荧光假单胞菌7-14生物膜突变株的筛选及tatC基因的克隆与功能初析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用mariner转座子对荧光假单胞菌7-14(Pseudomonas fluorescens 7-14, Pf7-14)进行转座诱变,成功构建了Pf7-14的突变体文库。利用96孔板筛选法,从8500多株突变体中筛选得到一株生物膜增强突变株4B5和一株生物膜减弱突变株25C11。通过任意PCR (arbitrary polymerase amplification reacrion, arbitrary PCR)和亚克隆技术鉴定出,4B5的转座子插入的位点与P. fluorescens Pf0-1编码chemotaxis sensory transducer的基因,与P. fluorescens Pf-5编码methyl-accepting chemotaxis transducer的基因具有很高的同源性,25C11的转座子插入的位点与P. fluorescens Pf-5和Pf0-1的编码lipoyltransferase的基因lipB高度同源。根据Pf0-1和Pf-5相关基因的序列设计简并引物,从Pf7-14中扩增出了对应的基因。油菜离体叶片的菌体分布试验表明,和Pf7-14野生型相比,4B5在油菜叶片上粘附的细胞数量较多,25C11粘附的细胞数量较少。
     根据荧光假单胞菌Pf-5和SBW25的tatC基因序列设计简并引物,采用PCR方法从Pf7-14中克隆了tatC基因,命名为tatCPf7-14。通过序列分析,我们比较了tatCPf7-14与同种、同属和其它相关细菌中tatC基因的核酸序列的同源性,以及TatCPf7-14与这些细菌中TatC蛋白的氨基酸序列的同源性。通过同源重组单交换的方法,构建了Pf7-14 tatC基因的插入突变株。研究发现,(1)tatC突变株的蛋白酶、嗜铁素的产量较野生型有所降低;(2)tatC突变体的游动能力和生物膜形成能力均弱于野生型。互补菌株均恢复了上述性状。tatC基因的突变未改变Pf7-14在LB培养基中的生长速率。平板拮抗试验显示,突变体对主要病原真菌仍具有很好的拮抗能力。
The mutant library of Pseudomonas fluorescens 7-14 (Pf7-14) was successfully constructed by mating mariner transposon into strain Pf7-14. We obtained 2 biofilm mutants from 8500 mutants. Compared to the wild-type,4B5 enhanced the ability of forming biofilm and 25C11 showed biofilm-defective phenotype. By Arbitrary PCR and sub-cloning, we ensured the locations of the genes inserted by transposon. The gene in 4B5 is homologous to the gene encodes chemotaxis sensory transducer in P. fluorescens Pf0-1 and the gene encodes methyl-accepting chemotaxis transducer in P. fluorescens Pf-5. The gene in 25C11 is homologous to lipB encoding lipoyltransferase in Pf0-1 and Pf-5. We cloned these two genes from Pf7-14 by PCR with degenerated primers. We observed bacterial cells distribution on isolated rape leaf assay. The adhersion ability of Pf7-14 is stronger than 25C11, and weaker than 4B5.
     According to the sequences of tatC gene from P. fluorescens Pf-5 and SBW25, a pair of degenerate primers was designed and used to amplify the tatC gene from P. fluorescens strain 7-14 (Pf7-14) (named as tatCPf7-14)-By sequence analysis, we compared the homology of tatCPf7-14 and TatPf7-14 to that in other kinds of bacterias. Pf7-14 tatC insertional mutantΔtatC has been constructed by single homologous recombination. Phenotypes of tatC gene mutant has been studied:(1)ΔtatC decreased the production of protease and siderophore; (2)ΔtatC was defective in swimming motility and biofilm formation; (3) The mutant affected in the tatC gene did not change the gowth rate when cultured in LB; (4)ΔtatC had the same phenotype in the antifungal activity to Rhzoctonia solani and Sclerotinia sclerotiorum. Complementation of tatC mutant restored all altered phenotypes.
引文
(1)李湘民,胡白石等.拮抗细菌菌株Pseudomonas fluorescens 7-14在水稻植株上的时间、空间定殖型[J].植物病理学报,2003,33(5):468-473
    (2)石佑恩主编.病原生物学[M].北京:人民卫生出版社,2002,54
    (3)Fraser GM, Hirano T, Ferris HU, et al., Substrate specificity of typeⅢ flagellar protein export in Salmonella is controlled by subdomain in interactions in FlhB [J]. Mol. Microbiol.,2003,48(4): 1043-1057.
    (4)王欣莹,范洪杰等.问号钩端螺旋体鞭毛相关基因flhA、flhB2和fliR的克隆及原核表达系统 的构建.中国生物制品学杂志[J]. January 2006, Vol.19 No.1:5-9
    (5)Capdevila S., Marttnez-Granero F M., Sanchez-Contreras M, et al. Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in compaetitive root colonization [J]. Microbiol.,2004,150:3889-3897
    (6)Feeiszig S M J., Arora S K., Van R, et al. FlhA, a component of the flagella assembly apparatus of Pseudomonas aeruginosa, plays a role in internalization by corneal epithelial cells [J]. Infection and Immunity,2001,69:4931-4937
    (7)Kalogeraki V S, Winans S C. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria [J]. Gene:1997,188 (1): 69-75
    (8)Kovach M E, Elzer P H, Hill D S, et al. Four new derivatives of the broad-host-range cloning vector pBBRlMCS, carrying different antibiotic-resistance cassettes [J]. Gene,1995,166 (1):175-176
    (9)Palumbo J D., Yuen G Y., Jochum C C, et al. Mutagenesis of β-1,3-Glucanase Genes in Lysobacter enzymogenes strain C3 Results in Reduced Biological Control Activity Toward Bipolaris Leaf Spot of Tall Fescue and Pythium Damping-Off of Sugar Beet [J]. Phytopathology,2005,95:701-707
    (10)Chesnokova O, Coutinho JB, Khan IH, et al. Characterization of flagella genes of Agrobacterium tumefaciens, and the effect of a bald strain on virulence [J]. Mol. Microbiology,1997,23:579-590
    (11)Gabriel-Piette J P., Idziak E S. Role of Flagella in adhesion of Pseudomonas fluorescens to tendon slices[J]. Appl Environ Microbiol,1991,57:1635-1639
    (12)Deflaun M F., Marshall B M., Kulle E P, et al. Tn5 insertion mutants of Pseudomonas fluorescens defective in adhesion to soil and seeds [J]. Appl Environ Microbiol,1994,60:2637-2642.
    (13)Weet S D., Vermeiren H., Mulders I H M, et al. Flagella-driven chemotaxis towards exudates components in an important trait for tomato root colonization by Pseudomonas fluorescens[J]. MPMI,2002,15:1173-1180.
    1. Abbas A, Morrisey J P, Marquez P C, et al. Characterization of interaction between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113 [J]. Journal of Bacteriology,2002,184:3008-3016
    2. Allison D G. The biofilm matrix [J]. Biofouling,2003,19:139-150
    3. Arima K, Imanaka H, Kausaka M, et al. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas [J]. Agriculture and Biology Chemistry,1964,28:575-576
    4. Baker K F. Evolving concepts of biological control of plant pathogens [J]. Annual Review of Phytopathology,1987,25:67-85
    5. Bangera M G, Thomashow L S. Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetyloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87 [J]. Molecular Plant-Microbe Interaction,1996,9:83-90
    6. Berks B C, Sargent F, Palmer T. The Tat protein export pathway [J]. Molecular Microbiology,2000, 35 (2):260-274
    7. Bitter W, Marugg J D, de Wdger L A. The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358:homology to TonB-dependent Escherichia coli receptors and specificity of the protein [J]. Molecular Microbiology,1991,5:647-655
    8. Boyd A, Chakrabarty A M. Pseudomonas aeruginosa biofilms:role of the alginate exopolysaccharide [J]. Journal of Industrial Microbiology,1995,15:162-168
    9. Bronstein P A, Marrichi M, Cartinhour S, et al. Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomoato DC3000 and its contribution to pathogenicity and fitness [J]. Journal of Bacteriology,2005,187:8450-8461
    10. Buchanan G, Sargent F, Berks BC, et al. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif [J]. Archive of Microbiology,2004,177:107-112
    11. Byng G S, Turner J M. Isolation of pigmentation mutants of Pseudomonas phenazinium [J]. Journal of General Microbiology,1976,72:581-583
    12. Caldelari I, Mann S, Crooks C, et al. The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence [J]. Molecular Plant-Microbe Interactions,2006,19 (2):200-212
    13. ChiA-Woeng T F C, Bloemberg G V, Lugtenberg B J J. Phenazines and their role in biocontrol by Pseudomonas bacteria [J]. New Phytologist,2003,157:503-523
    14. Choi J H, Lee S Y. Secretory and extracellular production of recombinant proteins using Escherichia coli [J]. Applied Microbiology Biotechnology,2004,64:625-635
    15. Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms [J]. Annual Review of Microbiology,1995,49:711-745
    16. Costerton J W, Stewart P S, Greenbreg E P. Bacterial bioflims:a common cause of persistent infections [J]. Science,1999,284:1318-1322
    17. Cristobal S, de Gier J W, Nielsen H, et al. Competition between Sec-and TAT-dependent protein translocation in Escherichia coli [J]. The EMBO Journal,1999,18(11):2982-2990
    18. Cronin D, Moeanne-loccoz Y, Feton A, et al. Role of 2,4-diacetyloroglucinol in the interactions of the biocontrol Pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis [J]. Applied and Environmental Microbiology,1997,63 (4):1357-1361
    19. Crooke H, Kidgell C, Boles J, et al. Disruption of the sec-independent twin arginine translocase attenuates the virulence of E. coli K1 and Salmonella typhimurium, but appears to be an essential gene in N. meningitidis. Abstract of Microbial Pathogenesis and Host Response,2001. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A.
    20. David R E, Michael W, Catherine M F B, et al. Aggregaative behavior of bacteria isolated from canine dental plaque [J]. Applied and Environmental Microbiology.2006,72:5211-5217
    21. De Buck E, Lebeau I, Maes L, et al. A putative twin-arginine translocation pathway in Legionella pneumophila [J]. Biochemical and Biophysical Research Communication,2004,317 (2):654-661
    22. de Leeuw E, Granjon T, Porcelli I, et al. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes [J]. Journal of Molecular Biology,2002,322: 1135-1146
    23. de Leeuw E, Porcelli I, Sargent F, et al. Membrane interactions and self-association of the TatA and TatB components of the twin-arginine translocation pathway [J]. FEBS letters,2001,56 (2):143-148
    24. Dekkers L C, van der Bij A J, Mulders I H M, et al. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365 [J]. Molecular Plant-Microbe Interaction, 1998,11 (8):763-771
    25. Delany I, Sheehan M M, Fenton A, et al. Regulation of production of the antifungal metabolite 2, 4-diacetyloroglucinol in Pseudomonas fluorescens F113:genetic analysis of phlF as a transcriptional repressor [J]. Microbiology,2000,146:537-546
    26. Defago G, Haas D. Pseudomonads as antagonists of soilborne pathogens:modes of acrtion and genetic analysis. In Bollag J M and Stotzky G (Eds.), Soil biochemistry, vol.6. New York.:Marcel Dekker, Inc.,1990, pp.249-291
    27. Ding Z Y, Christie P J. Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion [J]. Journal of Bacteriology,2003,185 (3):760-771
    28. Donlan R M.. Biofilms:Microbial life on surfaces [J]. Emerging infectious Disease,2002,8: 881-890
    29. Fravel D R. Role of antibiosis in the biocontrol of plant disease [J]. Phytopathology.1988,26:75-91
    30. Gacesa P. Bacterial alginate biosynthesis:recent progress and future prospects [J]. Microbiology, 1998,144:1133-1143
    31. Gaffeny T D, Lam S T, Ligon J, et al. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain [J]. Molecular Plant-Microbe Interaction,1994,7 (4):455-463
    32. Gottlieb D. The production and role of antibiotics in soil [J]. The Journal of antibiotics,1976,29 (10): 987-1000
    33. Govan J R, Deretic V. Microbial pathogenesis in cystic fibrosis:mucoid Pseudomonas aeruginosa and Burkholderia cepacia [J]. Microbiology and Molecular Biology Reviews,1996,60:539-574
    34. Halbig D, Wiegert T, Blaudeck N, et al. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding [J]. European Journal of Biochemistry,263:543-551
    35. Heil M, Ian T Baldwin. Fitness costs of induced resistance:emerging experimental support for a slippery concept [J]. Trends in Plant Science,2002,7 (2):61-67
    36. Herbert R B, Holiman J H, Sheridan J B. Biosynthesis of microbial phenazines:incorporation of shikimic acid [J]. Tetrahedron Letters,1976,8:639-642
    37. Hoyle B D, Costerton J W. Bacterial resistance to antibiotics:the role of biofilms [J]. Progress in Drug Research,1991,37:91-105
    38. Huang T P, Somers E B, Wong A C. Differential biofilm formation and motility associated with lipopolysaccharide/exopolysaccharide-coupled biosynthetic genes in Stenotrophomonas maltophilia [J]. Journal of Bacteriology,2006,188 (8):3116-3120
    39. Ize B, Gerard F, Wu LF. In vivo assessment of the Tat signal peptide specificity in Escherichia coli [J]. Archive of Microbiology,2002,178:548-553
    40. Jack R L, Buchanan G, Dubini A, et al. Coordinating assembly and export of complex bacterial proteins [J]. The EMBO Journal,2004,23:3962-3972
    41. Jackson K D, Starkey M, Kremer S, et al. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation [J]. Journal of Bacteriology,2004,186:4466-4475
    42. Kalogeraki V S, Winans S C. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria [J]. Gene:1997,188 (1): 69-75
    43. Keel C, Schnider U, Maurhofer M, et al, Suppression of root diseases by Pseudomonas fluorescens CHAO:importance of the bacterial secondary metabolite 2,4-diacetyloroglucinol [J]. Molecular Plant-Microbe Interaction,1992,5:4-13
    44. Kirner S, Philip E, Hammer D, et al. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens [J]. Journal of Bacteriology,1998,180:1939-1943
    45. Klausen M, Heydorn A, Ragas P, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagellar and type IV pili mutants [J]. Molecular Microbiology,2003,48 (6):1511-1524
    46. Kloepper J W and Schroth M N. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora [J]. Phytopathology,1981,71: 1020-1024
    47. Kovach M E, Elzer P H, Hill D S, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes [J]. Gene,1995,166 (1):175-176
    48. Lai S, Tremblay J, Deziel F. Swarming motility:a multicellular behavior conferring antimicrobial resistance [J]. Environmental Microbiology,2009,11:126-136
    49. Landini P, Zehnder A J. The global regulatory hns negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production [J]. Journal of Bacteriology,2002,184:1522-1529
    50. Lavander M, Ericsson S K, Broms J E, et al. The Twin arginine translocation system is essential for virulence of Yersinia pseudotuberculosis [J]. Infection and Immunity,2006,74 (3):1768-1776
    51. Lavicoli A, Boutet E, Buchala A, et al. Induced systemic resistance in Arabidopsis thaliana in response inoculation with Pseudomonas fluorescens CHAO [J]. Molecular Plant-Microbe Interaction, 2003,16 (10):851-858
    52. Lawrence J R, Delaquis P J, Korber D R, et al. Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments [J]. Microbial Ecology,1987,14:1-14
    53. Lewis K. Riddle of biofilm resistance [J]. Antimicrobial Agents and Chemotherapy,2001,45: 999-1007
    54. Mashburn L M, Sadovskaya I, de Kievit T, et al. Structural elucidation of the lipopolysaccharide core region of the O-chain-deficient mutant strain A28 from Pseudomonas aeruginosa serotype 06 (International Antigenic Typing Scheme) [J]. Journal of Bacteriology,1995,177 (23):6718-6726
    55. Maurhofer M, Keel C, Schnider U, et al. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppression capacity. Phytopathology,1992.82: 190-195
    56. Maurhofer M, Keel C, Schnider U, et al. Pyoluterorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber [J]. European Journal of Plant Pathology,1994,100:221-232
    57. Mavrodi D V, Ksenzenko V N, Bonsall R F, et al. A seven gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79 [J]. Journal of Bacteriology,1998, 180:2541-2548
    58. Meloni S, Rey L, Sidler S, et al. The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis [J]. Molecular Microbiology,2003,48:1195-1207
    59. Messenger A J M, Turner J M. Phenazine 1,6-dicarboxylate and dimethyl ester as precursor of other phenazines in bacteria [J]. FEMS Microbiology Letter,1983,18:65-68
    60. Neilands J B. Microbial iron compounds [J]. Annual Review of Biochemistry,1981,50:715-731
    61. Nielsen T H, Soresen D, Tobias en C, et al. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by flourescent Pseudomonas spp. from the sugar beet rhizosphere [J] Applied and Environmental Microbiology,2002,68:3416-3423
    62. Nielsen T H, Sorensen J. Production of cyclic lipopeptides by Pseudomonas fluorescens strain in bulk soil and in the sugar beet rhizosphere [J]. Applied and Environmental Microbiology,2003,69 (2):861-868
    63. Nielsen T H, Thrane C, Christophersen C, et al. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54 [J]. Applied Microbiology,2000,89:992-1001
    64. Nowak-Thompsan B, Gould S J, Kraus J, et al. Production of 2,4-diacetyloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5 [J]. Canadian Journal of Bacteriology,1994,40: 1064-1066
    65. Ochsner U A, Snyder A, Vasil A I, et al. Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis [J]. Proceedings of the National Academy of Science of the United States of A.merica,2002,99:8312-8317
    66. O'Sullivan D J, O'Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens [J]. Microbiology and Molecular Biology Reviews,1992,56 (4):662-676
    67. O'Sullivan M, Stephens P M, O'Gara F. Extracellular protease production by fluorescent Pseudomonas spp. and colonization of sugarbeet roots and soil [J]. Soil Biology and Biochemistry, 1991,23 (7):623-627
    68. O'Toole G A, Kaplan H B, Kolter R. Biofilm formation as microbial development [J]. Annual Review of Microbiology,2000,54:49-79
    69. O'Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development [J]. Molecular Microbiology,1998,30 (2):295-304
    70. Palleroni N J, Kunisasawa R, Contopoulou R, et al. Nucleic acid homologies in genus Pseudomonas [J]. Journal of the International Committee on Systematic Bacteriology,1973,23:333-339
    71. Palmer T and Berk B C. Moving folded proteins across the bacterial cell membrane [J]. Microbiogy, 2003,149:547-556
    72. Parkins M D, Ceri H, Storey D G. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation [J]. Molecular Microbiology,2001,40 (5):1215-1226
    Potera C, Research news:biofilms invade microbiology [J]. Science,1996,273:1795-1797
    73. Power P M, Jennings M P. The genetics of glycosylation in Gram-negative bacteria [J]. FEMS Microbiology Letters,2003,218:211-222
    74. Pradel N, Ye C, Livrelli V, et al. Contribution of the twin arginine translocation system to the virulence of enterohemorrhagic Escherichia coli O157:H7 [J]. Infection and Immunity,2003,71: 4908-4916
    75. Porcelli I, de Leeuw E, Wallis R, et al. Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system [J]. Biochemistry,2002,41 (46):13690-13697
    76. Raaijmakers J M and Weller D M. Natural plant protection by 2,4-diacetyloroglucinol producing Pseudomonas spp. in take-all decline soils [J]. Molecular Plant-Microbe Interaction,1998,11: 144-152
    77. Rahim R, Burrows L L, Monteiro M A, et al. Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa [J]. Microbiology,2000,146: 2803-2814
    78. Rao Ch V S, Sachan I P, Johri B N. Seed and root extracts in chemotaxis, agglutination, adherence and root colonization of soybean (Glycine max) by fluorescent pseudomonads [J]. Indian Journal of Microbiology,1999,39:23-29
    79. Rodrigue A, Chanal A, Becks K, et al. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway [J]. The Journal of biological chemistry, 1999,274(19):13223-13228
    80. Ryder C, Byrd M and Wozniak D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development [J]. Current Opinion in Microbiology,2007,10:644-648
    81. Sadovskaya I, Brisson J R, Lam J S, et al. Structural elucidation of the lipopolysaccharide core regions of the wild-type strain PAO1 and O-chain-deficient mutant strains AK1401 and AK1402 from Pseudomonas aeruginosa [J]. European Journal of Biochemistry,1998,255:673-684
    82. Sadovskaya I, Brisson J R, Thibault P, et al. Structural characterization of the outer core and O-antigen linkage region of lipopolysaccharide from Pseudomonas aeruginosa 05 [J]. European Journal of Biochemistry,2000,267:1640-1650
    83. Sanders C, Wethkamp N, Lill H. Transport of cytochrome c derivatives by the bacterial Tat protein translocation system [J]. Molecular Microbiology,2001,41:241-246
    84. Sauer K, Cullen M C, Rickard A H, et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm [J]. Journal of Bacteriology,2004,11:7312-7326
    85. Schaerlaekens K, Van Mellaert L, Lammertyn E, et al. The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis [J]. Microbiology,2004 (150):21-31
    86. Scher F M and Baker R. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens [J]. Phytopathology,1982,72:1567-1573
    87. Sharma A, Johri B N. Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3 in mung bean (Vigna radiate L. Wilzeck) [J]. Microbiological research, 2003,158:1-5
    88. Smirnov V V, Kiprianova E A. Bacteria of Pseudomonas genus. Naukova Dumka, Kiev, Ukraine, 1990,100-111
    89. Spiers A J, Rainey P B. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity [J]. Microbiology,2005,151:2829-2839
    90. Stanley N R, Palmer T, Berks B C. The arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli [J]. Journal of biological chemistry,2000, 275(16):11591-11596
    91. Thomashow L S, Weller D M. Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaenmannomyces graminis var. tritici [J]. Journal of Bacteriology,1998,170 (8):3499-3508
    92. Thrane C, Olsson S, Nielsen T H, et al. Vital fluorescent strains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54 [J]. FEMS Microbiology Ecology,1999,30:11-30
    93. Timms-Wilson T M, Ellis R J, Renwick A, et al. Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens [J]. Molecular Plant-Microbe Interaction,2000,13:1293-1300
    94. Turner J M, Messenger A J. Occurrence, biochemistry and physiology of phenazine pigment production [J]. Advances in Microbial Physiology,1986,27:211-275
    95. Weinclling R. Trichoderma lignorum as a parasite of other soil fungi [J]. Annual Review of Phytopathology,1981,22:837-845
    96. Whiteley M, Lee K M, Greenberg E P. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Science of the United States of America,1999,96,13904-13909
    97. Wozniak D J, Wyckoff T J O, Starkey M, et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA 14 and PAO1 Pseudomonas aeruginosa biofilms. Proceedings of the National Academy of Science of the United States of America,2003,100: 7907-7912
    98. Vasseur P, Vallet-Gely I, Soscia C, et al. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation [J]. Microbiology,2005,151:985-997
    99. Voulhoux R, Filloux A, Schalk I J. Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport [J]. Journal of Bacteriology,2006, 188:3317-3323
    100.暴海珍,马桂珍,张拥华,等.粘帚霉菌株对大豆促生及菌核病防治的研究[J].中国种业,2007(4):42-43
    101.陈延熙,张敦华,段霞渝,等.关于Rhizoctonia solani菌丝融合分类和有性世代的研究[J].植物病理学报,1985,15(8):139-144
    102.陈磊.水稻黄单胞菌双精氨酸运输(Tat)系统关键基因的克隆与功能分析[D].南京农业大学,2008年6月
    103.何礼远.细菌在植物病害生物防治上的应用研究进展[J].生物防治通报,1985,8(1):18-31
    104.何正祥,张部吕,马清钧.大肠杆菌Tat蛋白转运体系[J].生命的化学,2005,25(2):83-85
    105.纪明山,李博强,陈捷,等.绿色木霉TR-8菌株对尖镰孢的拮抗机制[J].中国生物防治,2005,21(2):104-108
    106.金颖,胡洪波,张雪洪,等.假单胞菌产生的抗生素研究[J].上海农业学报,2005,21(3):106-109
    107.李彤,庄辉.细菌生物膜的研究进展[J].中华微生物学和免疫学杂志,2002,59:1229-1238
    108.李勇,杨慧敏,李铭刚,等.微生物农药的研究和应用进展[J].贵州农业科学,2003,31(2):62-63
    109.年洪娟.荧光假单胞菌的分离及生物膜形成相关基因的克隆与功能分析[D].中国农业科学院,2007年1月
    110.童蕴慧,郭桂萍,徐敬友,等.拮抗细菌诱导番茄植株抗灰霉病机理研究[J].植物病理学报,2004,34(6):507-511
    111.王芊.木霉菌在生物防治上的应用及拮抗机制[J].黑龙江农业科学,2001,1:41-43
    112.王伟,赵谦,杨微.木霉对土传病原尖镰刀菌的拮抗作用[J].中国生物防治,1997,13(1):46-47
    113.王瑶,戴岳,张勇,等.群体感应信号分子讲解基因对铜绿假单胞菌毒力和生物膜形成的影响[J].中国科学,2007,37(2):234-240
    114.魏伟,张彦杰,杨合同,等.木霉分生孢子生长及其生防应用研究进展[J].生命科学仪器,2009,7:15-17
    115.闫庆.荧光假单胞杆菌2P24中RpoS和双因子系统PhoP/PhoQ对群体感应系统的调控作用[D].2008年11月
    116.杨合同,王少杰,许勃.荧光假单胞菌与植物病害生物防治[J].山东科学,1993,6(3):51-53
    117.翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2009:219
    118.张锋华,许煜泉,张雪洪.农用杀菌剂吩嗪-1-羧酸的生物合成与基因调控[J].农药研究与应用,2006,5:4-11
    119.张明.细菌蛋白质Tat转运系统的研究进展[J].生物化学与生物物理进展,2001,28(3):326-328
    120.张伟琼,聂明,肖明.荧光假单胞菌生防机理的研究进展[J].生物学杂志,2007,24(6):9-12
    121.周洪友.荧光假单胞菌2P24抗生素2,4-二乙酰基间苯三酚生物合成的基因调控研究[D].中国农业大学,2005年6月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700