三维TiO_2纳米材料构建及其对重金属的催化—吸附作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“十二五”规划以来,水体重金属污染的防治技术,尤其是水体中重金属的深度去除技术已经成为重点研究内容之一。本论文以水体中重金属砷和铬的高效去除为研究目标,制备了纳米二氧化钛材料和三维二氧化钛纳米材料,采用SEM、TEM、XPS及N2吸附-脱附等手段对材料进行表征,并对水体中As(III)的吸附-氧化过程、Cr(VI)的吸附-还原性能和机制进行了研究。工作内容如下:
     1)以钛酸丁酯为前躯体制备了二氧化钛纳米材料,定性探讨了纳米TiO2颗粒粒径、比表面积和表面羟基含量对As(III)的吸附和催化氧化过程的影响,结果表明金红石相二氧化钛具有催化氧化能力,表面羟基为其发挥作用的功能基团。
     2)采用无模板法进行三维金红石相TiO2纳米材料构建,探讨了反应时间、温度、前驱体浓度、干燥温度以及搅拌方式对三维TiO2纳米结构和形貌形成的影响;采用SEM、TEM以及XPS分析手段对材料的微观结构和组分进行了分析,表明TiO2球为微米级别,具有核-壳结构,其中壳结构是由结晶度高的金红石相刺状结构构成,核结构是由低结晶度金红石相和无定形TiO2纳米颗粒构成。无模板法制备的TiO2具有大量的微孔结构,表面羟基密度约为18.9OH/nm2,产率可达97.8%。对TiO2三维纳米结构的形成机制分析表明,材料生长前期受生长由动力学和结晶动力学控制,后期存在奥斯特瓦尔德效应作用。
     3)针对水体中As(III)和As(Ⅴ)、Cr(VI)和Cr(Ⅲ)的吸附过程,开展了动力学和热力学实验,考察了溶液pH值,共存离子对吸附容量的影响,结合三维TiO2的微观结构阐明了重金属的吸附机制。结果表明材料的结构和组成促进了砷和Cr(VI)的化学吸附过程;在pH=2-10的范围内,pH值对TiO2除砷性能的影响较小,As(III)和As(Ⅴ)的吸附容量都保持在24和17mg g-1以上,吸附过程与配合物形成过程中H+和OH-的释放相关;材料对砷的吸附容量可达60mg g-1以上,5min内可完成至少80%的吸附过程,并可将砷浓度降低到检测限以下(0.02μgL-1)。随着pH值的升高,材料对Cr(VI)的吸附容量由28mg g-1(pH=2.1)降低到6mg g-1(pH=10.3),对Cr(Ⅲ)几乎不吸附,吸附容量<1.5mg g-1。
     4)在UV/TiO2系统中,采用XPS分析手段探究了As(III)的吸附与氧化、Cr(VI)的吸附与还原行为。紫外光可提高TiO2的表面羟基功能基团密度,形成亚稳态吸附位点,具有高反应活性和低热力学稳定性。因此,紫外光可促进As(Ⅴ)的吸附速率,不能提高其吸附容量;紫外光促进了As(III)由双齿配位向单齿配位转化,晶体缺陷处的-H2O/-OH在催化氧化过程中起直接作用;另外,金红石相TiO2可应用到Cr(VI)的还原应用中。
Prevention and remediation technology of heavy metal pollution, especially thedepth removal technology of heavy metal in water has become one of the key researchcontents. In this paper, in order to remove arsenic and chromium in water, nanometertitanium dioxide materials and three-dimensional rutile phase titanium dioxidematerials were prepared. The characterization of these materials was performed bySEM, TEM, XPS and N2adsorption-desorption methods. As(III) adsorption-oxidation process, Cr(VI) adsorption-reducing property and mechanism in water werestudied. The work was as follows:
     Titanium dioxide nanoparticles were prepared from tetrabutyl titanate adopted asprecursor.The anatase phase and rutile phase crystals with different particle size wereobtained by sintering method. The effects of TiO2particle size, specific surface areaand the surface hydroxyl content for As(III) adsorption and catalytic oxidation werestudied. The results showed that the rutile phase titanium dioxide had catalyticoxidation ability and the surface hydroxyl was the functional group for adsorption.
     Three-dimensional rutile TiO2nanostructures were prepared using template-freemethod. The effects of reaction time, temperature, precursor concentration, dryingtemperature and stirring methods on the structure and morphology ofthree-dimensional TiO2structure were discussed. The microstructure and compositionof the materials were performed by SEM, TEM and XPS. The results showed that thediameter of TiO2spheres was in micron level with a core-shell structure. The shellstructure was composed of spiny rutile phase structure with a high degree ofcrystalline; the core structure was composed of rutile with low crystallinity andamorphous TiO2nanoparticles. Using this method, the yield of TiO2wasapproximately97.8%and the surface hydroxyl density was approximately18.9OH/nm2. The formation mechanism of TiO2three-dimensional nanostructures wasfurther studied, which was controlled by particle growth kinetics and crystallizationgrowth kinetics in prophase and by the Ostwald effect in anaphase.
     In view of the adsorption process of As(III), As(Ⅴ), Cr (VI) and Cr(Ⅲ) in water,thermodynamic and kinetic experiments were carried out. Effect of PH values,coexisting ions and the structure of TiO2on the adsorption behavior was analysed indepth. Experiment results showed that its structure and composition were in favour of the adsorption of arsenic and Cr(VI), the impact of pH value was related to the releaseof H+and OH-in the compound formation process. In the range of pH=2-10, As(III)and As(Ⅴ) adsorption capacity was above17and24mg g-1; The adsorption capacityof As(Ⅴ) was60mg g-1.The adsorption process achieved at least80%within5minand the residual arsenic concentration decreased under detection limit. With theincreasing of pH, the adsorption capacity of Cr(VI) decreased from28mg g-1(pH=2.1)to6mg g-1(pH=10.3) and the adsorption capacity of Cr(Ⅲ) was less than1.5mg g-1.
     In UV/TiO2system, the As(III) and Cr(VI) adsorption-reduction process werediscussed. Ultraviolet light enhance hydroxyl functional group density of TiO2, butthese hydroxyl was unsteady adsorption sites with high reactivity and lowthermodynamics stability. Ultraviolet light cannot improve the adsorption capacity ofAs(Ⅴ) but the adsorption rate.-H2O/-OH in crystal defects played a direct role incatalytic oxidation process; rutile TiO2could be applied to Cr(VI) reductionapplication.
引文
[1] Kongkanand A., Tvrdy K., Takechi K., et al, Quantum dot solar cells. Tuningphotoresponse through size and shape control of CdSe-TiO2architecture,Journal of the American Chemical Society,2008,130(12):4007-4015
    [2] Zhai T., Fang X., Zeng H., et al, Vapor-phase synthesis of one-dimensionalZnS, CdS, and ZnxCd1-xS nanostructures, Pure and Applied Chemistry,2010,82(11):2027-2053
    [3] Zhai T., Gu Z., Fu H., et al, Synthesis of single-crystal ZnS nanoawls viatwo-step pressure-controlled vapor-phase deposition and their optical properties,Crystal Growth&Design,2007,7(8):1388-1392
    [4] Zhai T., Li L., Ma Y., et al, One-dimensional inorganic nanostructures:synthesis, field-emission and photodetection, Chemical Society Reviews,2011,40(5):2986-3004
    [5] Qian H., Lin G., Zhang Y., et al, A new approach to synthesize uniform metaloxide hollow nanospheres via controlled precipitation, Nanotechnology,2007,18(35560235)
    [6] Sun X. M., Li Y. D., Colloidal carbon spheres and their core/shell structureswith noble-metal nanoparticles, Angewandte Chemie-International Edition,2004,43(5):597-601
    [7] Guo C., Hu P., Yu L., et al, Synthesis and characterization of ZrO2hollowspheres, Materials Letters,2009,63(12):1013-1015
    [8] Li X., Chen F., Lu X., et al, Layer-by-layer synthesis of hollow spherical CeO2templated by carbon spheres, Journal of Porous Materials,2010,17(3):297-303
    [9] Wang C., Ao Y., Wang P., et al, Preparation, characterization, photocatalyticproperties of titania hollow sphere doped with cerium, Journal of HazardousMaterials,2010,178(1-3):517-521
    [10] Zhu Y., Kockrick E., Ikoma T., et al, An Efficient Route to Rattle-TypeFe3O4@SiO2Hollow Mesoporous Spheres Using Colloidal Carbon SpheresTemplates, Chemistry of Materials,2009,21(12):2547-2553
    [11] Du N., Zhang H., Chen J., et al, Metal Oxide and Sulfide Hollow Spheres:Layer-By-Layer Synthesis and Their Application in Lithium-Ion Battery,Journal of Physical Chemistry B,2008,112(47):14836-14842
    [12] Nakamura T., Yamada Y., Yano K., Monodispersed nanoporous starburstcarbon spheres and their three-dimensionally ordered arrays, Microporous andMesoporous Materials,2009,117(1-2):478-485
    [13] Lin C., Huang M. H., Formation of Hollow Gallium Nitride Spheres via SilicaSphere Templates, Journal of Physical Chemistry C,2009,113(3):925-929
    [14] Son D., Wolosiuk A., Braun P. V., Double Direct Templated Hollow ZnSMicrospheres Formed on Chemically Modified Silica Colloids, Chemistry ofMaterials,2009,21(4):628-634
    [15] Joo J. B., Zhang Q., Lee I., et al, Mesoporous Anatase Titania HollowNanostructures though Silica-Protected Calcination, Advanced FunctionalMaterials,2012,22(1):166-174
    [16] Leshuk T., Linley S., Baxter G., et al, Mesoporous Hollow Sphere TitaniumDioxide Photocatalysts through Hydrothermal Silica Etching, ACS APPLIEDMATERIALS&INTERFACES,2012,4(11):6062-6070
    [17] Kim T. H., Lee K. H., Kwon Y. K., Monodisperse hollow titania nanospheresprepared using a cationic colloidal template, Journal of Colloid and InterfaceScience,2006,304(2):370-377
    [18] Lv K., Yu J., Deng K., et al, Synergistic effects of hollow structure and surfacefluorination on the photocatalytic activity of titania, Journal of HazardousMaterials,2010,173(1-3):539-543
    [19] Song X., Gao L., Synthesis, characterization, and optical properties ofwell-defined N-doped, hollow silica/titania hybrid microspheres, Langmuir,2007,23(23):11850-11856
    [20] Zhang L., D'Acunzi M., Kappl M., et al, Hollow Silica Spheres: Synthesis andMechanical Properties, Langmuir,2009,25(5):2711-2717
    [21] Deng Z., Chen M., Gu G., et al, A facile method to fabricate ZnO hollowspheres and their photocatalytic property, Journal of Physical Chemistry B,2008,112(1):16-22
    [22] Chen X., Kierzek K., Cendrowski K., et al, CVD generated mesoporous hollowcarbon spheres as supercapacitors, Colloids and Surfaces a-Physicochemicaland Engineering Aspects,2012,396:246-250
    [23] Baccile N., Grosso D., Sanchez C., Aerosol generated mesoporous silicaparticles, Journal of Materials Chemistry,2003,13(12):3011-3016
    [24] Begum G., Laxmi M. V., Rana R. K., Entrapped polyamines in biomimeticallysynthesized nanostructured silica spheres as pH-responsive gates for controlleddrug release, Journal of Materials Chemistry,2012,22(41):22174-22180
    [25] Yu Q., Hui J., Wang P., et al, Anion-Exchange-Driven Disassembly of aSiO2/CTAB Composite Mesophase: the Formation of Hollow MesoporousSilica Spheres, Inorganic Chemistry,2012,51(17):9539-9543
    [26] Jia Y., PEG aggregation templated porous porous ZnO nanostructure: roomtemperature solution synthesis, pore formation mechanism, and theirphotoluminescence properties, CrystEngComm,2013
    [27] Zeng S., Wang Y., Liu K., et al, CeO2nanoparticles supported on CuO withpetal-like and sphere-flower morphologies for preferential CO oxidation,International Journal of Hydrogen Energy,2012,37(16):11640-11649
    [28] Zhong L., Hu J., Liang H., et al, Self-assembled3D flowerlike iron oxidenanostructures and their application in water treatment, Advanced Materials,2006,18(18):2426
    [29] Zhong L., Hu J., Cao A., et al,3D flowerlike ceria micro/nanocompositestructure and its application for water treatment and CO removal, Chemistry ofMaterials,2007,19(7):1648-1655
    [30] Qi H., Huang J., Cao L., et al, Controlled synthesis and optical properties ofdoughnut-aggregated hollow sphere-like CuS, Ceramics International,2012,38(8):6659-6664
    [31] Cao A. M., Hu J. S., Liang H. P., et al, Self-assembled vanadium pentoxide(V2O5) hollow microspheres from nanorods and their application in lithium-ionbatteries, Angewandte Chemie-International Edition,2005,44(28):4391-4395
    [32] Zhang J., Shi J., Tan J., et al, Morphology-controllable synthesis of tetragonalLaVO4nanostructures, CRYSTENGCOMM,2010,12(4):1079-1085
    [33] Luo F., Jia C., Liu R., et al, Nanorods-assembled CeVO4hollow spheres asactive catalyst for oxidative dehydrogenation of propane, Materials ResearchBulletin,2013,48(3):1122-1127
    [34] Zhu W., Zhang G., Li J., et al, Hierarchical mesoporous SrCO3submicronspheres derived from reaction-limited aggregation induced"rod-to-dumbbell-to-sphere" self-assembly, CRYSTENGCOMM,2010,12(6):1795-1802
    [35] Zhong S., Zhang L., Huang Z., et al, Mixed-solvothermal synthesis of CdSmicro/nanostructures and their optical properties, Applied Surface Science,2011,257(7):2599-2603
    [36] Xiong S., Yuan C., Zhang X., et al, Mesoporous NiO with various hierarchicalnanostructures by quasi-nanotubes/nanowires/nanorods self-assembly:controllable preparation and application in supercapacitors,CRYSTENGCOMM,2011,13(2):626-632
    [37] Lai Y., Meng M., Yu Y., One-step synthesis, characterizations and mechanisticstudy of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used forRhodamine B photodegradation, Applied Catalysis B-Environmental,2010,100(3-4):491-501
    [38] Cao H., Wu X., Wang G., et al, Biomineralization Strategy to α-Mn2O3Hierarchical Nanostructures, JOURNAL OF PHYSICAL CHEMISTRY C,2012,116(39):21109-21115
    [39] Raula M., Rashid M. H., Paira T. K., et al, Ascorbate-Assisted Growth ofHierarchical ZnO Nanostructures: Sphere, Spindle, and Flower and TheirCatalytic Properties, Langmuir,2010,26(11):8769-8782
    [40] Zhang H., Xu C., Sheng P., et al, Synthesis of ZnO hollow spheres through abacteria template method and their gas sensing properties, Sensors andActuators B: Chemical,2013,181:99-103
    [41] Wang H., Fan G., Zheng C., et al, Facile Sodium Alginate Assisted Assemblyof Ni-Al Layered Double Hydroxide Nanostructures, Industrial&EngineeringChemistry Research,2010,49(6):2759-2767
    [42] Liu R., Yin J., Du W., et al, Monodisperse CuO Hard and Hollow Nanospheresas Visible-Light Photocatalysts, European Journal of Inorganic Chemistry,2013(8):1358-1362
    [43] Xie J., Wu Q., One-pot synthesis of ZnO/Ag nanospheres with enhancedphotocatalytic activity, Materials Letters,2010,64(3):389-392
    [44] Lou X. W., Wang Y., Yuan C., et al, Template-free synthesis of SnO2hollownanostructures with high lithium storage capacity, Advanced Materials,2006,18(17):2325
    [45] Rui X., Tan H., Sim D., et al, Template-free synthesis of urchin-like Co3O4hollow spheres with good lithium storage properties, Journal of Power Sources,2013,222:97-102
    [46] Ye Y., Kuai L., Geng B., A template-free route to a Fe3O4-Co3O4yolk-shellnanostructure as a noble-metal free electrocatalyst for ORR in alkaline media,Journal of Materials Chemistry,2012,22(36):19132-19138
    [47] Penn R. L., Oskam G., Strathmann T. J., et al, Epitaxial assembly in agedcolloids, Journal of Physical Chemistry B,2001,105(11):2177-2182
    [48] Yin Y. D., Rioux R. M., Erdonmez C. K., et al, Formation of hollownanocrystals through the nanoscale Kirkendall Effect, Science,2004,304(5671):711-714
    [49] Fei J., Cui Y., Yan X., et al, Controlled preparation of MnO2hierarchicalhollow nanostructures and their application in water treatment, AdvancedMaterials,2008,20(3):452
    [50] Zhu L. P., Xiao H. M., Liu X. M., et al, Template-free synthesis andcharacterization of novel3D urchin-like alpha-Fe2O3superstructures, Journal ofMaterials Chemistry,2006,16(19):1794-1797
    [51] Wan M., A template-free method towards conducting polymer nanostructures,Advanced Materials,2008,20(15):2926-2932
    [52] Testa J. J., Grela M. A., Litter M. I., Heterogeneous photocatalytic reduction ofchromium(VI) over TiO2particles in the presence of oxalate: Involvement ofCr(V) species, Environmental Science&Technology,2004,38(5):1589-1594
    [53] Foster N. S., Noble R. D., Koval C. A., Reversible photoreductive depositionand oxidative dissolution of copper ions in titanium dioxide aqueoussuspensions, Environmental Science&Technology,1993,27(2):350-356
    [54] Lau L. D., Rodriguez R., Henery S., et al, Photoreduction of mercuric saltsolutions at high pH, Environmental Science&Technology,1998,32(5):670-675
    [55] Borgarello E., Harris R., Serpone N., Photochemical deposition andphotorecovery of gold using semiconductor dispersions. A practical applicationof photocatalysis, Nouveau Journal De Chimie,1985,9(12):743-747
    [56] Eliet V., Bidoglio G., Kinetics of the laser-induced photoreduction of U(VI) inaqueous suspensions of TiO2particles, Environmental Science&Technology,1998,32(20):3155-3161
    [57] Khalil L. B., Mourad W. E., Rophael M. W., Photocatalytic reduction ofenvironmental pollutant Cr(VI) over some semiconductors under UV/visiblelight illumination, Applied Catalysis B-Environmental,1998,17(3):267-273
    [58] Yu L., Peng X., Ni F., et al, Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2magnetic nanoparticles through simultaneous photocatalyticoxidation and adsorption, Journal of Hazardous Materials,2013,246:10-17
    [59] Zhang Q., Joo J., Lu Z., et al, Self-Assembly and Photocatalysis of MesoporousTiO2Nanocrystal Clusters, Nano Research,2011,4(1):103-114
    [60] Ye M., Zhang Q., Hu Y., et al, Magnetically Recoverable Core-ShellNanocomposites with Enhanced Photocatalytic Activity, Chemistry-a EuropeanJournal,2010,16(21):6243-6250
    [61] Song C., Yu W., Zhao B., et al, Efficient fabrication and photocatalyticproperties of TiO2hollow spheres, CATALYSIS COMMUNICATIONS,2009,10(5):650-654
    [62] Devanand V. G., Ramasamy S., Ramakrishnan V., et al, Folate targetedPEGylated titanium dioxide nanoparticles as a nanocarrier for targetedpaclitaxel drug delivery, Advanced Powder Technology,2013
    [63] Mcmaster W. A., Wang X., Caruso R. A., Collagen-Templated BioactiveTitanium Dioxide Porous Networks for Drug Delivery, ACS APPLIEDMATERIALS&INTERFACES,2012,4(9):4717-4725
    [64] Horcajada P., Gref R., Baati T., et al, Metal-Organic Frameworks inBiomedicine, Chemical Reviews,2012,112(2SI):1232-1268
    [65] Duonghong D., Borgarello E., Graetzel M., Dynamics of light-induced watercleavage in colloidal systems, Journal of the American Chemical Society,1981,103(16):4685-4690
    [66] Kondo Y., Yoshikawa H., Awaga K., et al, Preparation, photocatalyticactivities, and dye-sensitized solar-cell performance of submicron-scale TiO2hollow spheres, Langmuir,2008,24(2):547-550
    [67] Wang X., Li H., Liu Y., et al, Hydrothermal synthesis of well-alignedhierarchical TiO2tubular macrochannel arrays with large surface area for highperformance dye-sensitized solar cells, Applied Energy,2012,99:198-205
    [68] Zhang Q., Cao G., Hierarchically structured photoelectrodes for dye-sensitizedsolar cells, Journal of Materials Chemistry,2011,21(19):6769-6774
    [69] Mccord P., Yau S. L., Bard A. J., Chemiluminescence of anodized and etchedsilicon: evidence for a luminescent siloxene-like layer on porous silicon.,Science (New York, N.Y.),1992,257(5066):68-69
    [70] Guidi V., Carotta M. C., Ferroni M., et al, Preparation of nanosized titaniathick and thin films as gas-sensors, Sensors and Actuators B-Chemical,1999,57(1-3):197-200
    [71] Seo M., Yuasa M., Kida T., et al, Gas sensing characteristics and porositycontrol of nanostructured films composed of TiO2nanotubes, Sensors andActuators B-Chemical,2009,137(2):513-520
    [72] Moon H. G., Shim Y., Jang H. W., et al, Highly sensitive CO sensors based oncross-linked TiO2hollow hemispheres, Sensors and Actuators B-Chemical,2010,149(1):116-121
    [73] Valdes A., Kroes G., Cluster Study of the Photo-Oxidation of Water on RutileTitanium Dioxide (TiO2), JOURNAL OF PHYSICAL CHEMISTRY C,2010,114(3):1701-1708
    [74] Wang J., Sun W., Zhang Z., et al, Sonocatalytic degradation of methylparathion in the presence of micron-sized and nano-sized rutile titanium dioxidecatalysts and comparison of their sonocatalytic abilities, Journal of MolecularCatalysis a-Chemical,2007,272(1-2):84-90
    [75] Mizukoshi Y., Ohtsu N., Semboshi S., et al, Visible light responses ofsulfur-doped rutile titanium dioxide photocatalysts fabricated by anodicoxidation, Applied Catalysis B-Environmental,2009,91(1-2):152-156
    [76] Bechstein R., Kitta M., Schuette J., et al, Evidence for Vacancy Creation byChromium Doping of Rutile Titanium Dioxide (110), JOURNAL OFPHYSICAL CHEMISTRY C,2009,113(8):3277-3280
    [77] Gil R. A., Cerutti S., Gasquez J. A., et al, Preconcentration and speciation ofchromium in drinking water samples by coupling of on-line sorption onactivated carbon to ETAAS determination, Talanta,2006,68(4):1065-1070
    [78] Owlad M., Aroua M. K., Daud W. A. W., et al, Removal of HexavalentChromium-Contaminated Water and Wastewater: A Review, Water Air andSoil Pollution,2009,200(1-4):59-77
    [79] Ku Y., Jung I. L., Photocatalytic reduction of Cr(VI) in aqueous solutions byUV irradiation with the presence of titanium dioxide, Water Research,2001,35(1):135-142
    [80] Mirbagheri S. A., Hosseini S. N., Pilot plant investigation on petrochemicalwastewater treatment for the removal of copper and chromium with theobjective of reuse, Desalination,2005,171(1):85-93
    [81] Chen Q., Luo Z., Hills C., et al, Precipitation of heavy metals from wastewaterusing simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide,Water Research,2009,43(10):2605-2614
    [82] Guo Z. R., Zhang G. M., Fang J. D., et al, Enhanced chromium recovery fromtanning wastewater, JOURNAL OF CLEANER PRODUCTION,2006,14(1):75-79
    [83] Di Natale F., Lancia A., Molino A., et al, Removal of chromium ions formaqueous solutions by adsorption on activated carbon and char, Journal ofHazardous Materials,2007,145(3):381-390
    [84] Smedley P. L., Kinniburgh D. G., A review of the source, behaviour anddistribution of arsenic in natural waters, Applied Geochemistry,2002,17(PIIS0883-2927(02)00018-55):517-568
    [85] Dixit S., Hering J. G., Comparison of arsenic(V) and arsenic(III) sorption ontoiron oxide minerals: Implications for arsenic mobility, Environmental Science&Technology,2003,37(18):4182-4189
    [86] Chiu V. Q., Hering J. G., Arsenic adsorption and oxidation at manganitesurfaces.1. Method for simultaneous determination of adsorbed and dissolvedarsenic species, Environmental Science&Technology,2000,34(10):2029-2034
    [87] Boddu V. M., Abburi K., Talbott J. L., et al, Removal of arsenic(III) andarsenic(V) from aqueous medium using chitosan-coated biosorbent, WaterResearch,2008,42(3):633-642
    [88] Pena M. E., Korfiatis G. P., Patel M., et al, Adsorption of As(V) and As(III) bynanocrystalline titanium dioxide, Water Research,2005,39(11):2327-2337
    [89] Eguez H. E., Cho E. H., Adsorption of arsenic on activated charcoal, Journal ofthe Minerals Metals&Materials Society,1987,39(7):38-41
    [90] Lorenzen L., Van Deventer J. S. J., Landi W. M., Factors affecting themechanism of the adsorption of arsenic species on activated carbon, MineralsEngineering,1995,8(4):557-569
    [91] Jiang J. Q., Removing arsenic from groundwater for the developing world-areview, Water Science and Technology,2001,44(6):89-98
    [92] Lackovic J. A., Nikolaidis N. P., Dobbs G. M., Inorganic arsenic removal byzero-valent iron, Environmental Engineering Science,2000,17(1):29-39
    [93] Farrell J., Wang J. P., O'Day P., et al, Electrochemical and spectroscopic studyof arsenate removal from water using zero-valent iran media, EnvironmentalScience&Technology,2001,35(10):2026-2032
    [94] Kanel S. R., Manning B., Charlet L., et al, Removal of arsenic(III) fromgroundwater by nanoscale zero-valent iron, Environmental Science&Technology,2005,39(5):1291-1298
    [95] Miller G. P., Norman D. I., Frisch P. L., A comment on arsenic speciesseparation using ion exchange, Water Research,2000,34(4):1397-1400
    [96] Li Y., Liu J. R., Jia S. Y., et al, TiO2pillared montmorillonite as a photoactiveadsorbent of arsenic under UV irradiation, Chemical Engineering Journal,2012,191:66-74
    [97] Lee H., Choi W., Photocatalytic oxidation of arsenite in TiO2suspension:Kinetics and mechanisms, Environmental Science&Technology,2002,36(17):3872-3878
    [98] Dutta P. K., Pehkonen S. O., Sharma V. K., et al, Photocatalytic oxidation ofarsenic(III): Evidence of hydroxyl radicals, Environmental Science&Technology,2005,39(6):1827-1834
    [99] Ryu J., Choi W., Effects of TiO2surface modifications on photocatalyticoxidation of arsenite: The role of superoxides, Environmental Science&Technology,2004,38(10):2928-2933
    [100] Yoon S. H., Lee J. H., Oxidation mechanism of As(III) in the UV/TiO2system:Evidence for a direct hole oxidation mechanism, Environmental Science&Technology,2005,39(24):9695-9701
    [101] Dvoranova D., Brezova V., Mazur M., et al, Investigations of metal-dopedtitanium dioxide photocatalysts, Applied Catalysis B-Environmental,2002,37(PII S0926-3373(01)00335-62):91-105
    [102] Auguliaro V., Palmisano L., Scalfani A., et al, Activity of chromium-ion-dopedtitania for the dinitrogen photoreduction to ammonia and for the phenolphotodegradation, Toxicology Environmental Chemistry,1988,16(3):89-109
    [103] K O., Yamamoto Y., Tanaka H., et al, Heterogeneous photocatalyticdecompositionof phenol over TiO2powder, Bulletin of the Chemical Society ofJapan,1985,58(20):2015-2022
    [104] Diebold U., The surface science of titanium dioxide, Surface Science Reports,2003,48(PII S0167-5729(02)00100-05-8):53-229
    [105] Fujishima A., Zhang X., Tryk D. A., TiO2photocatalysis and related surfacephenomena, Surface Science Reports,2008,63(12):515-582
    [106] Feng X. J., Feng L., Jin M. H., et al, Reversible super-hydrophobicity tosuper-hydrophilicity transition of aligned ZnO nanorod films, Journal of theAmerican Chemical Society,2004,126(1):62-63
    [107] Sakai N., Fujishima A., Watanabe T., et al, Enhancement of the photoinducedhydrophilic conversion rate of TiO2film electrode surfaces by anodicpolarization, Journal of Physical Chemistry B,2001,105(15):3023-3026
    [108] Szczepankiewicz S. H., Moss J. A., Hoffmann M. R., Electron traps and theStark effect on hydroxylated titania photocatalysts, Journal of PhysicalChemistry B,2002,106(31):7654-7658
    [109] Szczepankiewicz S. H., Colussi A. J., Hoffmann M. R., Infrared spectra ofphotoinduced species on hydroxylated titania surfaces, Journal of PhysicalChemistry B,2000,104(42):9842-9850
    [110]林华香,王绪绪,付贤智, TiO2表面羟基及其性质,化学进展,2007(05):665-670
    [111] Zheng Z., Teo J., Chen X., et al, Correlation of the Catalytic Activity forOxidation Taking Place on Various TiO2Surfaces with Surface OFF Groupsand Surface Oxygen Vacancies, Chemistry-a European Journal,2010,16(4):1202-1211
    [112] Pan L., Zou J., Zhang X., et al, Water-Mediated Promotion of Dye Sensitizationof TiO2under Visible Light, Journal of the American Chemical Society,2011,133(26):10000-10002
    [113] Phanapavudhikul P., Waters J. A., de Ortiz E., Design and performance ofmagnetic composite particles for the separation of heavy metals from water,Journal of Environmental Science and Health Part a-Toxic/HazardousSubstances&Environmental Engineering,2003,38(10):2277-2285
    [114] Oliveira L., Petkowicz D. I., Smaniotto A., et al, Magnetic zeolites: a newadsorbent for removal of metallic contaminants from water, Water Research,2004,38(17):3699-3704
    [115] Ozay O., Ekici S., Baran Y., et al, Removal of toxic metal ions with magnetichydrogels, Water Research,2009,43(17):4403-4411
    [116] Suleiman J. S., Hu B., Peng H., et al, Separation/preconcentration of traceamounts of Cr, Cu and Pb in environmental samples by magnetic solid-phaseextraction with Bismuthiol-II-immobilized magnetic nanoparticles and theirdetermination by ICP-OES, Talanta,2009,77(5):1579-1583
    [117] Wei L., Yang G., Wang R., et al, Selective adsorption and separation ofchromium (VI) on the magnetic iron-nickel oxide from waste nickel liquid,Journal of Hazardous Materials,2009,164(2-3):1159-1163
    [118] Zhu H., Jia Y., Wu X., et al, Removal of arsenic from water by supported nanozero-valent iron on activated carbon, Journal of Hazardous Materials,2009,172(2-3):1591-1596
    [119] Biterna M., Antonoglou L., Lazou E., et al, Arsenite removal from waters byzero valent iron: Batch and column tests, Chemosphere,2010,78(1):7-12
    [120] Wu Z., Li W., Webley P. A., et al, General and Controllable Synthesis of NovelMesoporous Magnetic Iron Oxide@Carbon Encapsulates for Efficient ArsenicRemoval, Advanced Materials,2012,24(4Part20):485
    [121] Apiratikul R., Pavasant P., Batch and column studies of biosorption of heavymetals by Caulerpa lentillifera, Bioresource Technology,2008,99(8):2766-2777
    [122] Chang Y., Lim J., Yang J., Removal of As(V) and Cr(VI) in aqueous solutionby sand media simultaneously coated with Fe and Mn oxides, Journal ofIndustrial and Engineering Chemistry,2012,18(1):188-192
    [123] Wan M., Kan C., Rogel B. D., et al, Adsorption of copper (II) and lead (II) ionsfrom aqueous solution on chitosan-coated sand, Carbohydrate Polymers,2010,80(3):891-899
    [124] Sabate J., Anderson M. A., Kikkawa H., et al, A kinetic study of thephotocatalytic degradation of3-chlorosalicylic acid over TiO2membranessupported on glass, Journal of Catalysis,1991,127(1):167-177
    [125] Aguado M. A., Anderson M. A., Hill C. G., Influence of Light Intensity andMembrane Properties on the Photocatalytic Degradation of Formic Acid overTiO2Ceramic Membranes, Journal of Molecular Catalysis,1994,89:165-178
    [126] Xie R., Wang H., Chen Y., et al, Walnut shell‐based activated carbon withexcellent copper (II) adsorption and lower chromium (VI) removal prepared byacid–base modification, Environmental Progress&Sustainable Energy,2012
    [127] Navarro P., Alguacil F. J., Adsorption of antimony and arsenic from a copperelectrorefining solution onto activated carbon, Hydrometallurgy,2002,66(PIIS0304-386X(02)00108-11-3):101-105
    [128] Davis M. E., Ordered porous materials for emerging applications, Nature,2002,417(6891):813-821
    [129] Umeda G. A., Chueh W. C., Noailles L., et al, Inverse opal ceria-zirconia:architectural engineering for heterogeneous catalysis, ENERGY&ENVIRONMENTAL SCIENCE,2008,1(4):484-486
    [130] Mo M., Yu J. C., Zhang L. Z., et al, Self-assembly of ZnO nanorods andnanosheets into hollow microhemispheres and microspheres, AdvancedMaterials,2005,17(6):756
    [131] Chen A. C., Peng X. S., Koczkur K., et al, Super-hydrophobic tin oxidenanoflowers, Chemical Communications,2004(17):1964-1965
    [132] Whitesides G. M., Boncheva M., Beyond molecules: Self-assembly ofmesoscopic and macroscopic components, Proceedings of the NationalAcademy of Sciences of the United States of America,2002,99(8):4769-4774
    [133] Lee J., Kim T. G., Choi H., et al, Enhanced photochemical response ofTiO2/CdSe heterostructured nanowires, Crystal Growth&Design,2007,7(12):2588-2593
    [134] Bian Z., Zhu J., Cao F., et al, In situ encapsulation of Au nanoparticles inmesoporous core-shell TiO2microspheres with enhanced activity and durability,Chemical Communications,2009(25):3789-3791
    [135] Allam N. K., Shankar K., Grimes C. A., Photoelectrochemical and waterphotoelectrolysis properties of ordered TiO2nanotubes fabricated by Tianodization in fluoride-free HCl electrolytes, Journal of Materials Chemistry,2008,18(20):2341-2348
    [136] Feng J., Yin M., Wang Z., et al, Facile synthesis of anatase TiO2mesocrystalsheets with dominant {001} facets based on topochemical conversion,CRYSTENGCOMM,2010,12(11):3425-3429
    [137] Zheng Z., Huang B., Qin X., et al, Strategic Synthesis of Hierarchical TiO2Microspheres with Enhanced Photocatalytic Activity, Chemistry-a EuropeanJournal,2010,16(37):11266-11270
    [138] Wang C., Yin L., Zhang L., et al, Large Scale Synthesis and Gas-SensingProperties of Anatase TiO2Three-Dimensional Hierarchical Nanostructures,Langmuir,2010,26(15):12841-12848
    [139] Wang Y., Zhang L., Deng K., et al, Low temperature synthesis andphotocatalytic activity of rutile TiO2nanorod superstructures, JOURNAL OFPHYSICAL CHEMISTRY C,2007,111(6):2709-2714
    [140] Qiao H., Wang Y., Xiao L., et al, High lithium electroactivity of hierarchicalporous rutile TiO2nanorod microspheres, Electrochemistry Communications,2008,10(9):1280-1283
    [141] Tian G., Chen Y., Zhou W., et al,3D hierarchical flower-like TiO2nanostructure: morphology control and its photocatalytic property,CRYSTENGCOMM,2011,13(8):2994-3000
    [142] Zhong L., Hu J., Wan L., et al, Facile synthesis of nanoporous anatase spheresand their environmental applications, Chemical Communications,2008(10):1184-1186
    [143] Park S. D., Cho Y. H., Kim W. W., et al, Understanding of homogeneousspontaneous precipitation for monodispersed TiO2ultrafine powders with rutilephase around room temperature, Journal of Solid State Chemistry,1999,146(1):230-238
    [144] Zhou Y., Fichthorn K. A., Microscopic View of Nucleation in theAnatase-to-Rutile Transformation, JOURNAL OF PHYSICAL CHEMISTRYC,2012,116(14):8314-8321
    [145] Erdem B., Hunsicker R. A., Simmons G. W., et al, XPS and FTIR surfacecharacterization of TiO2particles used in polymer encapsulation, Langmuir,2001,17(9):2664-2669
    [146] Rubio J., Oteo J. L., Villegas M., et al, Characterization and sintering behaviourof submicrometre titanium dioxide spherical particles obtained by gas-phasehydrolysis of titanium tetrabutoxide, Journal of Materials Science,1997,32(3):643-652
    [147] Yasumori A., Shinoda H., Kameshima Y., et al, Photocatalytic andphotoelectrochemical properties of TiO2-based multiple layer thin film preparedby sol-gel and reactive-sputtering methods, Journal of Materials Chemistry,2001,11(4):1253-1257
    [148] Kim S. J., Park S. D., Jeong Y. H., et al, Homogeneous precipitation of TiO2ultrafine powders from aqueous TiOCl2solution, Journal of the AmericanCeramic Society,1999,82(4):927-932
    [149] Barnard A. S., Zapol P., Predicting the energetics, phase stability, andmorphology evolution of faceted and spherical anatase nanocrystals, Journal ofPhysical Chemistry B,2004,108(48):18435-18440
    [150] Ocana M., Garcia Ramos J. V., Low‐Temperature Nucleation of RutileObserved by Raman Spectroscopy during Crystallization of TiO2, Journal of theAmerican Ceramic Society,1992,75(7):2010-2012
    [151] Valenzuela R., Cecilia Fuentes M., Parra C., et al, Influence of stirring velocityon the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitationmethod, Journal of Alloys and Compounds,2009,488(1):227-231
    [152] Yang Z., Kang C. G., Seo P. K., Evolution of the rheocasting structure of A356alloy investigated by large-scale crystal orientation observation, ScriptaMaterialia,2005,52(4):283-288
    [153] Wang Y. Q., Chen S. G., Tang X. H., et al, Mesoporous titanium dioxide:sonochemical synthesis and application in dye-sensitized solar cells, Journal ofMaterials Chemistry,2001,11(2):521-526
    [154] Liufu S. C., Mao H. N., Li Y. P., Adsorption of poly(acrylic acid) onto thesurface of titanium dioxide and the colloidal stability of aqueous suspension,Journal of Colloid and Interface Science,2005,281(1):155-163
    [155] Burda C., Chen X. B., Narayanan R., et al, Chemistry and properties ofnanocrystals of different shapes, Chemical Reviews,2005,105(4):1025-1102
    [156] Peng X. G., Mechanisms for the shape-control and shape-evolution of colloidalsemiconductor nanocrystals, Advanced Materials,2003,15(5):459-463
    [157] Cheng Y., Wang Y. S., Zheng Y. H., et al, Two-step self-assembly of nanodisksinto plate-built cylinders through oriented aggregation, Journal of PhysicalChemistry B,2005,109(23):11548-11551
    [158] Bacsa R. R., Kiwi J., Effect of rutile phase on the photocatalytic properties ofnanocrystalline titania during the degradation of p-coumaric acid, AppliedCatalysis B-Environmental,1998,16(1):19-29
    [159] Kiwi J., Gr tzel M., Optimization of conditions for photochemical watercleavage. Aqueous platinum/TiO2(anatase) dispersions under ultraviolet light,The Journal of Physical Chemistry,1984,88(7):1302-1307
    [160] Simmons G W B. B. C., Characterization of acid-base properties of thehydrated oxides on iron and titanium metal surfaces, Journal of PhysicalChemistry,1987,91(5):1143-1148
    [161] Mccafferty E., Wightman J. P., Determination of the concentration of surfacehydroxyl groups on metal oxide films by a quantitative XPS method, Surfaceand Interface Analysis,1998,26(8):549-564
    [162] De B. J. H., Everett D. H., Stone F. S., The structure and properties of porousmaterials, Butter Worths London,1958
    [163] Maier W. F., Tilgner I. C., Wiedorn M., et al, Preparation and characterizationof microporous metal oxides, Advanced Materials,1993,5(10):726-730
    [164] Galarneau A., Desplantier D., Dutartre R., et al, Micelle-templated silicates as atest bed for methods of mesopore size evaluation, Microporous andMesoporous Materials,1999,27(2-3):297-308
    [165] Goldberg S., Johnston C. T., Mechanisms of arsenic adsorption on amorphousoxides evaluated using macroscopic measurements, vibrational spectroscopy,and surface complexation modeling, Journal of Colloid and Interface Science,2001,234(1):204-216
    [166] Mohan D., Singh K. P., Singh V. K., Trivalent chromium removal fromwastewater using low cost activated carbon derived from agricultural wastematerial and activated carbon fabric cloth, Journal of Hazardous Materials,2006,135(1-3):280-295
    [167] Bhattacharya A. K., Venkobachar C., Removal of cadmium (II) by low costadsorbents, Journal of Environmental Engineering,1984,110(1):110-122
    [168] Debnath S., Ghosh U. C., Kinetics, isotherm and thermodynamics for Cr(III)and Cr(VI) adsorption from aqueous solutions by crystalline hydrous titaniumoxide, Journal of Chemical Thermodynamics,2008,40(1):67-77
    [169] Kumar K. V., Ramamurthi V., Sivanesan S., Modeling the mechanism involvedduring the sorption of methylene blue onto fly ash, Journal of Colloid andInterface Science,2005,284(1):14-21
    [170] Michelsen D. L., Gideon J. A., Griffith G. P., et al, Removal of soluble mercuryfrom waste water by complexing techniques, Virginia Polytechnic Institute andState University: Virginia Water Resources Research Center,1975
    [171] Pena M., Meng X., Korfiatis G. P., et al, Adsorption mechanism of arsenic onnanocrystalline titanium dioxide, Environmental Science&Technology,2006,40(4):1257-1262
    [172] Waychunas G. A., Kim C. S., Banfield J. F., Nanoparticulate iron oxideminerals in soils and sediments: unique properties and contaminant scavengingmechanisms, Journal of Nanoparticle Research,2005,7(4-5):409-433
    [173] Ruthven D. M., Principles of adsorption and adsorption processes,1984
    [174] Guo Y., Zhu Z., Qiu Y., et al, Adsorption of arsenate on Cu/Mg/Fe/La layereddouble hydroxide from aqueous solutions, Journal of Hazardous Materials,2012,239:279-288
    [175] Na P., Jia X., Yuan B., et al, Arsenic adsorption on Ti-pillared montmorillonite,Journal of Chemical Technology and Biotechnology,2010,85(5):708-714
    [176] Islam M., Mishra P. C., Patel R., Arsenate removal from aqueous solution bycellulose-carbonated hydroxyapatite nanocomposites, Journal of HazardousMaterials,2011,189(3SI):755-763
    [177] Sun R. D., Nakajima A., Fujishima A., et al, Photoinduced surface wettabilityconversion of ZnO and TiO2thin films, Journal of Physical Chemistry B,2001,105(10):1984-1990
    [178] Takeuchi M., Sakamoto K., Martra G., et al, Mechanism of photoinducedsuperhydrophilicity on the TiO2photocatalyst surface, Journal of PhysicalChemistry B,2005,109(32):15422-15428
    [179] Lim H. S., Kwak D., Lee D. Y., et al, UV-Driven reversible switching of aroselike vanadium oxide film between superhydrophobicity andsuperhydrophilicity, Journal of the American Chemical Society,2007,129(14):4128
    [180] Wang S. T., Feng X. J., Yao J. N., et al, Controlling wettability andphotochromism in a dual-responsive tungsten oxide film, AngewandteChemie-International Edition,2006,45(8):1264-1267
    [181] Yang J., Zhang Z., Men X., et al, Reversible Superhydrophobicity toSuperhydrophilicity Switching of a Carbon Nanotube Film via Alternation ofUV Irradiation and Dark Storage, Langmuir,2010,26(12):10198-10202
    [182] He G., Pan G., Zhang M., Studies on the reaction pathway of arsenateadsorption at water-TiO2interfaces using density functional theory, Journal ofColloid and Interface Science,2011,364(2):476-481
    [183] He Y., Tilocca A., Dulub O., et al, Local ordering and electronic signatures ofsubmonolayer water on anatase TiO2(101), NATURE MATERIALS,2009,8(7):585-589
    [184] Dutta P. K., Pehkonen S. O., Sharma V. K., et al, Photocatalytic oxidation ofarsenic(III): Evidence of hydroxyl radicals, Environmental Science&Technology,2005,39(6):1827-1834
    [185] Yan W., Ramos M. A. V., Koel B. E., et al, Multi-tiered distributions of arsenicin iron nanoparticles: Observation of dual redox functionality enabled by acore-shell structure, Chemical Communications,2010,46(37):6995-6997
    [186] Zhu J. F., Deng Z. G., Chen F., et al, Hydrothermal doping method forprepa3r+ation of Cr3+-TiO2photocatalysts with concentration gradient distributionof Cr, Applied Catalysis B-Environmental,2006,62(3-4):329-335
    [187] Deng S., Bai R., Removal of trivalent and hexavalent chromium with aminatedpolyacrylonitrile fibers: performance and mechanisms., Water Research,2004,38(9):2423-2431
    [188] Garg U. K., Kaur M. P., Garg V. K., et al, Removal of hexavalent chromiumfrom aqueous solution by agricultural waste biomass, Journal of HazardousMaterials,2007,140(1-2):60-68
    [189] Gao H., Liu Y., Zeng G., et al, Characterization of Cr(VI) removal fromaqueous solutions by a surplus agricultural waste-Rice straw, Journal ofHazardous Materials,2008,150(2):446-452
    [190] Hu J. S., Guo Y. G., Liang H. P., et al, Three-dimensional self-organization ofsupramolecular self-assembled porphyrin hollow hexagonal nanoprisms,Journal of the American Chemical Society,2005,127(48):17090-17095
    [191] Tel H., Altas Y., Taner M. S., Adsorption characteristics and separation ofCr(III) and Cr(VI) on hydrous titanium(IV) oxide, Journal of HazardousMaterials,2004,112(3):225-231
    [192] Di Natale F., Lancia A., Molino A., et al, Removal of chromium ions formaqueous solutions by adsorption on activated carbon and char, Journal ofHazardous Materials,2007,145(3):381-390

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700