平面硅Si(111)-H表面共价偶联的单分子膜和高分子刷的制备及其化学转换用于固定生物分子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们对平面硅表面进行了各种方法的化学改性,以期满足其在生物芯片、分子器件、微电子等领域对平面硅界面特殊性能的要求:通过化学方法对单晶硅表面的化学修饰,可以赋予它新的物理化学特性,可以用它来制备生物传感器、蛋白质和DNA的检测芯片。
     化学修饰方法可用硅烷偶联剂与表面Si-OH作用以及Grignard试剂与表面Si-Cl或Si-Br的反应实现,前者虽然容易进行,但是生成的Si-O-Si键在碱性溶液中,容易进一步裂解:后者则需要比较苛刻的反应条件,且由于Grignard试剂种类有限,并不能满足多种实际的要求。
     实际应用过程中,要求在硅表面能够生成稳定的共价键,能够经受不同的化学环境,可以方便地引入不同功能的官能团。Si-C键化学性能稳定,而平面硅材料本身能够耐各种有机溶剂、酸和弱碱;Si-C键形成可以通过40%NH4F水溶液的腐蚀,在Si(111)的表面首先形成垂直于硅平面的Si-H键,再与一端带有功能性官能团同时另一端带有C=C双键的有机物反应,形成末端功能化的单分子膜,还可以对其进行进一步的化学修饰直至满足一定的要求为止,反应过程中Si(111)仍然保持原子级的平整。这些预示着Si(111)晶片在生物、分子器件等及其它领域会有广泛的应用前景。本文涉及如下方面:
     首先,在微波加热的条件下,通过Si-H与10-烯-1-酸的直接反应形成末端带有羧基的单分子膜,羧基与N-羟基丁二酰亚胺(NHS)酯化以后,与含有伯胺基的氨基丁基三乙酸胺(ANTA)在pH=8.0的水溶液中发生亲核反应,产生末端形成三乙酸胺(NTA),利用其很强的配位能力,使Ni(Ⅱ)与之配位。再以配位键将His-tagged蛋白(thioredoxin-urodilatin)固定在平面硅的表面。同样,同时带有FITC和Histidine标记的蛋白也可以固定在平面硅的表面。为了进一步提高活性官能团的密度,我们将上一步得到的末端NTA在0.1M的HCl中酸化,然后再依次与NHS发生酯化和ANTA发生酰胺化反应,在硅表面生成第二代的NTA结构。这样NTA基团的密度会明显提高,因此通过这样的重复手段可以固定更多的Ni(Ⅱ),也就可以固定更多的蛋白质分子。化学修饰过程中的大多数反应都利用我们课题组开发的多次透射-反射红外(MTR-IR)附件来表征。硅表面固定蛋白数量的增加也通过MTR-IR、激光辅助解离/离子化-时间飞行质谱(MALDI-TOF-MS)和荧光扫描来表征,表面绑定的Ni(Ⅱ)量由X-射线光电子能谱(XPS)来表征。MTR-IR和荧光扫描证明:第二代NTA/Ni2+所固定的蛋白量是第一代NTA/Ni2+的1.63倍。
     为了进一步提高平面硅表面官能团NTA的数量,同时考虑在生物领域的应用,我们在平面硅表面接枝具有抗生物污染的聚(聚乙二醇单甲基丙烯酸甲酯)(PEGMA)聚合物刷(Si-g-P(PEGMA)),利用上述方法提高了被绑定的蛋白质的量。首先通过Si-H与10-烯-1-醇在微波加热条件下的反应,在平面硅表面组装末端羟基的基底;然后将原子转移自由基聚合反应(ATRP)所必需的引发剂2-溴-2-甲基丙酰溴(BMPB)通过酯化反应引入平面硅表面;单体PEGMA在表而进行接枝共聚,所产生的Si-g-P(PEGMA)用丁二酸酐活化产生末端羧基的结构(Si-g-P(PEGMA-COOH)).末端羧基与NHS反应产生NHS酯,再与ANTA反应产生末端NTA。继续与NHS反应,继而与ANTA反应,生成第二代的NTA结构;重复前述的方法,直至生成第三代的NTA结构。通过与Ni2+配位以后,将产生的三代NTA结构用于绑定Histidine修饰的Thioredoxin-urodilatin。采用MTR-IR跟踪上述的逐步反应。通过对红外谱图中v(NH)积分面积的计算,得到第一代三乙酸胺至第三代三乙酸胺固定的蛋白量的比值为1:1.7:2.3。
     此外,我们还报道了一种在硅表面聚合物刷上(Si-g-P(PEGMA-OH))合成树枝结构聚酰胺胺(PAMAM)的方法。首先通过ATRP方法在平面硅表面制备Si-g-P(PEGMA-OH)。其与SOCl2反应,末端的-OH被转化为-Cl,末端-Cl被乙二胺取代,得到末端伯胺基结构。每一个末端伯氨基理论上可以与两个丙烯酸甲酯发生Michael加成,理论上生成两个末端酯(-(C=O)-OCH3)。这两个末端酯基与乙二胺发生酰胺化反应,得到两个末端氨基。如此重复上面的Michael加成和酰胺化反应,在具有抵抗生物污染的Si-g-P(PEGMA-OH)末端得到树枝结构PAMAM。硅表面密集的氨基可以通过其与N-琥珀酰胺基-6-马来酰胺基己烷酯(N-succinimidyl-6-maleimidylhexanoate, SMH)的交联反应得到活化。生物分子如缩宫素就可以被绑定在如此功能化的平面硅表面。另外,这种硅表面树枝结构PAMAM可以作为一个平台合成三个氨基酸的小肽H-Arg-Gly-OH(RGD)。上述每一步反应均有MTR-IR监测跟踪,辅助以XPS、UV-Vis和MALDI-TOF-MS作进一步的证明。
     最后,我们在硅表面高分子刷Si-g-P(PEGMA)上制备了两种不同的基团,以期实现Click Chemistry反应。一方面,Si-g-P(PEGMA-OH)与SOC12反应,-OH被-Cl取代,接着-Cl被NaN3中的-N3基取代,得到Si-g-P(PEGMA-N3)聚合物刷;另一方面,通过Si-g-P(PEGMA-OH)与溴丙炔反应,得到Si-g-P(PEGMA-CH2C=CH)。末端含炔基的模型化合物炔丙基胺、丙炔酸和10-炔-1-酸可以与末端叠氮基的聚合物刷反应,而末端含叠氮基的模型化合物苄基叠氮则可以与末端炔基的聚合物刷反应。这些反应都在微波条件下,以Cu(Ⅱ)/L-抗坏血酸钠体系为催化剂,30℃下反应均在1h内完成。每一步的化学反应都采用界面敏感的技术:MTR-IR和XPS进行详细地分析。归属于三唑环上v(H-C=)的3139 cm-1吸收峰和XPS高分辨扫描N ls作为确凿的证据证明了Click chemistry反应。通过Click反应前后的定量红外分析,我们发现微波作用带来了很高的收率和效率。因此,微波辐射促使硅表面Click反应的技术可以用于功能化合物的组装和有机物/硅器件的制备。
Various modifications have been carried out on silicon surface to satisfy the specific demands of different areas such as biochips, molecular devices and microelectronics in recent years. Chemical modifications on the silicon crystalline surface bring new chemical properties to prepare biosensors and biochips for protein and DNA assays.
     Chemical modifications can be realized including reactions between silane coupling reagents and the surface Si-OH as well as reactions between Grignard reagents and surface Si-Cl or Si-Br. However, the resulted Si-O-Si via the former reactions is apt to degrade under alkaline conditions. Meanwhile, the later reactions take place under stringent conditions and fewer sorts of Grignard reagents do not meet various practical demands.
     It demands robust covalent bonds between the interface of soft materials and silicon, which can suffer from diverse chemical environments and can be converted into different functional groups in practical use. The surface Si-C bond satisfies the requirement and silicon wafer is capable of enduring different organic solvents, acids and weak alkalis. Bond Si-C can be obtained by means of Si(111)-H, generated from etching with 40% NH4F solutions, coupling with terminal vinyl C=C of organic compounds with a functional group at the other end to fabricate monolayers on silicon surface. Further chemical modifications can be implemented until proper functionalized surface is yielded while the Si(111) surface remains atomic flat. All these properties of Si(111) forecast its extensive applications in biochemistry, molecular device and other areas. The research work described in this dissertation is as follows.
     First, a Si(111)-H surface was modified via a direct reaction between Si-H and 1-undecylenic acid (UA) under microwave irradiation to form molecular monolayers with terminal carboxyl groups. After esterifying carboxylic acid with N-hydroxysuccinimide (NHS), aminobutyl nitrilotriacetic acid (ANTA) was bound to the silicon surface through amidation (pH=8.0) between its primary amino group and NHS-ester, producing nitrilotriacetic acid (NTA) anions. Then hexa-histidine tagged thioredoxin-urodilatin (his-tagged protein) and FITC labeled hexa-histidine tagged thioredoxin-urodilatin (FITC-his-tagged protein) can be anchored after NTA was coordinated with Ni2+. Furthermore, the NTA-terminated chip was acidified with 0.1M HCl and subsequently esterified with NHS and then amidated with ANTA again to produce a second generation NTA. Thus the surface density of nitrilotriacetic acid anions was improved and resultantly that of anchored proteins was also enhanced through the iterative reactions. Both multiple transmission-reflection infrared spectroscopy (MTR-IR) and fluorescence scanning measurements demonstrated a proximate 1.63 times of anchored proteins on the second generation NTA/Ni2+ as that on the first generation NTA/Ni2+ monolayer.
     Apart from this, we developed a facile way of preparing a bioactive silicon surface through constructing multiple generation nitriloacetates from poly(poly(ethylene glycol)monomethacrylate) brushes on a planar silicon surface (Si-g-P(PEGMA)) to improve the capacity of binding proteins and biofouling repellence. Firstly the freshly etched Si(111)-H reacted with 10-undecen-l-ol (UO) under an optimized microwave irradiation condition to produce hydroxyl-terminated substrates. Secondly surface initiators for atom transfer radical polymerization (ATRP) were introduced by means of esterification between 2-bromo-2-methylpropionyl bromide (BMPB) and surface hydroxyl groups. Thirdly polymer brushes of Si-g-P(PEGMA) grown from surface initiators were carboxylated with succinic anhydride onto their side chains (Si-g-P(PEGMA-COOH)). Finally multiple generation nitriloacetates were obtained by iterative esterification of carboxylic acids with N-hydroxysuccinimide (NHS)/N,N'-dicyclohexylcarbodiimide (DCC) yielding amino-reactive NHS esters and successive amidation with aminobutyl nitrilotriacetic acid (ANTA) yielding nitrilotriacetic acid ligands for capturing histidine-tagged proteins. After coordinated with Ni(II), the first to third generation nitriloacetate surfaces were applied to bind histidine-tagged thioredoxin-urodilatin. All stepwise conversions were monitored with MTR-IR. By means of comparison of integrated peak areas of v(NH) from amide, we estimated the enhancement of protein loading by nitriloacetates as first generation/second generation/third generation= 1: 1.7:2.3.
     In addition, we reported a facile approach to building dendrons of polyamidoamine (PAMAM) derived from grafted polymer brushes of poly(poly(ethylene glycol) monomethacrylate) on planar silicon surface (Si-g-P(PEGMA-OH)). In the first place, Si-g-P(PEGMA-OH) brushes were built via surface-initiated atom transfer radical polymerization (ATRP) technique on silicon surface. The peripheral hydroxyl groups of Si-g-P(PEGMA-OH) were chlorinated with thionyl chloride to convert-OH into-Cl. Then the end chlorines were substituted with amino groups of ethylenediamine giving terminal primary amine. Each amino group reacted with methyl acrylate via Michael addition to produce two end esters of-(C=O)-OCH3 theoretically. The two resulted esters reacted with ethylenediamine (EDA) subsequently via amidation generating two terminal amino groups. We iterated such Michael addition to obtain terminal esters and subsequent amidation to achieve dendrons of PAMAM on such a biofouling-resistant surface of Si-g-P(PEGMA-OH). The dense amino groups could be activated via a cross-link reaction between peripheral amino groups of dendrons and N-succinimidyl-6-maleimidylhexanoate. Thus biomolecules such as oxytocins could be anchored on such functionalized surface, In addition, the dendrons of PAMAM on silicon surface could be used as a platform to synthesize a three amino acid peptide of H-Arg-Gly-Asp-OH (RGD). The modifications had been monitored and demonstrated by MTR-IR spectra, X-ray photoelectron spectroscopes (XPS), UV-Vis spectra and matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS).
     At last, two surface approaches were realized to complete click chemistry reactions at covalently grafted polymer brushes of poly(poly(ethylene glycol) monomethacrylate) on a planar silicon surface (Si-g-P(PEGMA-OH)). On one hand, the hydroxyls from Si-g-P(PEGMA-OH) brushes can be replaced by chlorines of thionyl chloride and then chlorines can be substituted with azides of sodium azide to achieve azide-terminated (Si-g-P(PEGMA-N3)) brushes. On the other hand, the terminal acetylene (Si-g-P(PEGMA-CH2C=CH)) brushes can be prepared easily by reaction between Si-g-P(PEGMA-OH) and propargyl bromide. Model compounds of propargylamine, propiolic acid and 10-undecynoic acid with terminal acetylene and of benzyl azide with terminal azide were chosen to investigate the surface click reactions catalyzed with Cu(Ⅱ)/sodium L-ascorbate by microwave irradiation under very mild conditions at 30℃for 1 h. The stepwise modifications were characterized by two surface-sensitive techniques, Multiple Transmission-Reflection Infrared Spectroscopy (MTR-IR) and XPS, and their spectra were analyzed in detail. The infrared band at 3139 cm-1 attributed to the triazole ring v(H-C=) and the XPS high-resolution scan of N 1s give the direct evidences to confirm the click reactions. By quantifying their infrared spectra before and after click reactions, we conclude that the click reactions on silicon surfaces by microwave irradiation possess high yield and efficiency. Hence, the microwave irradiated click reaction approaches on silicon might open convenient avenues to fabricate functional and hybrid organic/silicon devices.
引文
(1)Yun-Hui Li; Jillian M. Buriak Inorg. Chem.2006,45,1096-1102.
    (2)Sang-Eun Bae; Jung-Hyun Yoon; Chi-Woo J. Lee J. Phys. Chem. C 2008,112,1533-1538.
    (3)Simon P. Garcia; Hailing Bao; Muthiah Manimaran; Melissa A. Hines J. Phys. Chem. B 2002,106, 8258-8264.
    (4)Matthew R. Linford; Christopher E. D. Chidsey J. Am. Chem. Soc.1993,115,12631-12632.
    (5)Mathew Perring; Samrat Dutta; Samer Arafat; Michael Mitchell; Paul J. A. Kenis; Ned B. Bowden Langmuir 2005,21,10537-10544.
    (6)Benjamin Klingebiel; Luc Scheres; Steffen Franzka; Han Zuilhof; Nils Hartmann Langmuir 2010,26, 6826-6831.
    (7)Gabriela Palestino; Vivechana Agarwal; Roger Aulombard; Elias Perez; Csilla Gergely Langmuir 2008,24, 13765-13771.
    (8)Alain Petit; Michel Delmotte; Andre Loupy; Jean-Noel Chazalviel; Francois Ozanam; Rabah Boukherroub J. Phys. Chem. C 2008,112,16622-16628.
    (9)Luc Vellutini; Nicolas Errien; GeRard Froyer; Nelly Lacoudre; Sylvie Boileau; Francois Tran-Van; Claude Chevrot Chem. Mater.2007,19,497-502.
    (10)Dong-Jie Guo; Shou-Jun Xiao; Bing Xia; Shuai-Wei; Jia Pei; Yi Pan; Xiao-Zeng You; Zhong-Ze Gu; Zuhong Lu J. Phys. Chem. B 2005,109,20620-20628.
    (11)Dianpeng Qi; Nan Lu; Hongbo Xu; Bingjie Yang; Chunyu Huang; Miaojun Xu; Liguo Gao; Zhouxiang Wang; Lifeng Chi Langmuir 2009,25,7769-7772.
    (12)Meiwen Cao; Xiaoyan Song; Jin Zhai; Jinben Wang; Yilin Wang J. Phys. Chem. B 2006,110, 13072-13075.
    (13)Hong Liu; Zhong Lin Wang J. Am. Chem. Soc.2005,127,15322-15326.
    (14)Soma Chattopadhyay; Paul W. Bohn Anal. Chem.2006,78,6058-6064.
    (15)Akihito Imanishi; Satoshi Yamane; Yoshihiro Nakato Langmuir 2008,24,10755-10761.
    (16)Louis C. P. M. de Smet; Han Zuilhof; Ernst J. R. Sudholter; Lars H. Lie; Andrew Houlton; Benjamin R. Horrocks J. Phys. Chem. B 2005,109,12020-12031.
    (17)G. S. Higashi; Y. J. Chabal; G. W. Trucks; Krishnan Raghavachari AppL Phys. Lett.1990,56,656-658.
    (18)Vladimir Lysenko; Fabrice Bidault; Sergei Alekseev; Vladimir Zaitsev; Daniel Barbier J. Phys. Chem. B 2005,109,19711-19718.
    (19)S. A. Alekseev; V. Lysenko; V. N. Zaitsev; D. Barbier J.Phys. Chem. C 2007,111,15217-15222.
    (20)Brian J. Eves; Qiao-Yu Sun; Gregory P. Lopinski; Han Zuilhof J. Am. Chem. Soc.2004,126,14318-14319.
    (21)Michel Rosso; Ahmed Arafat; Karin Schroen; Marcel Giesbers; Christopher S. Roper; Roya Maboudian; Han Zuilhof Langmuir 2008,24,4007-4012.
    (22)Takahiro Ishizaki; Nagahiro Saito; Lee SunHyung; Kaoru Ishida; Osamu Takai Langmuir 2006,22, 9962-9966.
    (23)R. Boukherroub; S. Morin; D. D. M. Wayner; F. Bensebaa; G. I. Sproule; J. M. Baribeau; D. J. Lockwood Chem. Mater.2001,13,2002-2011.
    (24)Rabah Boukherroub; Alain Petit; Andre Loupy; Jean-Noel Chazalviel; Francois Ozanam J. Phys. Chem. B 2003,107,13459-13462.
    (25)Anne Faucheux; Anne Chantal Gouget-Laemmel; Catherine Henry de Villeneuve; Rabah Boukherroub; Franc Uois Ozanam; Philippe Allongue; Jean-Noel Chazalviel Langmuir 2006,22,153-162.
    (26)Xiang Liu; Huan-Mei Han; Hong-Bo Liu; Shou-jun Xiao Surface Science 2010,604,1315-1319.
    (27)Raluca Voicu; Rabah Boukherroub; Vasiliki Bartzoka; Tim Ward; James T. C. Wojtyk; Danial D. M. Wayner Langmuir 2004,20,11713-11720.
    (28)Hidehiko Asanuma; Hidenori Noguchi; Kohei Uosaki; Hua-Zhong Yu J. Am. Chem. Soc.2008,130, 8016-8022.
    (29)Federica Rusmini; Zhiyuan Zhong; Jan Feijen Biomacromolecules 2007,8,1775-1789.
    (30)Hong-Bo Liu; Nagaiyanallur V. Venkataraman; Tobias E. Bauert; Marcus Textor; Shou-Jun Xiao J. Phys. Chem. A 2008,112,12372-12377.
    (31)Brian L. Frey; Robert M. Corn Anal. Chem.1996,68,3187-3193.
    (32)Joydeep Lahiri; Lyle Isaacs; Joe Tien; George M. Whitesides Anal. Chem.1999,71,777-790.
    (33)Shou-Jun Xiao; Samuel Brunner; Marco Wieland J. Phys. Chem. B 2004,108,16508-16517.
    (34)Rabah Boukherroub; J. T. C. Wojtyk; Danial D. M. Wayner; David J. Lockwood J. Electrochem. Soc.2002, 149, H59-H63.
    (35)Y. J. Li; R. Tero; T. Nagasawa; T. Nagata; T. Urisu Applied Surface Science 2004,238,238-241.
    (36)Bruno Fabre; Fanny Hauquier J. Phys. Chem. B 2006,110,6848-6855.
    (37)Antonino Gulino; Fabio Lupo; Guglielmo G. Condorelli; Placido Mineo; Ignazio Fragala Chem. Mater. 2007,19,5102-5109.
    (38)Anne Faucheux; Anne Chantal Gouget-Laemmel; Catherine Henry de Villeneuve; Anne Faucheux; Anne Chantal Gouget-Laemmel; Catherine Henry de Villeneuve; Rabah Boukherroub; Francois Ozanam; Philippe Allongue; Jean-Noel Chazalviel Langmuir 2006,22,153-162.
    (39)Dong-Jie Guo; Shou-Jun Xiao; Bing Xia; Shuai-Wei; Jia Pei; Yi Pan; Xiao-Zeng You; Zhong-Ze Gu; Zuhong Lu J. Phys. Chem. B 2005,109,20620-20628.
    (40)Ling Chen; Zeng-Tai Chen; Jing Wang; Shou-Jun Xiao; Zu-Hong Lu; Zhong-Ze Gu; Lin Kang; Jian Chen; Pei-Heng Wu; Yan-Chun Tang; Jian-Ning Liu Lab Chip 2009,9,756-760.
    (41)Sean P Cullen; Ian C Mandel; Padma Gopalan Langmuir 2008,24,13701-13709.
    (42)Parul Jain; Jinhua Dai; Gregory L. Baker; Merlin L. Bruening Macromolecules 2008,41,8413-8417.
    (43)Jamie D. Dunn; Elizabeth A. Igrisan; Amanda M. Palumbo; Gavin E. Reid; Merlin L. Bruening Anal. Chem. 2008,80,5727-5735.
    (44)Shou-Jun Xiao; Samuel Brunner; Marco Wieland J. Phys. Chem. B 2004,108,16508-16517.
    (45)Matthew R. Lockett; Margaret F. Phillips; Jessica L. Jarecki; Dora Peelen; Lloyd M. Smith Langmuir 2008, 24,69-75.
    (46)Jinhua Dai; Zhiyi Bao; Lei Sun; Seong U. Hong; Gregory L. Baker; Merlin L. Bruening Langmuir 2006,22, 4274-4281.
    (47)Sangjin Park; Kyung-Bok Lee; Insung S. Choi; Robert Langer; Sangyong Jon Langmuir 2007,23, 10902-10905.
    (48)Dong-Jie Guo; Jing Wang; Wei Tan; Shou-Jun Xiao; Zhen-Dong Dai Journal of Colloid and Interface Science 2009,336,723-729.
    (49)D. Xu; W. H. Yu; E. T. Kang; K. G. Neoh Journal of Colloid and Interface Science 2004,279,78-87.
    (50)Till Bocking; Michael James; Hans G. L. Coster; Terry C. Chilcott; Kevin D. Barrow Langmuir 2004,20, 9227-9235.
    (51)Bing Xia; Shou-Jun Xiao; Dong-Jie Guo; Jing Wang; Jie Chao; Hong-Bo Liu; Jia Pei; Ya-Qing Chen; Yan-Chun Tang; Jian-Ning Liu J. Mater. Chem.2006,16,570-578.
    (52)Shou-Jun Xiao; Marcus Textor; Nicholas D. Spencer Langmuir 1998,14,5507-5516.
    (53)Zhang Lin; Todd Strother; Wei Cai; Xiaoping Cao; Lloyd M. Smith; Robert J. Hamers Langmuir 2002,18, 788-796.
    (54)Teruhisa Ichihara; Junko K. Akada; Shuichi Kamei; Saemi Ohshiro; Daisuke Sato; Masanori Fujimoto; Yasuhiro Kuramitsu; Kazuyuki Nakamura Journal of Proteome Research 2006,5,2144-2151.
    (55)Karine Glinel; Alain M. Jonas; Thierry Jouenne; Je Rome Leprince; Ludovic Galas; Wilhelm T. S. Huck Bioconjugate Chem.2009,20,71-77.
    (56)Alexander B. Sieval; Gert Heij Ralf Linke; Geert Meijer; Han Zuilhof; Ernst J. R. Sudhlter Langmuir 2001, 17,7554-7559.
    (57)Shenghua Gan; Peng Yang; Wantai Yang Biomacromolecules 2009,10,1238-1243.
    (58)Norman A. Lapin; Yves J. Chabal J. Phys. Chem. B 2009,113,8776-8783.
    (59)Hong-Liang Li; Ai-Ping Fu; Dong-Sheng Xu; Guo-Lin Guo; Lin-Lin Gui; You-Qi Tang Langmuir 2002, 18,3198-3202.
    (60)V. V. Rostovtsev; L. G. Green; V. V. Fokin; K. B. Sharpless Angew. Chem. Int. Ed.2002,41,2596-2599.
    (61)Neal K. Devaraj; Gregory P. Miller; Wataru Ebina; Boyko Kakaradov; James P. Collman; Eric T. Kool; Christopher E. D. Chidsey J.Am. Chem. Soc.2005,127,8600-8601.
    (62)Xue-Long Sun; Cheryl L. Stabler; Chrystelle S. Cazalis; Elliot L. Chaikof Bioconjugate Chemistry 2006, 17,52-57.
    (63)Anand Gole; Catherine J. Murphy Langmuir 2008,24,266-272.
    (64)Nicole F. Steinmetz; Vu Hong; Erik D. Spoerke; Ping Lu; Kurt Breitenkamp; M. G. Finn; Marianne Manchester J.Am. Chem. Soc.2009,131,17093-17095.
    (65)James P. Collman; Neal K. Devaraj; Todd P. A. Eberspacher; Christopher E. D. Chidsey Langmuir 2006, 22,2457-2464.
    (66)Lu Chen; Hernan R. Rengifo; Cristian Grigoras; Xiaoxu Li; Zengmin Li; Jingyue Ju; Jeffrey T. Koberstein Biomacromolecules 2008,9,2345-2352.
    (67)Huaming Li; Fuyong Cheng; Andy M. Duft; Alex Adronov J. Am. Chem. Soc.2005,127,14518-14524.
    (68)Tao Zhang; Yuanpeng Wu; Xuemei Pan; Zhaohui Zheng; Xiaobin Ding; Yuxing Peng European Polymer Journal 2009,45,1625-1633.
    (69)K. Huang; F. Duclairoir; T. Pro; J. Buckley; G. Marchand; E. Martinez; J. C. Marchon; B. De Salvo; G. Delapierre; F. Vinet ChemPhysChem 2009,10,963-971.
    (70)Peigen Cao; Ke Xu; James R. Heath J. Am. Chem. Soc.2008,130,14910-14911.
    (71)Andrea G. Marrani; Enrique A. Dalchiele; Robertino Zanoni; Franco Decker; Fabrizio Cattaruzza; Davide Bonifazi; Maurizio Prato Electrochimica Acta 2008,53,3903-3909.
    (72)Thomas Lummerstorfer; Helmuth Hoffmann J.Phys. Chem. B 2004,108,3963-3966.
    (73)Claudia Haensch; Tina Erdmenger; Martin W. M. Fijten; Stephanie Hoeppener; Ulrich S. Schubert Langmuir 2009,25,8019-8024.
    (74)Shaurya Prakash; Timothy M. Long; John C. Selby; Jeffrey S. Moore; Mark A. Shannon Analytical Chemistry 2007,79,1661-1667.
    (75)James P. Collman; Neal K. Devaraj; Christopher E. D. Chidsey Langmuir 2004,20,1051-1053.
    (76)Claudia Haensch; Christina Ott; Stephanie Hoeppener; Ulrich S. Schubert Langmuir 2008,24, 10222-10227.
    (77)Samia Mahouche; Nejib Mekni; Leila Abbassi; Philippe Lang; Christian Perruchot; Mohamed Jouini; Fayna Mammeri; Mireille Turmine; Hatem Ben Romdhane; Mohamed M. Chehimi Surface Science 2009,603, 3205-3211.
    (78)Neal K. Devaraj; James P. Collman QSAR & Combinatorial Science 2007,26,1253-1260.
    (79)Rosemary D. Rohde; Heather D. Agnew; Woon-Seok Yeo; Ryan C. Bailey; James R. Heath J. Am. Chem. Soc.2006,128,9518-9525.
    (80)Simone Ciampi; Till Bcking; Kristopher A. Kilian; Michael James; Jason B. Harper; J. Justin Gooding Langmuir 2007,23,9320-9329.
    (81)Simone Ciampi; Till Bocking; Kristopher A. Kilian; Jason B. Harper; J. Justin Gooding Langmuir 2008,24, 5888-5892.
    (82)Hernan R. Rengifo; Cristian Grigoras Lu Chen; Jingyue Ju; Jeffrey T. Koberstein Langmuir 2008,24, 7450-7456.
    (83)Georgina K. Such; John F. Quinn; Anthony Quinn; Elvira Tjipto; Frank Caruso J. Am. Chem. Soc.2006, 128,9318-9319.
    (84)Catherine M. Santos; Amit Kumar; Wen Zhang; Chengzhi Cai Chem. Commun.2009,2854-2856.
    (85)Luca De Stefano; Mauro Rossi; Maria Staiano; Gianfranco Mamone; Antonoietta Parracino; Lucia Rotiroti; Ivo Rendina; Mose Rossi; Sabato D. Auria Journal of Proteome Research 2006,5,1241-1245.
    (86)Till Bocking; Kristopher A. Kilian; Tracey Hanley; Suhrawardi Ilyas; Katharina Gaus; Michael Gal; J. Justin Gooding Langmuir 2005,21,10522-10529.
    (87)Peng-Feng Guo; Hong-Bo Liu; Xiang Liu; Hong-Fang Li; Wen-Yi Huang; Shou-Jun Xiao J. Phys. Chem. C 2010,114,333-341.
    (88)Rong Dong; Sitaraman Krishnan; Barbara A. Baird; Manfred Lindau; Christopher K. Ober Biomacromolecules 2007,8,3082-3092.
    (89)Stefano Tugulu; Harm-Anton Klok Biomacromolecules 2008,9,906-912.
    (90)F. J. Xu; Q. J. Cai; Y. L. Li; E. T. Kang; K. G. Neoh Biomacromolecules 2005,6,1012-1020.
    (91)Fan Zhang; F. J. Xu; E. T. Kang; K. G. Neoh Ind. Eng. Chem. Res.2006,45,3067-3073.
    (92)Jia-Yu Wang; Wei Chen; An-Hua Liu; Guang Lu; Gang Zhang; Jun-Hu Zhang; Bai Yang J. Am. Chem. Soc. 2002,124,13358-13359.
    (93)Sangyong Jon; Jiehyun Seong; Ali Khademhosseini; Thanh-Nga T. Tran; Paul E. Laibinis; Robert Langer Langmuir 2003,19,9989-9993.
    (94)J. H. Maas; M. A. Cohen Stuart; A. B. Sieval; H. Zuilhof; E. J. R. Sudholter Thin Solid Films 2003,426, 135-139.
    (95)Jin-Shan Wang; Krzysztof Matyjaszewski J. Am. Chem. Soc.1995,117,5614-5615.
    (96)Mitsuru Kato; Masami Kamigaito; Mitsuo Sawamoto; Toshinobu Higashimura Macromolecules 1996,28, 1721-1723.
    (97)W. H. Yu; E. T. Kang; K. G. Neoh Langmuir 2004,20,8294-8300.
    (98)E. T. Kang K. F J Xu Macromolecules 2005,38,1573-1580.
    (99)F. J. Xu; Y. L. Li; E. T. Kang; K. G. Neoh Biomacromolecules 2005,6,1759-1768.
    (100)F. J. Xu; Q. J. Cai; E. T. Kang; K. G. Neoh Langmuir 2005,21,3221-3225.
    (101)W. H. Yu; E. T. Kang; K. G. Neoh J. Phys. Chem. B 2003,107,10198-10205.
    (102)F. J. Xu; S. P. Zhong; L. Y. L. Yung; E. T. Kang; K. G. Neoh Biomacromolecules 2004,5,2392-2403.
    (103)Xiangxing Kong; Tadashi Kawai; Jiro Abe; Tomokazu Iyoda Macromolecules 2001,34,1837-1844.
    (104)Stephen G. Boyes; William J. Brittain; Xin Weng; Stephen Z. D. Cheng Macromolecules 2002,35, 4960-4967.
    (105)Anthony M. Granville; Stephen G. Boyes; Bulent Akgun; Mark D. Foster; William J. Brittain Macromolecules 2004,37,2790-2796.
    (106)Hanfu Wang Longjian Xue Kai Yu Langmuir 2007,23,1443-1452.
    (107)N. Ayres; D. J. Holt; C. F. Jones; L. E. Corum; D. W. Grainger Journal of Polymer Science:Part A: Polymer Chemistry 2008,46,7713-7724.
    (108)Takayuki Uekusa; Shusaku Nagano; Takahiro Seki Macromolecules 2009,42,312-318.
    (109)F. J. Xu; E. T. Kang; K. G. Neoh; L. Y. Liu; W. T. Yang; E. T. Kang; K. G. Neoh Biomacromolecules 2009, 10,1665-1674.
    (110)Muhammad Ejaz; Kohji Ohno; Yoshinobu Tsujii; Takeshi Fukuda Macromolecules 2000,33,2870-2874.
    (111)Rahul Sharma; Ayush Goyal; James M. Caruthers; You-Yeon Won Macromolecules 2006,39,4680-4689.
    (112)Srikant Pathak; Anup K. Singh; James R. McElhanon; Paul M. Dentinger Langmuir 2004,20,6075-6079.
    (113)Sreenivasa Reddy Puniredd; Chan Mei Yin; Yeong Sai Hooi; P. S. Lee; M. P. Srinivasan Journal of Colloid and Interface Science 2009,332,505-510.
    (114)Till Booking; Elicia L. S. Wong; Michael James; Jolanta A. Watson; Christopher L. Brown; Terry C. Chilcott; Kevin D. Barrow; Hans G. L. Coster Thin Solid Films 2006,515,1857-1863.
    (115)Sonny S. Mark; Neelakantapillai Sandhyarani; Changcheng Zhu; Christine Campagnolo; Carl A. Batt Langmuir 2004,20,6808-6817.
    (116)Mandy Yang; Emily M. W. Tsang; Y. Andrew Wang; Xiaogang Peng; Hua-Zhong Yu Langmuir 2005,21, 1858-1865.
    (117)Chi Ming Yam; Maxence Deluge; David Tang; Amit Kumar; Chengzhi Cai Journal of Colloid and Interface Science 2006,296,118-130.
    (118)Geerten H. Degenhart; Barbara Dordi; Holger Schonherr; G. Julius Vancso Langmuir 2004,20,6216-6224.
    (119)Masaki Ujihara; Toyoko Imae Journal of Colloid and Interface Science 2006,293,333-341.
    (120)Kunio Esumi; Masaya Goino Langmuir 1998,14,4466-4470.
    (121)Valery N. Bliznyuk; Frank Rinderspacher; Vladimir V. Tsukruk Polymer 1998,39,5249-5252.
    (122)Dorota I. Rozkiewicz; Wim Brugman; Ron M. Kerkhoven; Bart Jan Ravoo; David N. Reinhoudt J. Am. Chem. Soc.2007,129,11593-11599.
    (123)Masahiro Ito; Toyoko Imae; Keigo Aoi; Kaname Tsutsumiuchi; Hidetoshi Noda; Masahiko Okada Langmuir 2002,18,9757-9764.
    (124)Norio Tsubokawa; Takeshi Takayama Reactive & Functional Polymers 2000,43,341-350.
    (125)Majad Khan; Wilhelm T. S. Huck Macromolecules 2003,36,5088-5093.
    (126)Hong Jin Kim; Joong Ho Moon; Joon Won Park Journal of Colloid and Interface Science 2000,227, 247-249.
    (127)Chang Ok Kim; Sung Ju Cho; Joon Won Park Journal of Colloid and Interface Science 2003,260, 374-378.
    (1)Claire Jeanquartier; Gerburg Schider; Sabine Feichtenhofer; Helmut Schwab; Robert Schennach; Johanna Stettner; Adolf Winkler; Heidrun Gruber-Woelfler; Georg Schitter; Rafael J. P. Eder; Johannes G. Khinast Langmuir 2008,24,13957-13961.
    (2)Till Bocking; Kristopher A. Kilian; Katharina Gaus;J. Justin Gooding Langmuir 2006,22,3494-3496.
    (3)Hidehiko Asanuma; Hidenori Noguchi; Kohei Uosaki; Hua-Zhong Yu J. Am. Chem. Soc.2008,130, 8016-8022.
    (4)Takuya Masuda; Katsuaki Shimazu; Kohei Uosaki J. Phys. Chem. C2008,112,10923-10930.
    (5)Susumu Takabayashi; Masato Ohashi; Kazushi Mashima; Yang Liu; Shoko Yamazaki; Yoshihiro Nakato Langmuir 2005,21,8832-8838.
    (6)Dong-Jie Guo; Shou-Jun Xiao; Bing Xia; Shuai-Wei; Jia Pei; Yi Pan; Xiao-Zeng You; Zhong-Ze Gu; Zuhong Lu J. Phys. Chem. B 2005,109,20620-20628.
    (7)Ling Chen; Zeng-Tai Chen; Jing Wang; Shou-Jun Xiao; Zu-Hong Lu; Zhong-Ze Gu; Lin Kang; Jian Chen; Pei-Heng Wu; Yan-Chun Tang; Jian-Ning Liu Lab Chip 2009,9,756-760.
    (8)Bing Xia; Shou-Jun Xiao; Dong-Jie Guo; Jing Wang; Jie Chao; Hong-Bo Liu; Jia Pei; Ya-Qing Chen; Yan-Chun Tang; Jian-Ning Liu J. Mater. Chem.2006,16,570-578.
    (9)Rabah Boukherroub; Alain Petit; Andre Loupy; Jean-Noe Chazalviel; Francois Ozanam J. Phys. Chem. B 2003,107,13459-13462.
    (10)Bruno Fabre; Fanny Hauquier J. Phys. Chem. B 2006,110,6848-6855.
    (11)Antonino Gulino; Fabio Lupo; Guglielmo G. Condorelli; Placido Mineo; Ignazio Fragala Chem. Mater. 2007,19,5102-5109.
    (12)Eric J. Lee; Theodore W. Bitner; James S. Ha; Michael J. Shane; Michael J. Sailor J. Am. Chem. Soc.1996, 118,5375-5382.
    (13)Hong-Bo Liu; Nagaiyanallur V. Venkataraman; Tobias E. Bauert; Marcus Textor; Shou-Jun Xiao J. Phys. Chem. A 2008,112,12372-12377.
    (14)Hong-Bo Liu; Shou-Jun Xiao; Ya-Qing Chen; Jie Chao; Jing Wang; Yue Wang; Yi Pan; Xiao-Zeng You; Zhong-Ze Gu J. Phys. Chem. B 2006,110,17702-17705.
    (15)Peng-Feng Guo; Hong-Bo Liu; Xiang Liu; Hong-Fang Li; Wen-Yi Huang; Shou-Jun Xiao J. Phys. Chem. C, (accepted).
    (16)Ziyong Sun; Wei Lu; Yanchun Tang; Jing Zhang; Junyong Chen; Hualing Deng; Xuerong Li; Jian-Ning Liu Protein Expression and Purification 2007,55,312-318.
    (17)Anne Faucheux; Anne Chantal Gouget-Laemmel; Catherine Henry de Villeneuve; Anne Faucheux; Anne Chantal Gouget-Laemmel; Catherine Henry de Villeneuve; Rabah Boukherroub; Francois Ozanam; Philippe Allongue; Jean-Noel Chazalviel Langmuir 2006,22,153-162.
    (18)Raluca Voicu; Rabah Boukherroub; Vasiliki Bartzoka; Tim Ward; James T. C. Wojtyk; Danial D. M. Wayner Langmuir 2004,20,11713-11720.
    (19)Alain Petit; Michel Delmotte; Andre Loupy; Jean-Noe Chazalviel; Francois Ozanam; Rabah Boukherroub J. Phys. Chem. C 2008,112,16622-16628.
    (20)Brian L. Frey; Robert M.Corn Anal. Chem.1996,68,3187-3193.
    (21)Joydeep Lahiri; Lyle Isaacs; Joe Tien; George M. Whitesides Anal. Chem.1999,71,777-790.
    (22)Shou-Jun Xiao; Samuel Brunner; Marco Wieland J. Phys. Chem. B 2004,108,16508-16517.
    (23)Rabah Boukherroub; J. T. C. Wojtyk; Danial D. M. Wayner; David J. Lockwood J. Electrochem. Soc.2002, 149, H59-H63.
    (1)Takahiro Ishizaki; Nagahiro Saito; Lee SunHyung; Kaoru Ishida; Osamu Takai Langmuir 2006,22, 9962-9966.
    (2)Till Bocking; Adi Salomon; David Cahen; J. Justin Gooding Langmuir 2007,23,3236-3241.
    (3)Till Bocking; Kristopher A. Kilian; Tracey Hanley; Suhrawardi Ilyas; Katharina Gaus; Michael Gal; J. Justin Gooding Langmuir 2005,21,10522-10529.
    (4)Anne Faucheux; Anne Chantal Gouget-Laemmel; Catherine Henry de Villeneuve; Anne Faucheux; Anne Chantal Gouget-Laemmel; Catherine Henry de Villeneuve; Rabah Boukherroub; Francois Ozanam; Philippe Allongue; Jean-Noel Chazalviel Langmuir 2006,22,153-162.
    (5)Kohei Uosaki; M. Emran Quayum; Satoshi Nihonyanagi; Toshihiro Kondo Langmuir 2004,20,1207-1212.
    (6)Till Bocking; Michael James; Hans G. L. Coster; Terry C. Chilcott; Kevin D. Barrow Langmuir 2004,20, 9227-9235.
    (7)Raluca Voicu; Rabah Boukherroub; Vasiliki Bartzoka; Tim Ward; James T. C. Wojtyk; Danial D. M. Wayner Langmuir 2004,20,11713-11720.
    (8)Brian J. Eves; Qiao-Yu Sun; Gregory P. Lopinski; Han Zuilhof J.Am. Chem. Soc.2004,126,14318-14319.
    (9)Qiao-Yu Sun; Louis C. P. M. de Smet; Barend van Lagen; Marcel Giesbers; Peter C. Thne; Johan van Engelenburg; Frits A. de Wolf; Han Zuilhof; Ernst J. R. Sudhlter J. Am. Chem. Soc.2005,127,2514-2523.
    (10)Akihito Imanishi; Satoshi Yamane; Yoshihiro Nakato Langmuir 2008,24,10755-10761.
    (11)Alexander B. Sieval; Gert Heij Ralf Linke; Geert Meijer; Han Zuilhof; Ernst J. R. Sudhlter Langmuir 2001, 17,7554-7559.
    (12)Taro Yamada Current Applied Physics 2006,6S1, e26-e32.
    (13)Anna Razgon; Robert G. Bergman; Chaim N. Sukenik Langmuir 2008,24,2545-2552.
    (14)Hua Jin; C. Reagan Kinser; Paul A. Bertin; Donald E. Kramer; Joseph A. Libera; Mark C. Hersam; Sonbinh T. Nguyen; Michael J. edzyk Langmuir 2004,20,6252-6258.
    (15)Bruno Fabre; Fanny Hauquier J. Phys. Chem. B 2006,110,6848-6855.
    (16)Mathew Perring; Samrat Dutta; Samer Arafat; Michael Mitchell; Paul J. A. Kenis; Ned B. Bowden Langmuir 2005,21,10537-10544.
    (17)Antonino Gulino; Fabio Lupo; Guglielmo G. Condorelli; Placido Mineo; Ignazio Fragala Chem. Mater.2007, 19,5102-5109.
    (18)Rosemary D. Rohde; Heather D. Agnew; Woon-Seok Yeo; Ryan C. Bailey; James R. Heath J. Am. Chem. Soc.2006,128,9518-9525.
    (19)Simone Ciampi; Till Bcking; Kristopher A. Kilian; Michael James; Jason B. Harper; J. Justin Gooding Langmuir 2007,23,9320-9329.
    (20)Jianhua Gu; Chi Ming Yam; Sha Li; Chengzhi Cai J. Am. Chem. Soc.2004,126,8098-8099.
    (21)Todd Strother; Wei Cai; Xinsheng Zhao; Robert J. Hamers; Lloyd M. Smith J. Am. Chem. Soc.2000,122, 1205-1209.
    (22)Till Bocking; Kristopher A. Kilian; Katharina Gaus; J. Justin Gooding Langmuir 2006,22,3494-3496.
    (23)Hidehiko Asanuma; Hidenori Noguchi; Kohei Uosaki; Hua-Zhong Yu J. Am. Chem. Soc.2008,130, 8016-8022.
    (24)Matthew R. Lockett; Margaret F. Phillips; Jessica L. Jarecki; Dora Peelen; Lloyd M. Smith Langmuir 2008, 24,69-75.
    (25)Louis C. P. M. de Smet; Gerrit A. Stork; Geert H. F. Hurenkamp; Qiao-Yu Sun; Hseyin Topal; Patrick J. E. Vronen; Alex B. Sieval; Andrew Wright; Gerben M. Visser; Han Zuilhof; Ernst J. R. Sudhlter J. Am. Chem. Soc. 2003,125,13916-13917.
    (26)Claire Jeanquartier; Gerburg Schider; Sabine Feichtenhofer; Helmut Schwab; Robert Schennach; Johanna Stettner; Adolf Winkler; Heidrun Gruber-Woelfler; Georg Schitter; Rafael J. P. Eder; Johannes G. Khinast Langmuir 2008,24,13957-13961.
    (27)F. J. Xu; Q. J. Cai; Y. L. Li; E. T. Kang; K. G. Neoh Biomacromolecules 2005,6,1012-1020.
    (28)F. J. Xu; E. T. Kang; K. G. Neoh; L. Y. Liu; W. T. Yang; E. T. Kang; K. G. Neoh Biomacromolecules 2009, 10,1665-1674.
    (29)F. J. Xu; Y. L. Li; E. T. Kang; K. G. Neoh Biomacromolecules 2005,6,1759-1768.
    (30)N. Ayres; D. J. Holt; C. F. Jones; L. E. Corum; D. W. Grainger Journal of Polymer Science:Part A:Polymer Chemistry 2008,46,7713-7724.
    (31)Sangjin Park; Kyung-Bok Lee; Insung S. Choi; Robert Langer; Sangyong Jon Langmuir 2007,23, 10902-10905.
    (32)Rabah Boukherroub; Sylvie Morin; Paula Sharpe; Danial D. M. Wayner Langmuir 2000,16,7429-7434.
    (33)Dorin Dusciac; Jean-Noel Chazalviel; Francois Ozanam; Philippe Allongue; Catherine Henry de Villeneuve Surface Science 2007,601,3961-3964.
    (34)D. Xu; W. H. Yu; E. T. Kang; K. G. Neoh Journal of Colloid and Interface Science 2004,279,78-87.
    (35)W. H. Yu; E. T. Kang; K. G. Neoh J.Phys. Chem. B 2003,107,10198-10205.
    (36)W. H. Yu; E. T. Kang; K. G. Neoh Langmuir 2004,20,8294-8300.
    (37)Dong-Jie Guo; Jing Wang; Wei Tan; Shou-Jun Xiao; Zhen-Dong Dai Journal of Colloid and Interface Science 2009,336,723-729.
    (38)Mahaveer D. Kurkuri; Chantelle Driever; Graham Johnson; Gail McFarland; Helmut Thissen; Nicolas H. Voelcker Biomacromolecules 2009,10,1163-1172.
    (39)Sheeny Lan; Mandana Veiseh; Miqin Zhang Biosensors and Bioelectronics 2005,20,1697-1708.
    (40)Stefano Tugulu; Harm-Anton Klok Biomacromolecules 2008,9,906-912.
    (41)Sean P Cullen; Ian C Mandel; Padma Gopalan Langmuir 2008,24,13701-13709.
    (42)Parul Jain; Jinhua Dai; Gregory L. Baker; Merlin L. Bruening Macromolecules 2008,41,8413-8417.
    (43)Jamie D. Dunn; Elizabeth A. Igrisan; Amanda M. Palumbo; Gavin E. Reid; Merlin L. Bruening Anal. Chem. 2008,80,5727-5735.
    (44)Jinhua Dai; Zhiyi Bao; Lei Sun; Seong U. Hong; Gregory L. Baker; Merlin L. Bruening Langmuir 2006,22, 4274-4281.
    (45)Xiang Liu; Huan-Mei Han; Hong-Bo Liu; Shou-jun Xiao Surface Science 2010,604,1315-1319.
    (46)Ziyong Sun; Wei Lu; Yanchun Tang; Jing Zhang; Junyong Chen; Hualing Deng; Xuerong Li; Jian-Ning Liu Protein Expression and Purification 2007,55,312-318.
    (47)Hong-Bo Liu; Shou-Jun Xiao; Ya-Qing Chen; Jie Chao; Jing Wang; Yue Wang; Yi Pan; Xiao-Zeng You; Zhong-Ze Gu J. Phys. Chem. B 2006,110,17702-17705.
    (48)Hong-Bo Liu; Nagaiyanallur V. Venkataraman; Tobias E. Bauert; Marcus Textor; Shou-Jun Xiao J. Phys. Chem. A 2008,112,12372-12377.
    (49)Wei Cai; Zhang Lin; Todd Strother; Lloyd M. Smith; Robert J. Hamers J. Phys. Chem. B 2002,106, 2656-2664.
    (50)Yosuke Kanai; Annabella Selloni J. Am. Chem. Soc.2006,128,3892-3893.
    (51)Anthony M. Granville; Stephen G. Boyes; Bulent Akgun; Mark D. Foster; William J. Brittain Macromolecules 2004,37,2790-2796.
    (52)Hanfu Wang Longjian Xue Kai Yu Langmuir 2007,23,1443-1452.
    (53)Fan Zhang; F. J. Xu; E. T. Kang; K. G. Neoh Ind. Eng. Chem. Res.2006,45,3067-3073.
    (54)F. J. Xu; S. P. Zhong; L. Y. L. Yung; E. T. Kang; K. G. Neoh Biomacromolecules 2004,5,2392-2403.
    (55)Ling Chen; Zeng-Tai Chen; Jing Wang; Shou-Jun Xiao; Zu-Hong Lu; Zhong-Ze Gu; Lin Kang; Jian Chen; Pei-Heng Wu; Yan-Chun Tang; Jian-Ning Liu Lab Chip 2009,9,756-760.
    (56)Brian L. Frey; Robert M. Corn Anal. Chem.1996,68,3187-3193.
    (57)Shou-Jun Xiao; Samuel Brunner; Marco Wieland J. Phys. Chem. B 2004,108,16508-16517.
    (58)Biswajit Dey; Somnath Ray Choudhury; Eringathodi Suresh; Atish Dipankar Jana; Subrata Mukhopadhyay Journal of Molecular Structure 2009,921,268-273.
    (1)Torsten Pietsch; Dietmar Appelhans; Nabil Gindy; Brigitte Voit; Amir Fahmi Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009,341,93-102.
    (2)Sanja Natali; Jovan Mijovic Macromolecules 2009,42,6799-6807.
    (3)Geerten H. Degenhart; Barbara Dordi; Holger Schonherr; G. Julius Vancso Langmuir 2004,20,6216-6224.
    (4)Chi Ming Yam; Maxence Deluge; David Tang; Amit Kumar; Chengzhi Cai Journal of Colloid and Interface Science 2006,296,118-130.
    (5)Rameshwer Shukla; Elliott Hill; Xiangyang Shi; Jinkoo Kim; Maria C. Muniz; Kai Sunc; Jr. James R. Baker Soft Matter 2008,4,2160-2163.
    (6)Srikant Pathak; Anup K. Singh; James R. McElhanon; Paul M. Dentinger Langmuir 2004,20,6075-6079.
    (7)Sreenivasa Reddy Puniredd; Chan Mei Yin; Yeong Sai Hooi; P. S. Lee; M. P. Srinivasan Journal of Colloid and Interface Science 2009,332,505-510.
    (8)Gemma Navarro; Conchita Tros De ILarduya Nanomedicine:Nanotechnology, Biology and Medicine 2009, 5,287-297.
    (9)Yoonkyung Kim; Beatrice Hechler; Athena M. Klutz; Christian Gachet; Kenneth A. Jacobson Bioconjugate Chem.2008,19,406-411.
    (10)Henriette Cordes; Ulrik Boas; Panchale Olsen; Peter M. H. Heegaard Biomacromolecules 2007,8, 3578-3583.
    (11)Shin Ogasawara; Atsushi Ikeda; Jun-ichi Kikuchi Chem. Mater.2006,18,5982-5987.
    (12)Istvan J. Majoros; Andrzej Myc; Thommey Thomas; Chandan B. Mehta; James R. Baker Biemacroomolecules 2006,7,572-579.
    (13)Roseita Esfand; Donald A. Tomalia Drug Discovery Today 2001,6,427-436.
    (14)Sonny S. Mark; Neelakantapillai Sandhyarani; Changcheng Zhu; Christine Campagnolo; Carl A. Batt Langmuir 2004,20,6808-6817.
    (15)Xueyan Zhang; Manfred Wilhelm; Jacob Klein; Marcus Pfaadt; E. W. Meijer Langmuir 2000,16, 3884-3892.
    (16)Mandy Yang; Emily M. W. Tsang; Y. Andrew Wang; Xiaogang Peng; Hua-Zhong Yu Langmuir 2005,21, 1858-1865.
    (17)Dorota I. Rozkiewicz; Wim Brugman; Ron M. Kerkhoven; Bart Jan Ravoo; David N. Reinhoudt J. Am. Chem. Soc.2007,129,11593-11599.
    (18)Luc Scheres; Marcel Giesbers; Han Zuilhof Langmuir 2010,26,4790-4795.
    (19)Wensheng Zhuang; Hua Zhang; Daojun Liu Current Applied Physics 2007,7, e53-e57.
    (20)Till Bocking; Elicia L. S. Wong; Michael James; Jolanta A. Watson; Christopher L. Brown; Terry C. Chilcott; Kevin D. Barrow; Hans G. L. Coster Thin Solid Films 2006,515,1857-1863.
    (21)Norio Tsubokawa; Takeshi Takayama Reactive & Functional Polymers 2000,43,341-350.
    (22)Masamichi Murota; Shimpei Sato; Norio Tsubokawa Polym. Adv. Technol.2002,13,144-150.
    (23)Yoshinao Taniguchi; Kumi Shirai; Hiroshi Saitohb; Takesi Yamauchi; Norio Tsubokawa Polymer 2005,46, 2541-2547.
    (24)Chang Ok Kim; Sung Ju Cho; Joon Won Park Journal of Colloid and Interface Science 2003,260,374-378.
    (25)Lingrong Gu; Pengju G. Luo; Haifang Wang; Mohammed J. Meziani; Yi Lin; L. Monica Veca; Li Cao; Fushen Lu; Xin Wang; Robert A. Quinn; Wei Wang; Puyu Zhang; Sebastian Lacher; Ya-Ping Sun Biomacromolecules 2008,9,2408-2418.
    (26)Peng Liu; Tingmei Wang Industrial & Engineering Chemistry Research 2007,46,97-102.
    (27)Majad Khan; Wilhelm T. S. Huck Macromolecules 2003,36,5088-5093.
    (28)Shou-Jun Xiao; Samuel Brunner; Marco Wieland J. Phys. Chem. B 2004,108,16508-16517.
    (29)Hong-Bo Liu; Nagaiyanallur V. Venkataraman; Tobias E. Bauert; Marcus Textor; Shou-Jun Xiao J. Phys. Chem. A 2008,112,12372-12377.
    (30)Hong-Bo Liu; Nagaiyanallur V. Venkataraman; Nicholas D. Spencer; Marcus Textor; Shou-Jun Xiao ChemPhvsChem 2008,9,1979-1981.
    (31)Xiang Liu; Hong-Bo Liu; Peng-Feng Guo; Shou-Jun Xiao Physica Status Solidi (a) 2011, Accepted.
    (32)Xiang Liu; Huan-Mei Han; Hong-Bo Liu; Shou-jun Xiao Surface Science 2010,604,1315-1319.
    (33)Peng-Feng Guo; Hong-Bo Liu; Xiang Liu; Hong-Fang Li; Wen-Yi Huang; Shou-Jun Xiao J. Phys. Chem. C 2010,114,333-341.
    (34)F. J. Xu; E. T. Kang; K. G. Neoh; L. Y. Liu; W. T. Yang; E. T. Kang; K. G. Neoh Biomacromolecules 2009, 10,1665-1674.
    (35)D. Xu; W. H. Yu; E. T. Kang; K. G. Neoh Journal of Colloid and Interface Science 2004,279,78-87.
    (36)Zhenjun Chang; Yuan Xu; Xin Zhao; Qinghua Zhang; Dajun Chen ACS Applied Materials & Interfaces 2009,1,2804-2811.
    (37)F. J. Xu; Y. L. Li; E. T. Kang; K. G. Neoh Biomacromolecules 2005,6,1759-1768.
    (38)E. T. Kang K. F J Xu Macromolecules 2005,38,1573-1580.
    (39)Fan Zhang; F. J. Xu; E. T. Kang; K. G. Neoh Ind. Eng. Chem. Res.2006,45,3067-3073.
    (40)Shenghua Gan; Peng Yang; Wantai Yang Biomacromolecules 2009,10,1238-1243.
    (41)Bing Xia; Shou-Jun Xiao; Dong-Jie Guo; Jing Wang; Jie Chao; Hong-Bo Liu; Jia Pei; Ya-Qing Chen; Yan-Chun Tang; Jian-Ning Liu J. Mater. Chem.2006,16,570-578.
    (42)Till Bocking; Kristopher A. Kilian; Tracey Hanley; Suhrawardi llyas:Katharina Gaus; Michael Gal; J. Justin Gooding Langmuir 2005,21,10522-10529.
    (43)Jing Wang; Dong-Jie Guo; Bing Xia; Jie Chao; Shou-Jun Xiao Colloids and Surfaces A:Physicochem. Eng. Aspects 2007,305,66-75.
    (44)Raluca Voicu; Rabah Boukherroub; Vasiliki Bartzoka; Tim Ward; James T. C. Wojtyk; Danial D. M. Wayner Langmuir 2004,20,11713-11720.
    (45)Shou-Jun Xiao; Marcus Textor; Nicholas D. Spencer Langmuir 1998,14,5507-5516.
    (46)Barbara Dordi; Holger Schonherr:G. Julius Vancso Langmuir 2003,19,5780-5786.
    (47)PEI Jia; TANG YanChun; XU Ning; LU Wei; XIAO ShouJun; LIU JianNing Science China Chemistry 2011.
    (48)Hidehiko Asanuma; Hidenori Noguchi; Kohei Uosaki; Hua-Zhong Yu J. Am. Chem. Soc.2008,130, 8016-8022.
    (49)Matthew R. Lockett; Margaret F. Phillips; Jessica L. Jarecki; Dora Peelen; Lloyd M. Smith Langmuir 2008, 24,69-75.
    (50)Shou-Jun Xiao; Samuel Brunner; Marco WielandJ. Phys. Chem. B 2004,108,16508-16517.
    (51)Jinhua Dai; Zhiyi Bao; Lei Sun; Seong U. Hong; Gregory L. Baker; Merlin L. Bruening Langmuir 2006,22, 4274-4281.
    (52)Sangjin Park; Kyung-Bok Lee; Insung S. Choi; Robert Langer; Sangyong Jon Langmuir 2007,23, 10902-10905.
    (53)Till Bocking:Michael James:Hans G. L. Coster:Terry C. Chilcott; Kevin D. Barrow Langmuir 2004,20, 9227-9235.
    (1)V. V. Rostovtsev; L. G. Green; V. V. Fokin; K. B. Sharpless Angew. Chem. Int. Ed.2002,41,2596-2599.
    (2)K. Huang; F. Duclairoir; T. Pro; J. Buckley; G. Marchand; E. Martinez; J. C. Marchon; B. De Salvo; G. Delapierre; F. Vinet ChemPhysChem 2009,10,963-971.
    (3)Thomas Lummerstorfer; Helmuth Hoffmann J.Phys. Chem. B 2004,108,3963-3966.
    (4)Neal K.. Devaraj; Gregory P. Miller; Wataru Ebina; Boyko Kakaradov; James P. Collman; Eric T. Kool; Christopher E. D. Chidsey J. Am. Chem. Soc.2005,127,8600-8601.
    (5)Rosemary D. Rohde; Heather D. Agnew; Woon-Seok Yeo; Ryan C. Bailey; James R. Heath J. Am. Chem. Soc.2006,128,9518-9525.
    (6)Xue-Long Sun; Cheryl L. Stabler; Chrystelle S. Cazalis; Elliot L. Chaikof Bioconjugate Chemistry 2006,17, 52-57.
    (7)James P. Collman; Ali Hosseini; Todd A. Eberspacher; Christopher E. D. Chidsey Langmuir 2009,25, 6517-6521.
    (8)Peigen Cao; Ke Xu; James R. Heath J. Am. Chem. Soc.2008,130,14910-14911.
    (9)Richard A. Decreau; James P. Collman; Ying Yang; Yilong Yan:Neal K. Devaraj J. Org. Chem.2007,72, 2794-2802.
    (10)Catherine M. Santos; Amit Kumar; Wen Zhang; Chengzhi Cai Chem. Commun.2009,2854-2856.
    (11)Guo-Dong Fu; Li-Qun Xu; Fang Yao; Guo-Liang Li; En-Tang Kang ACS Applied Materials & Interfaces 2009,1,2424-2427.
    (12)Zhenjun Chang; Yuan Xu; Xin Zhao; Qinghua Zhang; Dajun Chen ACS Applied Materials & Interfaces 2009,1,2804-2811.
    (13)Krzysztof Matyjaszewski; Nicolay V. Tsarevsky Nature Chemistry 2009,1,276-288.
    (14)Michael D. Best Biochemistry 2009,48,6571-6584.
    (15)Ivone Carvalho; Peterson Andrade; Vanessa L. Campo; Paulo M. M. Guedes; Renata Sesti-Costa; Joao S. Silva; Sergio Schenkman; Simone Dedola; Lionel Hill; Martin Rejzek; Sergey A. Nepogodiev; Robert A. Field Bioorganic & Medicinal Chemistry 2010,18,2412-2427.
    (16)B. G. De Geest; W. Van Camp; F. E. Du Prez; S. C. De Smedt; J. Demeester; W. E. Hennink Chem. Commun. 2008,190-192.
    (17)Axel Schlossbauer; David Schaffert; Johann Kecht; Ernst Wagner; Thomas Bein J. Am. Chem. Soc.2008, 130,12558-12559.
    (18)Yun Zhang; Sanzhong Luo; Yijun Tang; Lei Yu; Kuang-Yu Hou; Jin-Pei Cheng; Xiangqun Zeng; Peng George Wang Analytical Chemistry 2006,78,2001-2008.
    (19)Olaf Michel; Bart Jan Ravoo Langmuir 2008,24,12116-12118.
    (20)Raimo Franke; Christian Doll; Jutta Eichler Tetrahedron Letters 2005,46,4479-4482.
    (21)James P. Collman; Neal K. Devaraj; Christopher E. D. Chidsey Langmuir 2004,20,1051-1053.
    (22)James P. Collman; Neal K. Devaraj; Todd P. A. Eberspacher; Christopher E. D. Chidsey Langmuir 2006,22, 2457-2464.
    (23)Neal K. Devaraj; Richard A. Decreau; Wataru Ebina; James P. Collman; Christopher E. D. Chidsey J. Phys. Chem. B 2006,110,15955-15962.
    (24)Leanne Britcher; Timothy J Barnes; Hans J. Griesser; Clive A. Prestidge Langmuir 2008,24,7625-7626.
    (25)Shaurya Prakash; Timothy M. Long; John C. Selby; Jeffrey S. Moore; Mark A. Shannon Analytical Chemistry 2007,79,1661-1667.
    (26)Claudia Haensch; Tina Erdmenger; Martin W. M. Fijten; Stephanie Hoeppener; Ulrich S. Schubert Langmuir 2009,25,8019-8024.
    (27)Claudia Haensch; Christina Ott; Stephanie Hoeppener; Ulrich S. Schubert Langmuir 2008,24, 10222-10227.
    (28)Jungkyu K. Lee; Young Shik Chi; Insung S. Choi Langmuir 2004,20,3844-3847.
    (29)Simone Ciampi; Till Bocking; Kristopher A. Kilian; Jason B. Harper; J. Justin Gooding Langmuir 2008,24, 5888-5892.
    (30)K. Chawla; S. Lee; B. P. Lee; J. L. Dalsin; P. B. Messersmith; N. D. Spencer Journal of Biomedical Materials Research Part A 2009,90A,742-749.
    (31)Stefanie Kessel; Stephan Schmidt; Renate Muller; Erik Wischerhoff; Andre Laschewsky; Jean-Francois Lutz; Katja Uhlig; Andreas Lankenau; Claus Duschl; Andreas Fery Langmuir 2010,26,3462-3467.
    (32)Haifeng Gao; Krzysztof Matyjaszewski J. Am. Chem. Soc.2007,129,6633-6639.
    (33)Rabah Boukherroub; Alain Petit; Andre Loupy; Jean-Noe Chazalviel:Francois Ozanam J. Phys. Chem. B 2003,107,13459-13462.
    (34)Camille Bouillon; Albert Meyer; SeBastien Vidal; Anne Jochum; Yann Chevolot; Jean-Pierre Cloarec; Jean-Pierre Praly; Jean-Jacques Vasseur; Francois Morvan J. Org. Chem.2006,71,4700-4702.
    (35)Alain Petit; Michel Delmotte; Andre Loupy; Jean-Noe Chazalviel; Francois Ozanam; Rabah Boukherroub J. Phys. Chem. C 2008,112,16622-16628.
    (36)Xiang Liu; Huan-Mei Han; Hong-Bo Liu; Shou-jun Xiao Surface Science 2010,604,1315-1319.
    (37)Dong-Jie Guo; Jing Wang; Wei Tan; Shou-Jun Xiao; Zhen-Dong Dai Journal of Colloid and Interface Science 2009,336,723-729.
    (38)Xiang Liu; Hong-Bo Liu; Peng-Feng Guo; Shou-Jun Xiao Physica Status Solidi (a) 2011, Accepted.
    (39)D. Xu; W. H. Yu; E. T. Kang; K. G. Neoh Journal of Colloid and Interface Science 2004,279,78-87.
    (40)Hong-Bo Liu; Shou-Jun Xiao; Ya-Qing Chen; Jie Chao; Jing Wang; Yue Wang; Yi Pan; Xiao-Zeng You; Zhong-Ze Gu J. Phys. Chem. B 2006,110,17702-17705.
    (41)Hong-Bo Liu; Nagaiyanallur V. Venkataraman; Tobias E. Bauert; Marcus Textor; Shou-Jun Xiao J. Phys. Chem. A 2008,112,12372-12377.
    (42)Peng-Feng Guo; Hong-Bo Liu; Xiang Liu; Hong-Fang Li; Wen-Yi Huang; Shou-Jun Xiao J. Phys. Chem. C 2010,114,333-341.
    (43)M. J. Joralemon; R. K. O'Reilly; J. B. Matson; A. K. Nugent; C. J. Hawker; K. L. Wooley Macromolecules 2005,38,5436-5443.
    (44)Rodney T. Chen; Benjamin W. Muir; Georgina K. Such; Almar Postma; Richard A. Evans; Suzanne M. Pereira; Keith M. McLean; Frank Caruso Langmuir 2010,26,3388-3393.
    (45)Rolf Chelmowski; Daniel Ka Fer; Stephan David Ko Ster; Tim Klasen; Tobias Winkler; Andreas Terfort; Nils Metzler-Nolte; Christof Woll Langmuir 2009,25,11480-11485.
    (46)Sreelatha S. Balamurugan; Erick Soto-Cantu; Rafael Cueto; Paul S. Russo Macromolecules 2010,43,62-70.
    (47)David A. Fleming; Christopher J. Thode; Mary Elizabeth Williams Chemistry of Materials 2006,18, 2327-2334.
    (48)Rajesh Ranjan; William J. Brittain Macromolecules 2007,40,6217-6223.
    (49)John P. Gann; Mingdi Yan Langmuir 2008,24,5319-5323.
    (50)Xiaojuan Wang; Li Liu; Yan Luo; Hanying Zhao Langmuir 2009,25,744-750.
    (51)Yang Yang; Chong Hua; Chang-Ming Dong Biomacromolecules 2009,10,2310-2318.
    (52)Jean-Francois Lutz; Hans G. Borner; Katja Weichenhan Macromolecules 2006,39,6376-6383.
    (53)Jean-Francois Lutz:Zoya Zarafshani Advanced Drug Delivery Reviews 2008,60,958-970.
    (54)Anders Egede Daugaard; Soren Hvilsted; Thomas Steen Hansen; Niels B. Larsen Macromolecules 2008,41, 4321-4327.
    (55)E. T. Kang K. F J Xu Macromolecules 2005,38,1573-1580.
    (56)F. J. Xu; Q. J. Cai; E. T. Kang; K. G. Neoh Langmuir 2005,21,3221-3225.
    (57)Ling Chen; Zeng-Tai Chen; Jing Wang; Shou-Jun Xiao; Zu-Hong Lu; Zhong-Ze Gu; Lin Kang; Jian Chen; Pei-Heng Wu; Yan-Chun Tang; Jian-Ning Liu Lab Chip 2009,9,756-760.
    (58)Bruno Fabre; Fanny HauquierJ. Phys. Chem. B 2006,110,6848-6855.
    (59)Raluca Voicu; Rabah Boukherroub; Vasiliki Bartzoka; Tim Ward; James T. C. Wojtyk; Danial D. M. Wayner Langmuir 2004,20,11713-11720.
    (60)Shou-Jun Xiao; Samuel Brunner; Marco Wieland J. Phys. Chem. B 2004,108,16508-16517.
    (61)W. H. Yu; E. T. Kang; K. G. Neoh J. Phys. Chem. B 2003,107,10198-10205.
    (62)Simone Ciampi; Till Bcking; Kristopher A. Kilian; Michael James; Jason B. Harper; J. Justin Gooding Langmuir 2007,23,9320-9329.
    (63)Yu Zhang; Hongkun He; Chao Gao; Jiayan Wu Langmuir 2009,25,5814-5824.
    (64)Huaming Li; Fuyong Cheng; Andy M. Duft; Alex Adronov J. Am. Chem. Soc.2005,127,14518-14524.
    (65)Gokhan Temel; Binnur Aydogan; Nergis Arsu; Yusuf Yagci Macromolecules 2009,42,6098-6106.
    (66)Hong-Bo Liu; Nagaiyanallur V. Venkataraman; Nicholas D. Spencer; Marcus Textor; Shou-Jun Xiao ChemPhysChem 2008,9,1979-1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700