relationship of human leukocyte antigen class II genes with the susceptibility to hepatitis B virus infection and the response to interferon in HBV-infected patients. World J Gastroenterol. 2005; 11(36):5721-5724.
    33. King JK, Yeh SH, Lin MW, et al. Genetic polymorphisms in interferon pathway and response to interferon treatment in hepatitis B patients: A pilot study. Hepatology. 2002; 36(6):1416-1424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700