室内定位关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确的室内定位对于公共安全、商业应用以及军事应用都具有非常重要的意义。然而室内环境非常复杂,信号传播会受到墙壁、隔板、天花板等障碍物的阻挡,引起信号发生反射、折射、衍射现象,发射信号经过多条路径、以不同的时间到达接收端,出现多径传播现象和非视距效应,使得室内定位极具挑战性。超宽带技术UWB (Ultra-wideband)拥有极宽电磁频谱,在穿透能力、精细分辨、精确测距、抗多径和抗干扰等方面具有独特的优势,其系统实现具有低复杂度、低功耗、低成本的潜力,成为室内定位最有前景的技术方案之一。但是,目前针对超宽带与室内定位的结合,还有众多问题亟待深入研究和完善。本文从超宽带和室内定位的基本特点出发,就超宽带在室内定位中遇到的关键问题展开了相关研究和探讨:
     首先,论文研究了超宽带信号接收中的低位宽量化问题。低位宽量化是实现超宽带全数字接收的有效解决方案,然而传统的均匀量化将导致幅度信息的极大损失。本文从量化的基本原理出发,将量化参数与超宽带信号在噪声中的检测性能联系起来,研究了两类不同优化目标下的量化问题。第一类以噪声中信号检测为背景,依据纽曼-皮尔逊准则,以最大化信号检测概率为优化函数,给出了最优量化门限和最优量化电平应满足的条件;第二类以噪声中二元通信为背景,以最小化误码率为优化函数,推导了最优量化参数需满足的特定条件。另外,还将推导出的最优量化参数应用于零均值高斯噪声中的常值信号检测,并给出了量化参数在弱信噪比情况下的具体形式。据此研究了低位宽量化参数对超宽带信号检测与符号检测的性能影响,为建立低位宽量化的接收方案奠定了良好基础。
     其次,论文对室内复杂环境下的稳健到达时间估计TOA (Time of Arrival)问题进行了研究。在室内环境下,信号传播会因为障碍物的影响而出现多径效应和非视距效应NLOS (Non-line-of-sight),而且这些效应会随着环境的变化而出现较大的起伏,这对准确的TOA估计提出了严峻的挑战。本文通过分析超宽带信号在室内环境传播所呈现出来的特征,将TOA估计问题转换为噪声中信号检测问题,提出了两种稳健的TOA估计算法:第一种方法以检测判决门限为噪声参数的函数为基础,提出了基于非参量检测的TOA估计算法,通过将基于条件检验的非参量检测与低位宽量化相结合,来降低判决门限对噪声参数估计误差的敏感性;第二种方法利用最优判决门限与信噪比紧密相关的先验信息,提出了基于自适应门限的TOA估计算法,通过实时估计接收信号的信噪比而动态改变门限,使得算法在相当宽的信噪比范围内都能保持较好的性能,提高了应对环境变化的适应性。
     然后,论文研究了室内环境下的固定节点定位方法。室内环境的多径效应和非视距效应使得距离量测误差呈现出与传统视距情况下不同的特征,导致传统定位算法性能的严重下降。本文根据室内环境测距误差的特点,将其划分为两种类型:一类是负量测误差,是由虚警引起的噪声误判导致的;另一类是正量测误差,是由信号首径漏检导致的。针对第一类情况,提出了量测软判决技术,各基站保留多于一个备选距离量测形成量测组合,然后通过建立代价函数选择最佳量测组合来降低负量测误差的影响;对于第二类情况,根据正量测误差会导致量测值交汇出公共区域的特征,提出了公共区域优化技术,通过搜索公共区域中平均定位误差最小点,来降低正量测误差的影响。另外,通过联合上述两种技术措施,本文提出了联合定位方案以改善室内定位精度。
     最后,论文对室内环境下的移动节点稳定跟踪进行了研究。信号非视距传播是影响室内移动节点跟踪的关键因素之一,它使得距离量测误差不再满足传统Kalman算法中量测误差的模型要求,导致跟踪算法的性能发生崩溃。为了降低NLOS环境对室内移动节点跟踪的影响,本文提出一种自适应跟踪滤波算法。该算法首先基于典型室内环境中非视距偏置误差的时间变化特性分析,建立了修正偏置扩展卡尔曼滤波去估计距离量测中的非视距误差,然后根据估计结果对LOS/NLOS环境进行鉴别,最后联合NLOS鉴别算法和修正偏置扩展卡尔曼滤波建立自适应跟踪滤波算法。数值仿真结果表明,这种自适应跟踪算法在室内环境中具有较好的跟踪精度,算法具有较强的适应性。
Accurate indoor geolocation is an important and novel emerging technology for commercial, public-safety, and military applications. However, indoor localization is very challenging due to the complex signal propagation that is caused by obstacles such as walls, clapboard, ceiling and so on. The electromagnetic wave may suffer reflection, refraction, diffraction and may result in the phenomenon of dense multipath arrivals and non line-of-sight propagation both of which will severely degrade the localization accuracy. Due to the large bandwidth, Impulse Radio Ultra-wide (IR-UWB) technology holds the advantages in anti-multipath, anti-interference, penetrability, high-precision ranging, low complexity implementation, low cost, low power consumption and becomes one of the most promising technologies. But at present, the indoor localization based on IR-UWB is still facing lots of problems and needs in-depth researching and improving. This dissertation has been launched to investigate the key technologies of indoor positioning, which is important and valuable for the practical application.
     First of all, the optimum quantization for the UWB finite resolution digital receiver is studied. Low-resolution quantization is an effective scheme to deal with the large bandwidth in UWB digital receiver; however, traditional uniform quantization will lead to serious information loss. Based on the analysis of fundamental quantization theory and UWB signal detection, two different kinds of optimization problems about optimum quantization are investigated. The first problem comes from the signal detection in noise and connects the quantization parameters with the detection probability. The corresponding optimum quantization thresholds and levels are derived with maximizing the detection probability as the optimization function. The second problem comes from the binary communication and makes the minimization of the bit error rate as the optimization function. The influence of quantization parameters on UWB signal detection and sign detection is also explored, especially under the low signal-to-noise (SNR).
     Secondly, the estimation of time of arrival (TOA) is studied. Dense multipath arrivals and NLOS propagation are common and changeable in indoor environment, which will decrease the TOA accuracy. Based on the analysis of the characteristic of UWB signal propagation in indoor environment, two robust algorithms for TOA estimation are proposed. The first algorithm combines the nonparametric detection based on conditional tests with low-resolution quantization and degrades the sensitivity of noise parameters on judgment threshold. The second algorithm exploits the information that the optimum threshold is closely related with the SNR and utilizes adaptive threshold with respect to timely estimated SNR.
     Thirdly, indoor localization method for static nodes is studied. Dense multipath arrivals and NLOS propagation lead to distance measurement errors differing from the traditional model and then can reduce the positioning accuracy. Based upon the research about distance errors, two different types are obtained. The first type is negative error that is caused by false alarm detection of noise samples. The second type is positive error, which is caused by missing detection of the leading path. The negative error is reduced by soft-decision algorithm in which more than one measurement are reserved by each station and selected by minimizing the cost function. The positive error is decreased by public area optimization algorithm in which the point of minimal average distance error is deemed as the node's position. By combing those two algorithms, a comprehensive location method is proposed to improve the indoor positioning accuracy.
     Finally, indoor tracking method of moving node is studied. NLOS propagation is one of the key factors that affect tracking accuracy in indoor environments. An adaptive tracking algorithm is proposed to mitigate the NLOS error for indoor mobile localization. The correlation between adjacent NLOS errors in time was analyzed and exploited. A modified extended Kalman filter (MEKF) is presented which includes the NLOS errors as part of the state variables. NLOS identification is achieved based on the state estimation of MEKF. MEKF and NLOS identification are combined to implement the adaptive tracking algorithm. Simulation results demonstrate that the proposed algorithm has better tracking accuracy and adaptability in indoor environments.
引文
[1]Bradford W. Parkinson, J. J. S. Jr. Global Positioning System:Theory and Applications [M]. America:American Institute of Aeronantics and Astronautics,1996.
    [2]F. D. N.94-102. Revision of the Commission's Rules to Ensure Compatibility with Enhanced 911 Emergency Calling Systems [J]. RM-8143.1996.
    [3]拉帕波特(美国).无线通信原理与应用[M].北京:电子工业出版社,2009.
    [4]J. Schiller, A. Voisard. Location Based Services [M]. San Francisco:Morgan Kaufmann Publishers Inc,2004.
    [5]S. Zafer, G. Sinan, G. Ismail. Ultra-wideband Positioning Systems [M]. New York: Cambridge University Press,2008.
    [6]L. Hui, H. Darabi, P. Banerjee, et al. Survey of Wireless Indoor Positioning Techniques and Systems [J]. Systems, Man, and Cybernetics, Part C:Applications and Reviews, IEEE Transactions on.2007,37(6):1067-1080.
    [7]K. Pahlavan, L. Xinrong, J. P. Makela. Indoor geolocation science and technology [J]. Communications Magazine, IEEE.2002,40(2):112-118.
    [8]S. Gezici, T. Zhi, G. B. Giannakis, et al. Localization via ultra-wideband radios:a look at positioning aspects for future sensor networks [J]. Signal Processing Magazine, IEEE. 2005,22(4):70-84.
    [9]K. Pahlavan, P. Krishnamurthy. Principles of Wireless Networks-A Unified Approach [M]. Prashant Krishnamurthy, Pittsburgh, Pennsylvania:Prentice Hall,2002.
    [10]K. Pahlavan, P. Krishnamurthy, J. Beneat. Wideband Radio Channel Modeling for Indoor Geolocation Applications [J]. IEEE Communications Magazine.1998,36(4):60-65.
    [11]J. Werb, C. Lanzl. Designing a positioning system for finding things and people indoors [J]. Spectrum, IEEE.1998,35(9):71-78.
    [12]R. Casas, D. Cuartielles, A. Marco, et al. Hidden Issues in Deploying an Indoor Location System [J]. Pervasive Computing, IEEE.2007,6(2):62-69.
    [13]Roy Want, Andy Hopper, Vernica Falcao, et al. The Active Badge Location System [J]. ACM Transactions Information Systems.1992,10(1):91-102.
    [14]Nissanka B. Priyantha, Anit Chakraborty, a. H. Balakrishnan. The Cricket Location support system [C]. in ACM Conference on Mobile Computing and Networking. Boston, MA.
    [15]WhereNet Web Site [EB/OL]. Available from:http://edu.symbol.com/docentauthorware/ WhereNet/intro/intro l.asp.2008.
    [16]P. Bahl, V. Padanabhan. RADAR:An in-building RF based user location and tracking system [C]. in IEEE Infocom. Turin, Italy,775-784.
    [17]Topaz [EB/OL]. Available from:www.tadlvs.com/pages/Product content.asp?iGlobalId=2. 2004.
    [18]Ubisense [EB/OL]. Available from:http://www.ubisense.net.2008.
    [19]Assessment of Ultra-Wideband (UWB) Technology. OSD/DARPA [C]. in Ultra-Wideband Radar Review Panel, R-6280.
    [20]R. A. Scholtz. Multiple access with time-hopping impulse modulation [C]. in Military Communications Conference,1993. MILCOM'93. Conference record. Communications on the Move., IEEE. Boston, MA,447-450.
    [21]US 47 CFR Part15 Ultra-Wideband Operations FCC Report and Order [S].2002.
    [22]IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 15.4:Wireless Medium Access Control (MAC) and Physical Layler (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) [S].2006.
    [23]M. Z. Win, R. A. Scholtz. On the robustness of ultra-wide bandwidth signals in dense multipath environments [J]. Communications Letters, IEEE.1998,2(2):51-53.
    [24]L. Joon-Yong, R. A. Scholtz. Ranging in a dense multipath environment using an UWB radio link [J]. Selected Areas in Communications, IEEE Journal on.2002, 20(9):1677-1683.
    [25]I. Guvenc, Z. Sahinoglu. Threshold-based TOA estimation for impulse radio UWB systems [C]. in Ultra-Wideband,2005. ICU 2005.2005 IEEE International Conference on. Cambridge, MA, USA,420-425.
    [26]I. Guvenc, Z. Sahinoglu. Threshold selection for UWB TOA estimation based on kurtosis analysis [J]. Communications Letters, IEEE.2005,9(12):1025-1027.
    [27]L. Guvenc, Z. Sahinoglu, A. F. Molisch, et al. Non-coherent TOA estimation in IR-UWB systems with different signal waveforms [C]. in Broadband Networks,2005. BroadNets 2005.2nd International Conference on. Boston, MA 1168-1174.
    [28]I. G. Z. Sahinoglu. low complexity TOA estimation for impulse radio radio uwb systems [J]. Ieee Journal on Selected Areas in Communications.2005.
    [29]Z. S. Sinan Gezici, Andreas Molisch. A Two-Step Time of Arrival Estimation Algorithm for Impulse Radio Ultra Wideband Systems [J].2005.
    [30]I. Guvenc, H. Arslan. Comparison of Two Searchback Schemes for Non-Coherent TOA Estimation in IR-UWB Systems [C]. in Sarnoff Symposium,2006 IEEE. Princeton, NJ, 1-4.
    [31]I. Guvenc, Z. Sahinoglu, P. V. Orlik. TOA estimation for IR-UWB systems with different transceiver types [J]. Microwave Theory and Techniques, IEEE Transactions on.2006, 54(4):1876-1886.
    [32]I. Guvenc, S. Gezici, Z. Sahinoglu. Ultra-wideband range estimation:Theoretical limits and practical algorithms [C]. in Ultra-Wideband,2008. ICUWB 2008. IEEE International Conference on. Hannover 93-96.
    [33]IEEE 802.15.4a channel model-final report [S].2004.
    [34]S. Venkatesh, R. M. Buehrer. NLOS Mitigation Using Linear Programming in Ultrawideband Location-Aware Networks [J]. Vehicular Technology, IEEE Transactions on. 2007,56(5):3182-3198.
    [35]S. Venkatesh, R. M. Buehrer. A linear programming approach to NLOS error mitigation in sensor networks [C]. in Information Processing in Sensor Networks,2006. IPSN 2006. The Fifth International Conference on. New York,301-308.
    [36]J. M. Huerta, J. Vidal. Mobile tracking using UKF, time measures and LOS-NLOS expert knowledge [C]. in Acoustics, Speech, and Signal Processing,2005. Proceedings. (ICASSP '05). IEEE International Conference on. Barcelona, Spain, iv/901-iv/904.
    [37]J. M. Huerta, J. Vidal. LOS-NLOS Situation Tracking for Positioning Systems [C]. in Signal Processing Advances in Wireless Communications,2006. SPAWC'06. IEEE 7th Workshop on. Cannes 1-5.
    [38]J. M. Huerta, A. Giremus, J. Vidal, et al. Joint Particle Filter and UKF Position Tracking Under Strong NLOS Situation [C]. in Statistical Signal Processing,2007. SSP'07. IEEE/SP 14th Workshop on. Madison, WI, USA 537-541.
    [39]K. Lei, Y. Huarui, G. Weilin, et al. Finite-resolution digital receiver design for impulse radio ultra-wideband communication [J]. Wireless Communications, IEEE Transactions on.2008, 7(12):5108-5117.
    [40]S. Gezici. A Survey on wireless position estimation [J]. Wireless Personal Communications. 2008,44(3):263-282.
    [41]A. J. Weiss. Direct position determination of narrowband radio frequency transmitters [J]. Signal Processing Letters, IEEE.2004,11(5):513-516.
    [42]J. J. Caffery. Wireless Location in CDMA Cellular Radio Systems [M]. Boston:Kluwer Academic Publishers,2000.
    [43]Q. Yihong, H. Kobayashi, H. Suda. Analysis of wireless geolocation in a non-line-of-sight environment [J]. Wireless Communications, IEEE Transactions on.2006,5(3):672-681.
    [44]W. Gang, Y. Kehu. A New Approach to Sensor Node Localization Using RSS Measurements in Wireless Sensor Networks [J]. Wireless Communications, IEEE Transactions on.2011,10(5):1389-1395.
    [45]X. Li. A selective model to suppress NLOS signals in angle-of-arrival (AOA) location estimation [C]. in Personal, Indoor and Mobile Radio Communications,1998. The Ninth IEEE International Symposium on. Boston, MA,461-465.
    [46]L. Kuen-Tsiar, C. Wei-Kai. Mobile positioning based on TOA/TSOA/TDOA measurements with NLOS error reduction [C]. in Intelligent Signal Processing and Communication Systems,2005. ISPACS 2005. Proceedings of 2005 International Symposium on. Taiwan, 545-548.
    [47]W. F. Sheppard. On the calculation of the most probable values of frequency constants for data arranged according to equidistant divisions of a scale [C]. in London Math Conference. 353-380.
    [48]B. Widrow.1956. A Study of Rough Amplitude Quantization by means of Nyquist Sampling Theory [D]:[PhD]. Cambridge:Massachusetts Institute of Technology.
    [49]A. A. Kosyakin. The statistical theory of amplitude quantization [J]. Automatic Telemekh. 1961,22:722-729.
    [50]W. M. Goodall. Telephony by pulse-code modulation [J]. Bell System Technology. 1947:395-409.
    [51]W. R. Bennett. Spectra of quantized signals [J]. Bell System Technology.1948:446-472.
    [52]B. Smith. Instantaneous companding of quantized signals [J]. Bell System Technology. 1957,36:653-709.
    [53]D. S. Ruchkin.1960. Reconstruction of Sampled and Quantized Stochastic Signals [D]: [PhD]. Yale University.
    [54]S. P. LLOYD. Least Squares Quantization in PCM [J]. IEEE Transactions on Information Theory.1982, IT-28(2).
    [55]M. P. Schutzenberger. On the quantization of finite dimensional messages [J]. Information and Control.1958,1(2):153-158.
    [56]___. Optimum quantizers and permutation codes [J]. Information Theory, IEEE Transactions on.1972, IT-18:759-765.
    [57]S. Kassam. Optimum Quantization for Signal Detection [J]. Communications, IEEE Transactions on.1977,25(5):479-484.
    [58]H. Poor, J. Thomas. Applications of Ali-Silvey Distance Measures in the Design Generalized Quantizers for Binary Decision Systems [J]. Communications, IEEE Transactions on.1977,25(9):893-900.
    [59]H. v. P. a. J. B. THOMAS. Optimum Quantization for Local Decision Based on Independent Samples [J]. Journal of the Franklin Institute 1977,303(6):549-561.
    [60]B. Picinbono. On deflection as a performance criterion in detection [J]. Aerospace and Electronic Systems, IEEE Transactions on.1995,31(3):1072-1081.
    [61]B. Aazhang, H. Poor. On Optimum and Nearly Optimum Data Quantization for Signal Detection [J]. Communications, IEEE Transactions on.1984,32(7):745-751.
    [62]R. Gupta, A. O. Hero, III. High-rate vector quantization for detection [J]. Information Theory, IEEE Transactions on.2003,49(8):1951-1969.
    [63]S. Kassam, J. Thomas. Generalizations of the Sign Detector Based on Conditional Tests [J]. Communications, IEEE Transactions on.1976,24(5):481-487.
    [64]S. A. Kassam. Deadzone limiter An application of conditional tests in nonparametric detection [J]. J. Acoust. Soc. Am.1975,60(857).
    [65]T. Jin, X. Zhengyuan, M. S. Brian. Performance analysis of b-bit digital receivers for TR-UWB systems with inter-pulse interference [J]. Wireless Communications, IEEE Transactions on.2007,6(2):494-505.
    [66]Y. Huarui, W. Zhengdao, K. Lei, et al. Monobit digital receivers:design, performance, and application to impulse radio [J]. Communications, IEEE Transactions on.2010, 58(6):1695-1704.
    [67]S. Capkun, J. P. Hubaux. Secure positioning of wireless devices with application to sensor networks [C]. in INFOCOM 2005.24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE. Switzerland,1917-1928.
    [68]A. Quazi. An overview on the time delay estimate in active and passive systems for target localization [J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1981, 29(3):527-533.
    [69]A. O'Dwyer. Time delay estimation in signal processing applications:an overview [C]. in IT & T Conference, Waterford Institute of Technology, October,2002.
    [70]S. M. Kay. Fundamentals of Statistical Signal Processing:Detection Theory [M]. Prentice Hall,1998.
    [71]D. D. Chiara Falsi, LorenzoMucchi, andMoe Z.Win. Time of arrival estimation for UWB localizers in realistic environments [J]. Journal on Advances in Signal Processing 2006:1-14.
    [72]M. Z. Win, R. A. Scholtz. Characterization of ultra-wide bandwidth wireless indoor channels:a communication-theoretic view [J]. Selected Areas in Communications, IEEE Journal on.2002,20(9):1613-1627.
    [73]A. Rabbachin, I. Oppermann, B. Denis. ML Time-of-Arrival estimation based on low complexity UWB energy detection [C]. in Ultra-Wideband, The 2006 IEEE 2006 International Conference on. Waltham, MA 599-604.
    [74]K. Haneda, K. i. Takizawa, J. i. Takada, et al. Performance evaluation of threshold-based UWB ranging methods-Leading edge vs. search back [C]. in Antennas and Propagation, 2009. EuCAP 2009.3rd European Conference on. Berlin 3673-3677.
    [75]A. Maali, A. Mesloub, M. Djeddou, et al. Adaptive CA-CFAR threshold for non-coherent IR-UWB energy detector receivers [J]. Communications Letters, IEEE.2009, 13(12):959-961.
    [76]L. Wenyan, D. Hong, H. Xiaotao, et al. TOA Estimation in IR UWB Ranging with Energy Detection Receiver Using Received Signal Characteristics [J]. Communications Letters, IEEE.2012,16(5):738-741.
    [77]C. Nerguizian, C. Despins, S. Affes. Geolocation in mines with an impulse response fingerprinting technique and neural networks [J]. Wireless Communications, IEEE Transactions on.2006,5(3):603-611.
    [78]H. Wymeersch, S. Marano, W. M. Gifford, et al. A Machine Learning Approach to Ranging Error Mitigation for UWB Localization [J]. Communications, IEEE Transactions on.2012, 60(6):1719-1728.
    [79]F. Shih-Hau, L. Bo-Cheng, H. Ying-Tso. Learning Location From Sequential Signal Strength Based on GSM Experimental Data [J]. Vehicular Technology, IEEE Transactions on.2012,61(2):726-736.
    [80]W. R. Hahn. Optimum Passive Signal Processing for array Delay Vector Estimation [M]. 1972.
    [81]M. W. a. T. kallath. Optimum Localization of Multiple Sources by Passive Arrays [J]. IEEE Transactions on Acoustics Speech and Signal Processing.1983, ASSP-31 (5):1210-1217.
    [82]W. H. Foy. Position-Location Solutions by Taylor-Series Estimation [J]. Aerospace and Electronic Systems, IEEE Transactions on.1976, AES-12(2):187-194.
    [83]R. O. Schmidt. A New Approach to Geometry of Range Difference Location [J]. Aerospace and Electronic Systems, IEEE Transactions on.1972, AES-8(6):821-835.
    [84]J. Smith, J. Abel. Closed-form least-squares source location estimation from range-difference measurements [J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1987,35(12):1661-1669.
    [85]J. Smith, J. Abel. The spherical interpolation method of source localization [J]. Oceanic Engineering, IEEE Journal of.1987,12(1):246-252.
    [86]H. Yiteng, J. Benesty, G. W. Elko, et al. Real-time passive source localization:a practical linear-correction least-squares approach [J]. Speech and Audio Processing, IEEE Transactions on.2001,9(8):943-956.
    [87]J. S. Abel. A divide and conquer approach to least-squares estimation with application to range-difference-based localization [C]. in Acoustics, Speech, and Signal Processing,1989. ICASSP-89.,1989 International Conference on. Glasgow 2144-2147.
    [88]S. Al-Jazzar, J. Caffery, Jr. ML and Bayesian TOA location estimators for NLOS environments [C]. in Vehicular Technology Conference,2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th. OH, USA 1178-1181.
    [89]S. Al-Jazzar, J. Caffery, Y. Heung-Ryeol. Scattering-Model-Based Methods for TOA Location in NLOS Environments [J]. Vehicular Technology, IEEE Transactions on.2007, 56(2):583-593.
    [90]L. Ning, X. Zhengyuan, B. M. Sadler. Geoloeation Performance With Biased Range Measurements [J]. Signal Processing, IEEE Transactions on.2012,60(5):2315-2329.
    [91]K. W. K. Lui, H. C. So, W. K. Ma. Approach to Time-of-Arrival-Based Localization in Non-Line-of-Sight Environment [J]. Vehicular Technology, IEEE Transactions on.2010, 59(3):1517-1523.
    [92]N. Alsindi, C. Duan, Z. Jinyun, et al. NLOS channel identification and mitigation in Ultra Wideband ToA-based Wireless Sensor Networks [C]. in Positioning, Navigation and Communication,2009. WPNC 2009.6th Workshop on. Hannover 59-66.
    [93]T. Fujita, T. Ohtsuki. Low Complexity Localization Algorithm Based on NLOS Node Identification Using Minimum Subset for NLOS Environments [C]. in Global Telecommunications Conference,2008. IEEE GLOBECOM 2008. IEEE. New Orleans, LO 1-5.
    [94]M. P. Wylie, J. Holtzman. The non-line of sight problem in mobile location estimation [C]. in Universal Personal Communications,1996. Record.,1996 5th IEEE International Conference on. Cambridge, MA 827-831.
    [95]W. Xin, W. Zongxin, B. O'Dea. A TOA-based location algorithm reducing the errors due to non-line-of-sight (NLOS) propagation [C]. in Vehicular Technology Conference,2001. VTC 2001 Fall. IEEE VTS 54th. Rhodes,97-100.
    [96]C. Yiu-Tong, T. Wing-Yue, S. Hing-Cheung, et al. Time-of-arrival based localization under NLOS conditions [J]. Vehicular Technology, IEEE Transactions on.2006,55(1):17-24.
    [97]K. Wuk, J. G. Lee, G. I. Jee. The interior-point method for an optimal treatment of bias in trilateration location [J]. Vehicular Technology, IEEE Transactions on.2006, 55(4):1291-1301.
    [98]W. Gang, L. Youming, N. Ansari. A Semidefinite Relaxation Method for Source Localization Using TDOA and FDOA Measurements [J]. Vehicular Technology, IEEE Transactions on.2013,62(2):853-862.
    [99]S. Venkatraman, J. Caffery, Jr., Y. Heung-Ryeol. A novel ToA location algorithm using LoS range estimation for NLoS environments [J]. Vehicular Technology, IEEE Transactions on. 2004,53(5):1515-1524.
    [100]Y. Kegen, Y. J. Guo. Improved Positioning Algorithms for Nonline-of-Sight Environments [J]. Vehicular Technology, IEEE Transactions on.2008,57(4):2342-2353.
    [101]W. Wang, J.-Y. Xiong, Z.-L. Zhu. A new NLOS error mitigation algorithm in location estimation [J]. Vehicular Technology, IEEE Transactions on.2005,54(6):2048-2053.
    [102]I. GUVENC, C.-c. CHONG. Weighted least square localization method exploiting multipath channel statistics for non-line-of-sight mitigation:US, WO/2008/017034[P/OL]. 07.02.2008. http://patentscope. wipo.int/search/en/WO2008017034.
    [103]N. V. Ben Kr'ose, Wojciech Zajdel. Bayesian methods for tracking and localization [M]. Informatics Institute University of Amsterdam,2012.
    [104]M. S. GREWAL. kalman filtering [M]. New York:John Wiley & Sons,2001.
    [105]M. R. M. SUBHASH CHALLA, DARKO MU "S ICKI,ROBIN J. EVANS. Cambridge-fundamentals of object tracking [M]. New York:Cambridge University Press,2011.
    [106]L. O. B. Denisl, B. Uguen2, F. Tchoffo-Talom2. Advanced Bayesian Filtering Techniques for UWB Tracking Systems in Indoor Environments [C]. in Ultra-Wideband,2005. ICU 2005.2005 IEEE International Conference on
    [107]J. M. Huerta, J. Vidal, A. Giremus, et al. Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations [J]. Selected Topics in Signal Processing, IEEE Journal of.2009,3(5):874-888.
    [108]L. Bao Long, K. Ahmed, H. Tsuji. Mobile location estimator with NLOS mitigation using Kalman filtering [C]. in Wireless Communications and Networking,2003. WCNC 2003. 2003 IEEE. New Orleans, LA, USA 1969-1973.
    [109]M. Najar, J. Vidal. Kalman tracking for mobile location in NLOS situations [C]. in Personal, Indoor and Mobile Radio Communications,2003. PIMRC 2003.14th IEEE Proceedings on. Barcelona, Spain,2203-2207.
    [110]C.-D. Wann. Kalman Filtering for NLOS Mitigation and Target Tracking in Indoor Wireless Environment [M]. InTech,2010.
    [111]S. Hoyos, B. M. Sadler, G. R. Arce. Monobit digital receivers for ultrawideband communications [J]. Wireless Communications, IEEE Transactions on.2005, 4(4):1337-1344.
    [112]龚卫林.2008.脉冲超宽带低复杂度低功耗接收技术研究[D]:[博士].合肥:中国科学技术大学.
    [113].孙飞.2013.基于低位宽量化的超宽带室内测距与定位方法研究[D]:[博士].合肥:中国科学技术大学.
    [114]J.G. Proakis.数字通信(第四版)[M].北京:电子工业出版社,2003.
    [115]维基百科[EB/OL]. Available from:http://en.wikipedia.org/wiki/Quantization_ (signal_processing).
    [116]M. Z. Win, R. A. Scholtz. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications [J]. Communications, IEEE Transactions on.2000,48(4):679-689.
    [117]D. Jourdan, D. Dardari, M. Win. Position error bound for UWB localization in dense cluttered environments [J]. Aerospace and Electronic Systems, IEEE Transactions on.2008, 44(2):613-628.
    [118]Hu'seyin Arslan, Zhi Ning Chen, M.-G. D. Benedetto. UltraWideband Wireless Comunications [M]. New York:Wiley,2006.
    [119]K. W. Cheung, W. K. Ma, H. C. So. Accurate approximation algorithm for TOA-based maximum likelihood mobile location using semidefinite programming [C]. in Acoustics, Speech, and Signal Processing,2004. Proceedings. (ICASSP'04). IEEE International Conference on. China, ii-145-8.
    [120]D. Dardari, C. Chia-Chin, M. Z. Win. Threshold-Based Time-of-Arrival Estimators in UWB Dense Multipath Channels [J]. Communications, IEEE Transactions on.2008, 56(8):1366-1378.
    [121]M. G. Marzieh Dashti, Katsuyuki Haneda and Jun-ichi Takada. High-Precision Time-of-Arrival Estimation for UWB Localizers in Indoor Multipath Channels [M]. Janeza Trdine 9,51000 Rijeka, Croatia:InTech,2011.
    [122]S. Ali.2007. Indoor Geolocation for Wireless Networks [D]:[PhD]. Cranfield Defence and Security, Shrivenham.
    [123]G. Yanying, A. Lo, I. Niemegeers. A survey of indoor positioning systems for wireless personal networks [J]. Communications Surveys & Tutorials, IEEE.2009,11(1):13-32.
    [124]Yaakov Bar-Shalom, X. Rong Li, T. Kirubarajan. Estimation with Applications to Tracking and Navigation [M]. New York:John Wiley & Sons,2001
    [125]W. Chin-Der, C. Yi-Ming, L. Ming-Shiung. Mobile location tracking with NLOS error mitigation [C]. in Global Telecommunications Conference,2002. GLOBECOM'02. IEEE. Taiwan,1688-1692.
    [126]M. Najar, J. M. Huerta, J. Vidal, et al. Mobile location with bias tracking in non-line-of-sight [C]. in Acoustics, Speech, and Signal Processing,2004. Proceedings. (ICASSP'04). IEEE International Conference on. Barcelona, Spain, iii-956-9.
    [127]W. Genyuan, M. G. Amin, Y. Zhang. New approach for target locations in the presence of wall ambiguities [J]. Aerospace and Electronic Systems, IEEE Transactions on.2006, 42(1):301-315.
    [128]C. Pi-Chun. A Non-Line-of-Sight Error Mitigation Algorithm in Location Estimation [C]. in Wireless Communications and Networking Conference,1999. WCNC. New Orleans, LA 316-320
    [129]周宏仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700