拟黑多刺蚁肌细胞增强因子2与肌钙蛋白Ⅰ亚基基因的克隆及其在发育中的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟黑多刺蚁(Polyrhachis vicina Roger)是一种重要的经济昆虫,在分类学上隶属于节肢动物门、昆虫纲、膜翅目、胡蜂总科、蚁科、多刺蚁属。其个体发育过程中经历胚胎期、幼虫期、蛹期、成虫期等各个阶段,且是一种社会性昆虫,群体内存在严格的品级分化。拟黑多刺蚁资源较易获得,实验室养殖较为方便,因此是一种独特的进行个体发育及分化研究的实验材料。
     本研究以拟黑多刺蚁为实验材料,通过RT-PCR、分子克隆、生物信息学分析、荧光实时定量RT-PCR等技术首次对与其肌肉发育及肌肉生理机能相关的肌细胞增强因子2(Mef2)基因和肌钙蛋白Ⅰ亚基(TnⅠ)基因分别进行了相关研究。主要获得了以下研究结果:
     1通过实验获得了拟黑多刺蚁Mef2基因两种剪接体cDNA序列,其长度分别为2074bp和1793bp,主要在5'末端存在一定差异。通过ORF搜索发现,其编码区长度为1419bp,编码472氨基酸残基蛋白,且两种剪接体具有相同的ORF。将两种剪接体cDNA序列上传至美国国立生物技术信息中心(NCBI)GenBank数据库,获得登陆号分别为GQ386849和GQ386850。
     2对预测的PvMEF2蛋白进行同源性和系统进化分析,发现其N末端具高度保守的MADS和MEF2结构域,保守区域与其它昆虫相关序列一致性可达100%。构建的系统进化树中,膜翅目昆虫拟黑多刺蚁与意大利蜜蜂(Apis mellifera)和金小蜂(Nasonia vitripennis)聚为一支,进一步反映了各类群之间的进化关系。
     3 PvMEF2蛋白的理论等电点和分子量分别是6.83和50191.5Da,其分子式为C2168H3392N6528O714S16,原子总数为6918。对其翻译后修饰分析发现,共有40个可能O型糖基化修饰位点和2个可能N型糖基化修饰位点;磷酸化修饰位点分别包括丝氨酸的磷酸化位点30个,苏氨酸6个,酪氨酸6个;目前为止还未发现其信号肽序列;该蛋白无跨膜区,为非跨膜蛋白。
     4蛋白结构预测结果表明,PvMEF2 N末端存在螺旋、折叠和无规则卷曲等多种形式,这可能与MEF2通过N末端的结构形式与其它蛋白结合而发挥一定生理功能有关。
     5相对实时定量分析结果表明,在不同的发育阶段虫体及成虫不同品级中,PvMef2基因均有表达,说明其在拟黑多刺蚁发育过程中持续具有调控作用。但其表达量有一定差异。在幼虫期,一龄幼虫中表达量最高,接下来的儿期幼虫呈下降趋势,而至蛹期时,其表达量又略有上升。成虫中Mef2在雄蚁中的表达量要高于其它两个品级的。不同的表达量可能影响到对不同肌肉发生相关基因的调控,从而影响肌肉发生。两种剪接体均有表达,但其表达量有一定的差别,不同剪接体在肌肉发生中的具体调控作用有待于进一步研究。
     6获得两条长度分别为1224bp和799bp的拟黑多刺蚁TnⅠ基因不同剪接体cDNA序列。两条序列在3'末端存在一定差异,其开放阅读框分别为660bp和615bp,分别编码219氨基酸和204氨基酸蛋白。将序列分别上传至美国国立生物技术信息中心(NCBI) GenBank数据库,获得登陆号分别为HM484304和HQ230044。
     7获得的TNI蛋白序列均与意大利蜜蜂(Apis mellifera)等昆虫同源序列具有较高的一致性。系统进化树中膜翅目昆虫拟黑多刺蚁与意大利蜜蜂聚在一起,再与其它昆虫聚为一类,各分支反映了不同类群之间的亲缘关系与进化关系,但不能明确说明各蛋白亚型之间的关系。
     8 TNI两种蛋白亚型理化性质接近,并与意大利蜜蜂的相似。其翻译后修饰可能位点较少,仅分别具有1个O型糖基化修饰及11个磷酸化位点。分析发现该蛋白无跨膜区,为非跨膜蛋白。
     9 TNI两种蛋白亚型二级结构主要包括了螺旋和无规则卷曲等区域,而没有明显的折叠区。其三级结构具明显的3个螺旋区。
     10实时定量分析表明,TnⅠ 基因在拟黑多刺蚁各个发育阶段均有表达,但不同阶段的表达量有一定差别,可能与各个时期的肌肉结构及生理机能特点有关。不同亚型TNI在各个阶段的存在情况及功能仍需进一步的研究。
     相关基因研究表明,在拟黑多刺蚁不同发育阶段及不同品级中,其肌肉分化与肌肉功能的调控与Mef2基因及TnⅠ基因存在一定关系,为研究昆虫肌肉发生及肌肉机能提供了理论基础。但其具体调控机制及基因的确切功能有待于进一步研究。
The ant Polyrhachis vicina Roger is one of the important economic insects in China, which belongs to the genus of Polyrhachis (Hymenoptera, Formicidae). There are four main stages in the ontogenesis, described as embryo, larva, pupa and adult. Also because of the characteristic of caste differentiation, the ant is gradually becoming a special experimental material for the research of development and differentiation.
     Methods of RT-PCR, molecular cloning, bioinformatics and real-time quantitative PCR are first used to study the Mef2 and TnI of Polyrhachis vicina to understand the development or the physiological function of muscles. The main results are as follows:
     1) Two isoforms (isoform A and B) of PvMef2 cDNA sequence were obtained which are 2074bp and 1793bp respectively. The two sequences which are only different in 5'-UTR possess a same ORF of 1419bp encoding a 472-amino acid protein. All of the two sequences were submitted to the GenBank and assigned the accession numbers:GQ386849 and GQ386850.
     2) The deduced protein of PvMef2 holds highly conserved MADS and MEF2 domains which share about 100% identity with the corresponding regions of some other insects. Results of phylogenetic analysis show that PvMEF2 is most closely related to MEF2 of Apis mellifera and Nasonia vitripennis and the tree illustrates the evolutionary relationship of different selected animals.
     3) The theoretical isoelectric point (PI) and molecular weight of MEF2protein were 6.83 and 50191.5 Da respectively. Its chemical formula is C2168H3392N628O714S16, comprising 6918 atoms. Analysis of post-translational modification shows that there are 40 possible O-glycosylation sites,2 possible N-glycosylation sites and 42 phosphorylation sites including 30 Serine sites,6 threonine sites and 6 Tyrosine sites, and no signal peptide and transmembrane domain in the sequence.
     4) Prediction of protein structure shows that N-terminal of PvMEF2 contains helix, sheet and coil,which is related to the physiological function of PvMEF2 by mean of combining other factors.
     5) Results of real-time quantitative RT-PCR show expression levels of different stages change constantly with distinctly high levels in first instars relative to the following stages, while in the adult ants the PvMef2 gene was highly expressed in males compared with workers and females. Different expression levels will affect the regulation to different Mef2-regulated genes.The difference in expression levels of two PvMef2 mRNA isoforms can also be detected according to the results. Those results suggest that PvMef2 is developmentally and caste-specifically regulated at the level of transcription.
     6) Two isoforms (isoform A and B) of PvTnl cDNA sequence were obtained which are different in 3'-UTR. The two sequences of 2074bp and 1793bp in length contain 660bp and 615bp ORFs respectively, encoding 219 and 204 amino acid protein. All the sequences were submitted to the GenBank and assigned the accession numbers:HM484304 and HQ230044.
     7) The obtained Tnl protein sequences share high identity with some insects such as Apis mellifera. Phylogenetic tree shows that Polyrhachis vicina is grouped with Apis mellifera, and then they were grouped with other insects, showing the relationship among different groups. But the relationship among the protein subtypes of different species cannot be learned from the tree.
     8) There is closed physicochemical property between different TNI subtypes which is also similar to that of Apis mellifera. Few posttranslational modification sites could be found besides 1 O-glycosylation site and 11 phosphorylation sites, and no transmembrane domain was found.
     9) The secondary structure of the two TNI subtypes contains helix and coil, but no distinct sheet. And 3 helix regions can be found respectively in their tertiary structures.
     10) Expression of Tnl gene can be detected but different in developmental stages of Polyrhachis vicina by means of real-time quantitative RT-PCR. The expression level may be related to the muscular structure and their physiological function of different stages. But all need farther studies.
     The regulation of muscle differentiation and function may be related to Mef2 and Tnl in different developmental stages and different castes. Some theoretical foundation may be learned from our reports, but more researches are needed to investigate their specific mechanism and function.
引文
[1]唐觉,李参,黄恩友等.中国经济昆虫志,第四十七册,膜翅目蚁科[M].北京:科学出版社,1995.
    [2]杨冠煌.中国昆虫资源利用和产业化[M].北京:中国农业出版社,1998.
    [3]翟新国.拟黑多刺蚁蚂蚁生物学特性观察[J].邯郸农业高等专科学校学报.2000,17(4):11-12.
    [4]胡德斌.拟黑多刺蚁室内饲养法[J].农村实用技术与信息.1995,(11):19.
    [5]陈静,刘木清,李坦.拟黑多刺蚁对S180肿瘤细胞DNA合成的影响[J].实用肿瘤学杂志.1999,13(4):254-255.
    [6]徐蛟,穆源浦,包大跃,葛文津.拟黑多刺蚁制品祛黄褐斑作用的人体试食观察研究[J].中国食品卫生杂志.2001,13(1):6-8.
    [7]刘德文,孙启时,李彤.拟黑多刺蚁提取物对小鼠缓解体力疲劳作用的研究[J].中国食品卫生杂志.2004,16(4):334-336.
    [8]张庆华,吕晓华.拟黑多刺蚁提取液可缓解小鼠体力疲劳[J].昆虫知识.2007,44(2):263-266.
    [9]陈颖,陈德锋,汪树理.拟黑多刺蚁氨基酸和营养元素的分析[J].长春中医药大学学报.2008,24(3):257-258.
    [10]贺丽清.促性腺激素对拟黑多刺蚁品级分化及性腺发育作用研究[D].西安:陕西师范大学,2006.
    [11]王慧丽.雄激素受体类似物在拟黑多刺蚁中的免疫组织化学定位研究[D].西安:陕西师范大学,2007.
    [12]金卓明.CREB在拟黑多刺蚁学习记忆中的作用研究[D].西安:陕西师范大学,2006.
    [13]汪小会.拟黑多刺蚁CREB基因的克隆与原核表达[D].西安:陕西师范大学,2008.
    [14]李青.拟黑多刺蚁CREB基因的mRNA水平表达研究[D].西安:陕西师范大学,2009.
    [15]罗晶.拟黑多刺蚁semaphorin 2a基因的克隆与mRNA水平表达的研究[D].西安:陕西师范大学,2009.
    [16]洪枫.5-羟色胺在拟黑多刺蚁脑部及胸神经节中的表达研究[D].西安:陕西师 范大学,2007.
    [17]张振宇.拟黑多刺蚁(Plyhachis vicina Roher) DopR2基因的克隆与序列分析[D].西安:陕西师范大学,2008.
    [18]吕淑敏.拟黑多刺蚁毒蕈碱型乙酰胆碱受体(mAchR)基因及抑瘤基因(QM)的克隆与表达研究[D].西安:陕西师范大学,2008.
    [19]北京农业大学.昆虫学通论[M].北京:农业出版社,1980.
    [20]雷朝亮,荣秀兰.普通昆虫学[M].北京:中国农业出版社,2003.
    [21]王荫长.昆虫生理学[M].北京:中国农业出版社,2004.
    [22]Herranz R, Mateos J, Mas J A, Garcia-Zaragoza E, Cervera M, Marco R. The Coevolution of Insect Muscle TpnT and Tpnl Gene Isoforms[J]. Molecular biology and evolution,2005,22 (11):2231-2242.
    [23]Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S. Mrf4 Determines Skeletal Muscle Identity in Myf5:Myod Double-mutant Mice[J]. Nature.2004,431:466-471.
    [24]Tajbakhsh S, Rocancourt D, Buckingham M. Muscle Progenitor Cells Failing to Respond to Positional Cues Adopt Non-myogenic Fates in Myf-5 Null Mice[J]. Nature.1996,384:266-270.
    [25]Rudnicki M A, Schnegelsberg P N, Stead R H, Braun T, Arnold H H, Jaenisch R. MyoD or Myf-5 is Required for the Formation of Skeletal Muscle[J]. Cell.1993, 75:1351-1359.
    [26]Tajbakhsh S, Buckingham M. The Birth of Muscle Progenitor Cells in the Mouse: Spatiotemporal Considerations[J]. Current Topics in Developmental Biology.2000, 48:225-268.
    [27]Lyons G E, Micales B K, Schwarz J, Martin J F, Olson E N. Expression of MEF2 Genes in the Mouse Central Nervous System Suggests a Role in Neuronal Maturation[J]. Journal of Neuroscience.1995,15:5727-5738.
    [28]Molkentin J D, Black B L, Martin J F, Olson E N. Cooperative Activation of Muscle Gene Expression by MEF2 and Myogenic bHLH Proteins[J]. Cell.1995,83: 1125-1136.
    [29]程震龙,朱大海,张志谦.MEF2与肌肉发生[J].遗传.2002,24(5):581-585.
    [30]ANDRES V, CERVERA M, MAHDAVI V. Determination of the consensus binding site for MEF2 expressed in muscle and brain reveals tissue-specific sequence constraints[J]. the Journal of Biological Chemistry.1995,270:23246-23249.
    [31]Black B L, Olson E N. Transcriptional Control of Muscle Development by Myocyte Enhancer Factor-2(MEF2) Proteins[J]. Annual Review of Cell and Developmental Biology.1998,14:167-196.
    [32]Elgar S J, Han J, Taylor M V. Mef2 Activity Levels Differentially Affect Gene Expression during Drosophila Muscle Development[J]. Proceedings of the National Academy of Sciences of the United States of America.2008,105(3):918-923.
    [33]张颖,王利凤,邵明,张红卫.文昌鱼AmphiMef2基因的特征及其发育表达[J].中国科学(C辑:生命科学).2007,37(4):422-426.
    [34]Shalizi A, Bonni A. Not just for Muscle anymore:Activity and Calcium Regulation of MEF2-dependent Transcription in Neuronal Survival and Differentiation. In: Dudek S M (ed.). Transcriptional Regulation by Neuronal Activity[M]. New York: Springer,2008:229-250.
    [35]张颖,酒精对胚胎发育的影响及文昌鱼、斑马鱼Mef2、MRLC和hadh2基因的研究[D].济南:山东大学,2007.
    [36]Lilly B, Galewsky S, Firylli A B. D-MEF2:a MADS Box Transcription Factor Expressed in Differentiating Mesoderm and Muscle Cell Lineages during Drosophila Embryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America.1994,91:5662-5666.
    [37]Spring J, Yanze N, Josch C. Conservation of Brachyury, Mef2, and Snail in the Myogenic Lineage of Jellyfish:A Connection to the Mesoderm of Bilateria[J]. Developmental Biology.2002,244:372-384.
    [38]Dichoso D, Brodigan T, Chwoe K Y, Lee J S, Llaoer R, Park M, Corsi A K, Kostas S A, Fire A, AHnn J, krause M. The MADS-box Factor CeMef2 is not Essential for Caenorhabditis elegans Myogenesis and Development[J]. Developmental Biology. 2000,223:431-440.
    [39]Lin S C, Lin M H, Horvath P, Reddy K L, Storti R V. PDP1, a Novel Drosophila PAR Domain bZIP Transcription Factor Expressed in Developing Mesoderm, Endoderm and Ectoderm, is a Transcriptional Regulator of Somatic Muscle Genes[J]. Development.1997,124:4685-4696.
    [40]Kelly K K, Meadows S M, Cripps R M. Drosophila MEF2 is a Direct Regulator of Actin57B Transcription in Cardiac, Skeletal, and Visceral Muscle Lineages[J]. Mechanisms of Development.2002,110:39-50.
    [41]吴秀山.信号调控与心脏发育[M].北京:化学工业出版社,2006.
    [42]Taylor M V. Making Drosophila Muscle[J]. Current Biology.1995,5 (7):740-742.
    [43]陈小麟.动物生物学[M].北京:高等教育出版社,2005.
    [44]Nongthomba U, Ansari M, Thimmaiya D, Stark M, Sparrow J. Aberrant Splicing of an Alternative Exon in the Drosophila Troponin-T Gene Affects Flight Muscle Development[J]. Genetics.2007,177(1):295-306.
    [45]Filatov V L, Katrukha A G, Bulargina T V, Gusev N B. Troponin:Structure, Properties, and Mechanism of Functioning[J]. Biochemistry.1999,64(9):969-985.
    [46]Saggin L, Gorza L, Ausoni S, Schiaffino S. Troponin I Switching in the Developing Heart[J].The Journal of Biological Chemistry.1989,264:16299-16302.
    [47]You M, Xuan X, Tsuji N, Kamio T, Igarashi I, Nagasawa H, Mikami T, Fujisaki K. Molecular Characterization of a Troponin I-like Protein from The Hard Tick Haemaphysalis longicornis[J]. Insect Biochemistry and Molecular Biology.2001, 32(1):67-73.
    [48]马腾.镰形扇头蜱肌钙蛋白Ⅰ基因的克隆及表达[D].北京:中国农业科学院,2006.
    [49]姜建平.血清TnI和IL-8联检在急性心肌梗塞中的临床价值[J].放射免疫学杂志.2000,13(5):281-282.
    [50]魏晓真.飞行质谱法与肌钙蛋白Ⅰ快速检测法对急性心肌梗死早期诊断的比较[J].中国心血管病研究杂志.2005,3(9):699-700.
    [51]王宁,段桂华.心肌TnI的测定在心肌患者中的应用[J].医学检验与临床.2006,17(6):82.
    [52]王静.急性一氧化碳中毒患者心肌肌钙蛋白Ⅰ测定的临床意义[J].中国医药指南.2009,7(6):12-13.
    [53]Mogensen J, Kruse T A, Borglum A D. Assignment of the Human Cardiac Troponin I Gene (TNNI3) to Chromosome 19ql3.4 by Radiation Hybrid Mapping[J]. Cytogenetics and Cell Genetics.1997,79:272-273.
    [54]郝沛.生命科学研究中生物信息学技术的开发和应用—组学数据分析中工作流技术的研究和开发[D].上海:复旦大学,2008.
    [55]赵国屏.生物信息学[M].北京:科学出版社,2002.
    [56]王建民,罗静初,李毅,曲红,吴光耀,顾孝诚.水稻矮缩病毒基因组数据库的构建[J].微生物学报.2001,41(2):43-48.
    [57]Faria-Campos A C, Campos S V, Prosdocimi F, Franco G C, Franco G R, Ortega J M. Efficient Secondary Database Driven Annotation using Model Gaism Sequences. In Silico Biology.2006,6:363-372.
    [58]陈大福.蜜蜂(Apis mellifera)ant基因和vha16基因的克隆及其功能预测的生物信息学研究[D],杭州:浙江大学,2004.
    [59]史兆兴,王恒樑,苏国富,黄留玉.简并PCR及其应用[J].生物技术通讯.2004,15(2):172-175.
    [60]王洪振,周晓馥,宋朝霞,刘文广,曾宪录.简并PCR技术及其在基因克隆中的应用[J].遗传.2003,25(2):201-204.
    [61]唐雪芳,贺修胜.生物信息学策略鉴定新基因[J].现代生物医学进展.2008,8(7):1358-1360.
    [62]史梦远,王海涛,张芳琳.应用生物信息学网络资源分析预测融合蛋白的二级结构及其理化性质[J].中国组织工程研究与临床康复.2008,12(9):1685-1688.
    [63]刘子朋,章宏九,李雅晴,朱云蛟,胡健,方慧生.生物信息学方法在判断DNA结合蛋白质和预测结合位点中的应用[J].药学进展.2009,33(11):486-490.
    [64]张小辉,朱忠珂,祁艳霞.中华蜜蜂气味结合蛋白5,9,11,12基因克隆及生物信息学分析[J].黑龙江畜牧兽医.2010,(4):140-141.
    [65]林万明.PCR技术操作和应用指南[M].北京:人民军医出版社,1993.
    [66]罗忠训.分子生物学与分子克隆概论[M].武汉:湖北科学技术出版社,1991.
    [67]Frohman M A, Dush M K, Martin G R. Rapid Production of Full-length cDNA, from Rare Transcripts:Aamplification using a Single Gene-specific Oligonucleotide Primer[J]. Proceedings of the National Academy of Sciences of the United States of America.1998,85:8998-9002.
    [68]Schaefer B C. Revolutions in Rapid Amplification of cDNA Ends:New Strategies for Polymerase Chain Reaction Cloning of Full-length cDNA Ends[J]. Analytical Biochemistry.1995,227(2):255-273.
    [69]Zhang Y, Frohman M A. Using Rapid Amplification of cDNA Ends (RACE) to Obtain Full-length cDNAs[J]. Methods in Molecular Biology,1997,69:61-87.
    [70]Ozawa T, Kondo M, Isobe M. 3'Rapid Amplification of cDNA Ends (RACE) Walking for Rapid Structural Analysis of Large Transcripts[J]. Journal of Human Genetics.2004,49(2):102-105
    [71]迪芬巴赫C W, 德瑞克斯勒G S(黄培堂,俞炜源,陈添弥译).PCR技术实验指南[M].北京:科学出版社,1998,268-286.
    [72]刑桂春,张成岗,魏汉东.采用RACE技术获得全长人新基因MAGE-D1[J].中国生物化学与分子生物学报,2001,17(2):203-208.
    [73]邓雪柯,殷建华,曹毅.3种5'RACE技术的比较与优化[J].成都医学院学报.2007,2(1):20-25.
    [74]朱水芳,实时荧光聚合酶链反应(PCR)检测技术[D].北京:中国计量出版社,2003.
    [75]苗玉发,潘东升,刘芳,李波.实时定量PCR的应用进展及常见问题对策[J].医学研究杂志.2009,38(8):85-88.
    [76]http://www.takara.com.cn/explain/F/DRR041A.pdf.
    [77]http://www.takara.com.cn/hqlimages/tech/QA/F/F.pdf.
    [78]欧阳霞辉.拟黑多刺蚁和意大利蜜蜂雌激素相关受体基因的克隆与表达研究[D].西安:陕西师范大学,2007.
    [79]J.莎姆布鲁克(黄培堂译).分子克隆实验指南[M].北京:科学出版社,2005.
    [80]张新宇,高燕宁.PCR引物设计及软件使用技巧[J].生物信息学.2004,2(4):15-18.
    [81]王洪振,周晓馥,宋朝霞,刘文广,曾宪录.简并PCR技术及其在基因克隆中的应用[J].遗传.2003,25(2):201-204.
    [82]http://www.takara.com.cn/explain/E/D315.pdf.
    [83]Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. In:John M. Walker (ed.):The Proteomics Protocols Handbook[M]. New Jersey:Humana Press, 2005:571-607.
    [84]Kumar S, Nei M, Dudley J, Tamura K. MEGA:A Biologist-centric Software for Evolutionary Analysis of DNA and Protein Sequences [J]. Brief. Bioinformatics, 2008,9:299-306.
    [85]Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0[J]. Molecular biology and evolution,2007, 24:1596-1599.
    [86]Zuckerkandl E, Pauling L. Evolutionary Divergence and Convergence in Proteins. In:Bryson V, Vogel H J (ed.), Evolving Genes and Proteins[M]. New York: Academic Press,1965,97-166.
    [87]Blom N, Gammeltoft S, Brunak S. Sequence- and Structure-based Prediction of Eukaryotic Protein Phosphorylation Sites[J]. Journal of Molecular Biology,1999, 294(5):1351-1362.
    [88]Julenius K, Mφlgaard A, Gupta R, Brunak S. Prediction, Conservation Analysis and Structural Characterization of Mammalian Mucin-type O-glycosylation Sites[J]. Glycobiology,2005,15:153-164.
    [89]Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace:a Web-based Environment for Protein Structure Homology Modelling[J]. Bioinformatics,2006,22:195-201.
    [90]Olson E N, Perry M, Schulz R A. Regulation of Muscle Differentiation by the MEF2 Family of MADS Box Transcription Factors[J]. Developmental biology. 1995,172(1):2-14.
    [91]Ishii Y, Kubota K, Hara K. Postembryonic Development of the Mushroom Bodies in the Ant, Camponotus Japonicus[J], Zoological Science.2005,22:743-753.
    [92]张驰宇,徐顺高,黄新祥.一种新颖简便的荧光实时RT-PCR相对定量方法的建立.生物化学与生物物理进展[J].2005,32(9):883-888.
    [93]Ranganayakulu G, Zhao B, Dokidis A. A Series of Mutations in the D-mef2 Transcription Factor Reveal Multiple Functions in Larval and Adult Myogenesis in Drosophila[J]. Developmental Biology.1995,171:169-181.
    [94]Gajewski K, Kim Y, Choi C Y, Schulz R A. Combinatorial Control of Drosophila Mef2 Gene Expression in Cardiac and Somatic Muscle Cell Lineages [J]. Development Genes and Evolution.1998,208:382-392.
    [95]Cripps R M, Lovato T L, Olson E N. Positive Autoregulation of the Myocyte Enhancer Factor-2 Myogenic Control Gene during Somatic Muscle Development in Drosophila[J]. Developmental Biology.2004,267:536-547.
    [96]Elgar S J, Han J, Taylor M V. Mef2 Activity Levels Differentially Affect Gene Expression during Drosophila Muscle Development [J]. Proceedings of the National Academy of Sciences of the United States of America.2008,105(3):918-923.
    [97]Roberts G C, Smith C W. Alternative Splicing:Combinatorial Output from the Genome[J]. Current Opinion in Chemical Biology.2002,6(3):375-383.
    [98]Taylor M V. Muscle Development:A Transcriptional Pathway in Myogenesis[J]. Current Biology.1998,8(10):356-358.
    [99]Ellis J J, Valencia T G, Zeng H, Roberts L D, Deaton R A, Grant S R. CaM Kinase ⅡδC Phosphorylation of 14-3-3β in Vascular Smooth Muscle Cells:Activation of Class Ⅱ HDAC Repression[J]. Molecular and Cellular Biochemistry.2003,242: 153-161.
    [100]Lovato T L, Benjamin A R, Cripps R M. Transcription of Myocyte Enhancer Factor-2 in Adult Drosophila Myoblasts is Induced by the Steroid Hormone Ecdysone[J]. Developmental Biology.2005,288:612-621.
    [101]Baker P W, Tanaka K K, Klitgord N, Cripps R M. Adult Myogenesis in Drosophila melanogaster can Proceed Independently of Myocyte Eenhancer Factor-2[J]. Genetics.2005,170:1747-1759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700