砷在TiO_2复合材料表面的光促吸附机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷污染是一个全球性的环境问题,直接影响到饮用水安全,吸附法是去除水中砷的最有效和最常见的一种方法,吸附法除砷的关键是开发高效吸附剂,而高效吸附材料的开发也依赖于对吸附机制的深刻理解。本文较为全面地概述了砷污染治理方法和二氧化钛对砷吸附的研究近况,制备了钛—铁、钛—锰和钛铁/蒙脱土的二氧化钛复合材料,研究了这些复合吸附剂对砷的吸附特性,阐明了砷在二氧化钛复合材料的光促吸附机制。
     采用水热法合成了锐钛矿型的二氧化钛、两种钛基双金属氧化物、一系列不同铁含量的双金属改性蒙脱土复合物,并通过XRF、XRD、BET、SEM、TEM等分析手段对其微观形貌和结构进行表征。开展了吸附动力学和吸附等温线的实验,考察了pH值、干扰离子、紫外光、羟基等因素对砷在二氧化钛和二氧化钛复合材料上的吸附特性的影响。通过Zeta电位、FTIR、XPS、Raman等微观表征手段对吸附机理进行了研究,构建砷在二氧化钛和二氧化钛复合材料表面的吸附模型。
     通过XRD、XRF、N2吸附脱附等温线等表征手段确定了材料的最佳制备方法,SEM、TEM、EPR等分析手段表明材料具有较好的微观结构和较大的表面积,有利于砷的吸附。吸附特性实验表明:紫外下As(III)的吸附容量和吸附速率都大大增加了;当pH=2~4,As(V)的吸附容量达到最大值,当pH>4时,吸附容量随pH增大而减少,紫外下As(III)的吸附与As(V)类似,黑暗下As(III)在二氧化钛上的吸附随pH增大而减少;在众多共存阴离子中,因为SiO32-和PO43-与砷酸根具有类似的离子常数和结构,对砷产生了竞争吸附。表面羟基实验表明羟基自由基在As(III)的氧化过程起主要作用。Zeta电位、FTIR和XPS等微观表征证明了As(III)和As(V)分别以单齿和双齿的形式吸附到二氧化钛及其复合材料表面。
     总的来说,制备的二氧化钛复合吸附剂能将水溶液中砷的含量降到10μg/L以下,满足饮用水的限定值。黑暗条件下,二氧化钛及其复合材料作为单一的吸附剂,紫外光存在的情况下,二氧化钛及其复合材料既是吸附剂也是光催化剂。
Arsenic contamination is a global environmental problem, adsorption is one ofthe most effective and common method for the removal of arsenic, and an efficientarsenic adsorbent is also dependent on a deep understanding of the adsorptionmechanism. Recently, nanocrystalline titanium dioxide has been developed foreffective removal of arsenic due to its good photochemical stability, non-toxic, highcatalytic activity for As(III) oxidation. In this study, we make a comprehensive reviewon the application of TiO2and TiO2bifunctional adsorbents for arsenic adsorption.We also make many efforts to understand the the performance of TiO2by eithercombing TiO2adsorbent with good adsorption property in one system or developingbifunctional adsorbents with both great photocatalytic ability and high adsorptioncapacity.
     Anatase TiO2, two metal mixed oxide Ti-Fe and Ti-Mn binary oxide composites,and a series of titanium and iron pillared montmorillonites (Ti-Fe/MMT) wereprepared by a hydrolysis method and to comprehensively evaluate arsenicadsorption/oxidation on TiO2with and without UV irradiation. The as-preparedsamples were characterized by powder X-ray diffraction (XRD), scanning electronmicroscope (SEM), transmission electron microscope (TEM), and nitrogenadsorption-desorption techniques. After a general characterisation of those adsorbents,the adsorption kinetics and isotherm data were analysed. The effects of pH and theinfluence of coexisting ions on arsenic adsorption were investigated in order tounderstand the mechanism of arsenic adsorption under UV irradiation.
     XRD, nitrogen adsorption-desorption techniques, electron paramagneticresonance (EPR), SEM, TEM and X-ray fluorescence analyzer (XRF) investigationsrevealed that the TiO2and TiO2bifunctional adsorbents have better surfaceperformance for arsenic adsorption, and the anatase nanoparticles of TiO2in the TiO2bifunctional adsorbents were responsible for As(III) oxidation under UV irradiation.The optimum adsorption capacity on the adsorbent was achieved at pH below7forAs(V) and at neutral pH for As(III). Among all the common coexisting ionsinvestigated, silicate and phosphate ions were the greatest competitor with arsenic foradsorptive sites on the adsorbent. Zeta potential and Fourier transform infrared (FTIR)analysis indicated that the hydroxyl groups on the TiO2and TiO2bifunctionaladsorbents surface were involved in arsenic adsorption, while X-ray photoelectronspectroscopy (XPS) provided further evidence for the involvement of hydroxyl groups in the sorption and the formation of monodentate and bidentate complexes on theadsorbent surface. Furthermore, the XPS and Raman analysis confirmed that the Mninvolved in the oxidation-sorption of As(III). The study suggests that Ti-Fe and Ti-Mn binary oxide composites were effective adsorbent for arsenic removal due to itsphotocatalytic oxidation property and the presence of high affinity surface hydroxylgroups. The good reusability of Ti-Fe/MMT also indicated that the Ti-Fe/MMT was avery promising adsorbent for arsenic removal from arsenic contaminated water.
     After adsorbed with TiO2and TiO2bifunctional adsorbents, the final arsenicconcentration in solution below10μg/L, and meet the arsenic standard in drinkingwater. The results suggest that the TiO2and TiO2bifunctional adsorbents canfunctions as both photocatalyst and adsorbent in the presence of UV light, but itworks only as adsorbent in the absence of UV light.
引文
[1] Fendorf S., Michael H. A., van Geen A., Spatial and Temporal Variations ofGroundwater Arsenic in South and Southeast Asia, Science,2010,328(5982):1123-1127
    [2] http://www.kmepb.gov.cn/kmhbj/76566691223437312/Index.html,
    [3] http://news.sina.com.cn/c/2008-10-08/230316418616.Shtml,
    [4] Emett M. T., Khoe G. H., Photochemical oxidation of arsenic by oxygen and ironin acidic solutions, Water Research,2001,35(3):649-656
    [5] Hug S. J., Canonica L., Wegelin M., et al, Solar oxidation and removal of arsenicat circumneutral pH in iron containing waters, Environmental Science&Technology,2001,35(10):2114-2121
    [6] Kocar B. D., Inskeep W. P., Photochemical oxidation of As(III) in ferrioxalatesolutions, Environmental Science&Technology,2003,37(8):1581-1588
    [7] Lee H., Choi W., Photocatalytic oxidation of arsenite in TiO2suspension:Kinetics and mechanisms, Environmental Science&Technology,2002,36(17):3872-3878
    [8] Na P., Jia X., Yuan B., et al, Arsenic adsorption on Ti-pillared montmorillonite,Journal of Chemical Technology and Biotechnology,2010,85(5):708-714
    [9]那平,张帆,杨曙锋等,水热法制备钛柱撑蒙脱石及对水体中砷酸根的吸附,天津大学学报,2007(03):275-279
    [10] Yamato N., Concentrations and chemical species of arsenic in human urine andhair., Bulletin of Environmental Contamination and Toxicology,1988,40(5):633-640
    [11] Cullen W. R., Reimer K. J., Arsenic speciation in the environment, ChemicalReviews,1989,89(4):713-764
    [12]肖唐付,洪冰,杨中华等,砷的水地球化学及其环境效应,地质科技情报,2001,20(1):71-76
    [13]江世强,葛宪民,砷及其化合物的水污染治理研究进展,医学文选,2004(03):364-368
    [14]徐苑苑,饮水型砷暴露人群砷甲基化模式及其与机体氧化应激状态关系的研究,[博士学位论文],中国医科大学,2009
    [15] Hughes M. F., Arsenic toxicity and potential mechanisms of action, ToxicologyLetters,2002,133(PII S0378-4274(02)00084-X1):1-16
    [16] Smith A. H., Bates M. N., Steinmaus C. M., et al, Arsenic epidemiology anddrinking water standards, Toxicology,2003,191(1):5
    [17] Smedley P. L., Kinniburgh D. G., A review of the source, behaviour anddistribution of arsenic in natural waters, Applied Geochemistry,2002,17(PIIS0883-2927(02)00018-55):517-568
    [18]丁爱中,杨双喜,张宏达,地下水砷污染分析,吉林大学学报(地球科学版),2007(02):319-325
    [19] Amini M., Abbaspour K. C., Berg M., et al, Statistical modeling of globalgeogenic arsenic contamination in groundwater, Environmental Science&Technology,2008,42(10):3669-3675
    [20]王华东,郝春曦,王建,环境中的砷—行为·影响·控制,北京:中国环境科学出版社,1992,72-84
    [21] Bissen M., Frimmel F. H., Arsenic-a review.-Part1: Occurrence, toxicity,speciation, mobility, Acta Hydrochimica Et Hydrobiologica,2003,31(1):9-18
    [22] Xu T., Cai Y., O'Shea K. E., Adsorption and photocatalyzed oxidation ofmethylated arsenic species in TiO2suspensions, Environmental Science&Technology,2007,41(15):5471-5477
    [23] Harvey C. F., Swartz C. H., Badruzzaman A., et al, Arsenic mobility andgroundwater extraction in Bangladesh, Science,2002,298(5598):1602-1606
    [24] Aggarwal P. K., Basu A. R., Kulkarni K. M., Comment on "Arsenic mobilityand groundwater extraction in Bangladesh"(I), Science,2003,300(5619):581B-584B
    [25] Van Geen A., Zheng Y., Stute M., et al, Comment on "Arsenic mobility andgroundwater extraction in Bangladesh"(II), Science,2003,300(5619):584C
    [26] Stone R., Food safety-Arsenic and paddy rice: A neglected cancer risk? Science,2008,321(5886):184-185
    [27] Nordstrom D. K., Public health-Worldwide occurrences of arsenic in groundwater, Science,2002,296(5576):2143-2145
    [28] Xia Y. J., Liu J., An overview on chronic arsenism via drinking water in FIRChina, Toxicology,2004,198(1-3):25-29
    [29] Pirnie M. Technologies and costs for removal of arsenic from drinking water[R].,1999.
    [30]李元,脱砷离子筛在处理大水体系砷污染的应用,[硕士学位论文],天津大学,2010
    [31] Altundogan H. S., Altundogan S., Tumen F., et al, Arsenic adsorption fromaqueous solutions by activated red mud, Waste Management,2002,22(PIIS0956-053X(01)00041-13):357-363
    [32] Saada A., Breeze D., Crouzet C., et al, Adsorption of arsenic (V) on kaoliniteand on kaolinite-humic acid complexes-Role of humic acid nitrogen groups,Chemosphere,2003,51(8):757-763
    [33] Pena M. E., Korfiatis G. P., Patel M., et al, Adsorption of As(V) and As(III) bynanocrystalline titanium dioxide, Water Research,2005,39(11):2327-2337
    [34] Dutta P. K., Ray A. K., Sharma V. K., et al, Adsorption of arsenate and arseniteon titanium dioxide suspensions, Journal of Colloid and Interface Science,2004,278(2):270-275
    [35] Takanashi H., Tanaka A., Nakajima T., et al, Arsenic removal from groundwaterby a newly developed adsorbent, Water Science and Technology,2004,50(8):23-32
    [36] Mondal P., Majumder C. B., Mohanty B., Effects of adsorbent dose, its particlesize and initial arsenic concentration on the removal of arsenic, iron andmanganese from simulated ground water by Fe3+impregnated activated carbon,Journal of Hazardous Materials,2008,150(3):695-702
    [37] Chen W., Parette R., Zou J., et al, Arsenic removal by iron-modified activatedcarbon, Water Research,2007,41(9):1851-1858
    [38] Masih D., Izumi Y., Aika K., et al, Optimization of an iron intercalatedmontmorillonite preparation for the removal of arsenic at low concentrations,Engineering In Life Sciences,2007,7(1):52-60
    [39] Li Z., Deng S., Yu G., et al, As(V) and As(III) removal from water by a Ce-Tioxide adsorbent: Behavior and mechanism, Chemical Engineering Journal,2010,161(1-2):106-113
    [40]梁美娜,朱义年,刘海玲等,氢氧化铁对砷的吸附研究,水处理技术,2006(07):32-35
    [41] Kanel S. R., Manning B., Charlet L., et al, Removal of arsenic(III) fromgroundwater by nanoscale zero-valent iron, Environmental Science&Technology,2005,39(5):1291-1298
    [42]苏廷芝,顾国维,活性污泥法处理含砷废水初探,四川环境,2006(04):68-71
    [43] Muscat J., Swamy V., Harrison N. M., First-principles calculations of the phasestability of TiO2, Physical Review B,2002,65(22411222)
    [44] Fujishima A., Honda K., Photolysis-decomposition of water at the surface of anirradiated semiconductor, Nature,1972,238(5385):37-38
    [45]吴树新,改性纳米TiO2光催化氧化还原性能的研究,[博士学位论文],天津大学,2003
    [46] Li F., Sun S., Jiang Y., et al, Photodegradation of an azo dye using immobilizednanoparticles of TiO2supported by natural porous mineral, Journal ofHazardous Materials,2008,152(3):1037-1044
    [47] Chiou C., Wu C., Juang R., Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2in aqueous solutions, Separation andPurification Technology,2008,62(3):559-564
    [48] Tsai W., Lee M., Su T., et al, Photodegradation of bisphenol-A in a batch TiO2suspension reactor, Journal of Hazardous Materials,2009,168(1):269-275
    [49] Chen C., Ma W., Zhao J., Semiconductor-mediated photodegradation ofpollutants under visible-light irradiation, Chemical Society Reviews,2010,39(11):4206-4219
    [50] Miyake M., Yoneyama H., Tmura H., The Correlation between Photo-electrochemical Cell Reactions and Photocatalytic Reactions on IlluminatedRutile, Bulletin of the Chemical Society of Japan,1977,50(6):1492-1496
    [51]付宏祥,吕功煊,李树本,Cr(Ⅵ)离子在TiO2表面的光催化还原机理研究,化学物理学报,1999(01):112-116
    [52] Murruni L., Conde F., Leyva G., et al, Photocatalytic reduction of Pb(II) overTiO2: New insights on the effect of different electron donors, Applied CatalysisB-Environmental,2008,84(3-4):563-569
    [53] Somasundaram S., Ming Y., Chenthamarakshan C. R., et al, Free radical-mediated heterogeneous photocatalytic reduction of metal ions in UV-irradiatedtitanium dioxide suspensions, Journal of Physical Chemistry B,2004,108(15):4784-4788
    [54] Frank S. N., Bard A. J., Heterogeneous photocatalytic oxidation of cyanide ionin aqueous solutions at titanium dioxide powder, Journal of the AmericanChemical Society,1977,99(9):303-304
    [55] Ferguson M. A., Hoffmann M. R., Hering J. G., TiO2-photocatalyzed As(III)oxidation in aqueous suspensions: Reaction kinetics and effects of adsorption,Environmental Science&Technology,2005,39(6):1880-1886
    [56] Jezequel H., Chu K. H., Removal of arsenate from aqueous solution byadsorption onto titanium dioxide nanoparticles, Journal of EnvironmentalScience and Health Part a-Toxic/Hazardous Substances&EnvironmentalEngineering,2006,41(8):1519-1528
    [57] Xu Z., Meng X., Size effects of nanocrystalline TiO2on As(V) and As(III)adsorption and As(III) photooxidation, Journal of Hazardous Materials,2009,168(2-3):747-752
    [58] Jegadeesan G., Al-Abed S. R., Sundaram V., et al, Arsenic sorption on TiO2nanoparticles: Size and crystallinity effects, Water Research,2010,44(3):965-973
    [59]余威威,张青红,石国英等,Pt负载型二氧化钛纳米管/纳米晶复合光催化剂的制备及其光催化性能,无机材料学报,2011(07):747-752
    [60] Niu H. Y., Wang J. M., Shi Y. L., et al, Adsorption behavior of arsenic ontoprotonated titanate nanotubes prepared via hydrothermal method, Microporousand Mesoporous Materials,2009,122(1-3):28-35
    [61] Xu Z., Li Q., Gao S., et al, As(III) removal by hydrous titanium dioxide preparedfrom one-step hydrolysis of aqueous TiCl4solution, Water Research,2010,44(19SI):5713-5721
    [62] Pirila M., Martikainen M., Ainassaari K., et al, Removal of aqueous As(III) andAs(V) by hydrous titanium dioxide, Journal of Colloid and Interface Science,2011,353(1):257-262
    [63] Bang S., Patel M., Lippincott L., et al, Removal of arsenic from groundwater bygranular titanium dioxide adsorbent, Chemosphere,2005,60(3):389-397
    [64] Ryu J., Choi W., Effects of TiO2surface modifications on photocatalyticoxidation of arsenite: The role of superoxides, Environmental Science&Technology,2004,38(10):2928-2933
    [65] Jayaweera P. M., Godakumbura P. I., Pathiratne K., Photocatalytic oxidation ofAs(III) to As(V) in aqueous solutions: A low cost pre-oxidative treatment fortotal removal of arsenic from water, Current Science,2003,84(4):541-543
    [66] Dutta P. K., Pehkonen S. O., Sharma V. K., et al, Photocatalytic oxidation ofarsenic(III): Evidence of hydroxyl radicals, Environmental Science&Technology,2005,39(6):1827-1834
    [67] Jing C., Meng X., Calvache E., et al, Remediation of organic and inorganicarsenic contaminated groundwater using a nanocrystalline TiO2-basedadsorbent, Environmental Pollution,2009,157(8-9):2514-2519
    [68] He G., Zhang M., Pan G., Influence of pH on initial concentration effect ofarsenate adsorption on TiO2surfaces: thermodynamic, DFT, and EXAFSinterpretations, Joural of Physical Chemistry C,2009,113(52):21679-21686
    [69]张美一,何广智,丁程程等,As(V)在TiO2表面的吸附机理,物理化学学报,2009(10):2034-2038
    [70] Diebold U., The surface science of titanium dioxide, Surface Science Reports,2003,48(PII S0167-5729(02)00100-05-8):53-229
    [71] Fujishima A., Zhang X., Tryk D. A., TiO2photocatalysis and related surfacephenomena, Surface Science Reports,2008,63(12):515-582
    [72]林华香,王绪绪,付贤智,TiO2表面羟基及其性质,化学进展,2007(05):665-670
    [73] Zheng Z., Teo J., Chen X., et al, Correlation of the Catalytic Activity forOxidation Taking Place on Various TiO2Surfaces with Surface OFF Groupsand Surface Oxygen Vacancies, Chemistry-a European Journal,2010,16(4):1202-1211
    [74] Pan L., Zou J., Zhang X., et al, Water-Mediated Promotion of Dye Sensitizationof TiO2under Visible Light, Journal of the American Chemical Society,2011,133(26):10000-10002
    [75] Feng X. J., Feng L., Jin M. H., et al, Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, Journal of the AmericanChemical Society,2004,126(1):62-63
    [76] Sakai N., Fujishima A., Watanabe T., et al, Enhancement of the photoinducedhydrophilic conversion rate of TiO2film electrode surfaces by anodicpolarization, Journal of Physical Chemistry B,2001,105(15):3023-3026
    [77] Szczepankiewicz S. H., Moss J. A., Hoffmann M. R., Electron traps and theStark effect on hydroxylated titania photocatalysts, Journal of PhysicalChemistry B,2002,106(31):7654-7658
    [78] Liu L. M., Mcallister B., Ye H. Q., et al, Identifying an O2supply pathway inCO oxidation on Au/TiO2(110): A density functional theory study on theintrinsic role of water, Journal of the American Chemical Society,2006,128(12):4017-4022
    [79] Zhang M., Wang Q., Chen C., et al, Oxygen Atom Transfer in the PhotocatalyticOxidation of Alcohols by TiO2: Oxygen Isotope Studies, Angewandte Chemie-International Edition,2009,48(33):6081-6084
    [80] Lin C., Chao J., Liu C., et al, Effect of calcination temperature on the structureof a Pt/TiO2(B) nanofiber and its photocatalytic activity in generating H2,Langmuir,2008,24(17):9907-9915
    [81] Hussein F H, Pattenden G., Rudham R., et al, Photo-oxidation of alcoholscatalysed by platinised titanium dioxide, Tetrahedron Letters,1984,25(31):3363-3364
    [82] Dvoranova D., Brezova V., Mazur M., et al, Investigations of metal-dopedtitanium dioxide photocatalysts, Applied Catalysis B-Environmental,2002,37(PII S0926-3373(01)00335-62):91-105
    [83] K O., Yamamoto Y., Tanaka H., et al, Heterogeneous photocatalyticdecompositionof phenol over TiO2powder, Bulletin of the Chemical Society ofJapan,1985,58(20):2015-2022
    [84] Auguliaro V., Palmisano L., Scalfani A., et al, Activity of chromium-ion-dopedtitania for the dinitrogen photoreduction to ammonia and for the phenolphotodegradation, Toxicology Environmental Chemistry,1988,16(3):89-109
    [85] Paramasivalm I., Macak J. M., Schmuki P., Photocatalytic activity of TiO2-nanotube layers loaded with Ag and Au nanoparticles, ElectrochemistryCommunications,2008,10(1):71-75
    [86] Sakthivel S., Shankar M. V., Palanichamy M., et al, Enhancement ofphotocatalytic activity by metal deposition: characterisation and photonicefficiency of Pt, Au and Pd deposited on TiO2catalyst, Water Research,2004,38(13):3001-3008
    [87] Li H., Duan X., Liu G., et al, Photochemical synthesis and characterization ofAg/TiO2nanotube composites, Journal of Materials Science,2008,43(5):1669-1676
    [88] Hou X., Huang M., Wu X., et al, Preparation and studies of photocatalyticsilver-loaded TiO2films by hybrid sol-gel method, Chemical EngineeringJournal,2009,146(1):42-48
    [89] Choi W. Y., Termin A., Hoffmann M. R., The role of metal-ion dopants inquantum-sized TiO2-correlation between photoreactivity and charge-carrierrecombination dynamics, Journal of Physical Chemistry,1994,98(51):13669-13679
    [90] Sato S., Photocatalytic activity of NOx-doped TiO2in the visible light region,Chemical Physics Letters,1986,123(1):126-128
    [91] Asahi R., Morikawa T., Ohwaki T., et al, Visible-light photocatalysis innitrogen-doped titanium oxides, Science,2001,293(5528):269-271
    [92] Ohno T., Mitsui T., Matsumura M., Photocatalytic activity of S-doped TiO2photocatalyst under visible light, Chemistry Letters,2003,32(4):364-365
    [93] Irie H., Watanabe Y., Hashimoto K., Carbon-doped anatase TiO2powders as avisible-light sensitive photocatalyst, Chemistry Letters,2003,32(8):772-773
    [94] Xie Y., Li Y., Zhao X., Low-temperature preparation and visible-light-inducedcatalytic activity of anatase F-N-codoped TiO2, Journal of Molecular Catalysisa-Chemical,2007,277(1-2):119-126
    [95] Vinodgopal K., Bedja I., Kamat P. V., Nanostructured semiconductor films forphotocatalysis. Photoelectrochemical behavior of SnO2/TiO2composite systemsand its role in photocatalytic degradationof a textile azo dye, Chemistry ofMaterials,1996,8(8):2180-2187
    [96] Bessekhouad Y., Robert D., Weber J. V., Photocatalytic activity of Cu2O/TiO2,Bi2O3/TiO2and ZnMn2O4/TiO2heterojunctions, Catalysis Today,2005,101(3-4):315-321
    [97] Bessekhouad Y., Robert D., Weber J., Bi2S3/TiO2and CdS/TiO2heterojunctionsas an available configuration for photocatalytic degradation of organic pollutant,Journal of Photochemistry and Photobiology a-Chemistry,2004,163(3):569-580
    [98] Chen J. S., Luan D., Li C. M., et al, TiO2and SnO2@TiO2hollow spheresassembled from anatase TiO2nanosheets with enhanced lithium storageproperties, Chemical Communications,2010,46(43):8252-8254
    [99] Du G., Guo Z., Zhang P., et al, SnO2nanocrystals on self-organized TiO2nanotube array as three-dimensional electrode for lithium ion microbatteries,Journal of Materials Chemistry,2010,20(27):5689-5694
    [100] Song C., Dong X., Preparation and characterization of tricomponentSiO2/SnO2/TiO2composite nanofibers by electrospinning, Optoelectronics andAdvanced Materials-Rapid Communication,2012,6(1-2):225-229
    [101]鞠剑峰,李澄俊,徐铭,纳米TiO2复合材料的研究进展,功能材料,2005(05):648-651
    [102]赵东方,活性炭负载二氧化钛复合光催化剂的制备及其光催化性能研究,
    [硕士学位论文],河南师范大学,2012
    [103]彭瑾,杨红刚,玻璃镀膜二氧化钛制备及降解亚甲基蓝研究,应用化工,2008(09):1015-1018
    [104]邱健斌,曹亚安,马颖等,担载材料对TiO2薄膜光催化活性的影响,物理化学学报,2000(01):1-4
    [105]方佑龄,赵文宽,尹少华等,纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷,应用化学,1997(02):84-86
    [106]梁华银,王竹梅,罗民华,蜂窝陶瓷负载TiO2降解甲基橙试验研究,陶瓷学报,2011(02):235-238
    [107]陆伟,张鹏,徐瑞芬,纳米二氧化钛陶瓷球光催化降解菲研究,现代化工,2010(S1):106-109
    [108]张荔荔,张永明,多孔陶瓷负载TiO2光催化剂降解亚甲基蓝,中国陶瓷,2011(12):30-34
    [109] Zan L., Fa W., Peng T., et al, Photocatalysis effect of nanometer TiO2and TiO2-coated ceramic plate on Hepatitis B virus, Journal of Photochemistry andPhotobiology B-Biology,2007,86(2):165-169
    [110] Negishi N., Takeuchi K., Preparation of TiO2thin film photocatalysts by dipcoating using a highly viscous solvent, Journal of Sol-Gel Science andTechnology,2001,22(1-2):23-31
    [111]刘姗,纳米二氧化钛/水性聚氨酯复合材料的制备及其表征,[硕士学位论文],中国科学技术大学,2011
    [112] Li J., Zhu L., Wu Y., et al, Hybrid composites of conductive polyaniline andnanocrystalline titanium oxide prepared via self-assembling and graftpolymerization, Polymer,2006,47(21):7361-7367
    [113] Zhang L., Liu P., Su Z., Preparation of PANI-TiO2nanocomposites and theirsolid-phase photocatalytic degradation, Polymer Degradation and Stability,2006,91(9):2213-2219
    [114] Im J. S., Il Kim M., Lee Y., Preparation of PAN-based electrospun nanofiberwebs containing TiO2for photocatalytic degradation, Materials Letters,2008,62(21-22):3652-3655
    [115] Hong Y. L., Li D. M., Zheng J., et al, Sol-gel growth of titania from electrospunpolyacrylonitrile nanofibres, Nanotechnology,2006,17(8):1986-1993
    [116] Willner I., Eichen Y., TiO2and CDS colloids stabilized by β-cyclodextrins-tailored semiconductor receptor systems as a means to control interfacialelectron-transferprocesses, Journal of the American Chemical Society,1987,109(22):6862-6863
    [117] Anandan S., Yoon M., Photocatalytic degradation of Nile red using TiO2-betacyclodextrin colloids, Catalysis Communications,2004,5(6):271-275
    [118]王凤鹭,有机—无机杂化二氧化钛光催化材料的制备及性能研究,[硕士学位论文],东北林业大学,2011
    [119] Torimoto T., Okawa Y., Takeda N., et al, Effect of activated carbon content inTiO2loaded activated carbon on photodegradation behaviors ofdichloromethane, Journal of Photochemistry and photobiology: A Chemistry,1997,103(1):153-157
    [120] Tryba B., Morawski A. W., Inagaki M., Application of TiO2-mounted activatedcarbon to the removal of phenol from water, Applied Catalysis B-Environmental,2003,41(02):427-433
    [121] Tao Y., Wu C. Y., Mazyck D. W., Microwave-assisted preparation ofTiO2/activated carbon composite photocatalyst for removal of methanol inhumid air streams, Industrial&Engineering Chemistry Research,2006,45(14):5110-5116
    [122] Li Y. J., Li X. D., Li J. W., et al, Photocatalytic degradation of methyl orangeby TiO2-coated activated carbon and kinetic study, Water Research,2006,40(6):1119-1126
    [123] He Z., Yang S., Ju Y., et al, Microwave photocatalytic degradation ofRhodamine B using TiO2supported on activated carbon: Mechanismimplication, Journal of Environmental Sciences-China,2009,21(2):268-272
    [124] Shi J., Zheng J., Wu P., et al, Immobilization of TiO2films on activated carbonfiber and their photocatalytic degradation properties for dye compounds withdifferent molecular size, Catalysis Communications,2008,9(9):1846-1850
    [125] Tryba B., Morawski A. W., Inagaki M., A new route for preparation of TiO2-mounted activated carbon, Applied Catalysis B-Environmental,2003,46(1):203-208
    [126] Woan K., Pyrgiotakis G., Sigmund W., Photocatalytic Carbon-Nanotube-TiO2Composites, Advanced Materials,2009,21(21):2233-2239
    [127] Ao C. H., Lee S. C., Indoor air purification by photocatalyst TiO2immobilizedon an activated carbon filter installed in an air cleaner, Chemical EngineeringScience,2005,60(1):103-109
    [128] Ao C. H., Lee S. C., Enhancement effect of TiO2immobilized on activatedcarbon filter for the photodegradation of pollutants at typical indoor air level,Applied Catalysis B-Environmental,2003,44(3):191-205
    [129] Shankar M. V., Anandan S., Venkatachalam N., et al, Fine route for an efficientremoval of2.4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2,Chemosphere,2006,63(6):1014-1021
    [130] Yamashita H., Kawasaki S., Yuan S., et al, Efficient adsorption andphotocatalytic degradation of organic pollutants diluted in water using thefluoride-modified hydrophobic titanium oxide photocatalysts: Ti-containingBeta zeolite and TiO2loaded on HMS mesoporous silica, Catalysis Today,2007,126(3-4):375-381
    [131] Fukahori S., Ichiura H., Kitaoka T., et al, Photocatalytic decomposition ofbisphenol A in water using composite TiO2-zeolite sheets prepared by apapermaking technique, Environmental Science&Technology,2003,37(5):1048-1051
    [132] Nikazara M., Gholivand K., Mahanpoor K., Using TiO2supported onClinoptilolite as a catalyst for photocatalytic degradation of azo dye Disperseyellow23in water, Kinetics and Catalysis,2007,48(2):214-220
    [133] Rao K., Subrahmanyam M., A novel one step photocatalytic synthesis of2-methyl quinoxaline from o-phenylenediamine and propyleneglycol overTiO2/zeolite mediated system, Chemistry Letters,2002(2):234-235
    [134]杨骏,游卓亚,唐渝等,低温水热法制备硅胶负载型二氧化钛催化剂,化学研究与应用,2007(09):1041-1044
    [135] Li Y., Wu C., Kinetic study for photocatalytic oxidation of elemental mercuryon a SiO2-TiO2nanocomposite, Environmental Engineering Science,2007,24(1):3-12
    [136]刘勋,栾亚兰,刘恒等,纳米TiO2/天然矿物复合光催化材料的制备,矿产综合利用,2004(01):10-15
    [137] Machado L. C. R., Torchia C. B., Lago R. M., Floating photocatalysts based onTiO2supported on high surface area exfoliated vermiculite for waterdecontamination, Catalysis Communications,2006,7(8):538-541
    [138] Hsien K., Tsai W., Su T., Preparation of diatomite-TiO2composite forphotodegradation of bisphenol-A in water, Journal of Sol-Gel Science andTechnology,2009,51(1):63-69
    [139] Okte A. N., Sayinsoz E., Characterization and photocatalytic activity of TiO2supported sepiolite catalysts, Separation and Purification Technology,2008,62(3):535-543
    [140]马惠言,简丽,杨瑞芳等,二氧化钛/高岭土负载型催化剂的制备、表征及光催化性能,精细石油化工,2007(05):12-16
    [141]陈捷,TiO2柱撑膨润土的合成及其吸附光催化性能研究,[博士学位论文],大连海事大学,2008
    [142] Yuan L., Huang D., Guo W., et al, TiO2/montmorillonite nanocomposite forremoval of organic pollutant, Applied Clay Science,2011,53(2SI):272-278
    [143] Kang S., Wu T., Li X., et al, Effect of montmorillonite on the photocatalyticactivity of TiO2nanoparticles, Desalination,2010,262(1-3):147-151
    [144] Yang W., Cheng L., Xue Z., et al, Preparation of TiO2pillared montmorillonitephotocatalyst and its photocatalytic activity to degradation reaction of acidicfuchsine by sunlight, Spectroscopy and Spectral Analysis,2008,28(5):1122-1125
    [145] Miao S. D., Liu Z. M., Han B. X., et al, Synthesis and characterization of TiO2-montmorillonite nanocomposites and their application for removal of methyleneblue, Journal of Materials Chemistry,2006,16(6):579-584
    [146] Lu X., Peng T., Sun H., et al, Effects of pH Value on Composite Structure ofPoly-titanium-ion/Montmorillonite and Its TiO2Nano-particle, Journal ofInorganic Materials,2012,27(12):1294-1300
    [147] Damardji B., Khalaf H., Duclaux L., et al, Preparation of TiO2-pillaredmontmorillonite as photocatalyst Part I. Microwave calcination, characterisation,and adsorption of a textile azo dye, Applied Clay Science,2009,44(3-4):201-205
    [148] Li F., Yang D., Xia M., et al, Visible-light Photocatalytic Activity of Sn2+-doped TiO2and Its Loading Effect on Mesoporous Montmorillonite, Journal ofInorganic Materials,2011,26(9):917-922
    [149] Chen K., Li J., Wang W., et al, The preparation of vanadium-doped TiO2-montmorillonite nanocomposites and the photodegradation of sulforhodamine Bunder visible light irradiation, Applied Surface Science,2011,257(16):7276-7285
    [150] Liu J., Li X., Zuo S., et al, Preparation and photocatalytic activity of silver andTiO2nanoparticles/montmorillonite composites, Applied Clay Science,2007,37(3-4):275-280
    [151] Yu Z. J., Zhou A. N., Preparation and application of S cation and N anion co-doped TiO2pillared montmorillonite nano composite photocatalyst,Proceedings of2005International Conference on Advanced Fibers and PolymerMaterials (ICAFPM2005), Vol1and2: New Century, New Materials AndNew Life,2005:489-492
    [152] Kameshima Y., Yoshizawa A., Nakajima A., et al, Solid acidities of SiO2-TiO2/montmorillonite composites synthesized under different pH conditions,Applied Clay Science,2009,46(2):181-184
    [153] Dou B., Dupont V., Pan W., et al, Removal of aqueous toxic Hg(II) bysynthesized TiO2nanoparticles and TiO2/montmorillonite, ChemicalEngineering Journal,2011,166(2):631-638
    [154] Miller S. M., Zimmerman J. B., Novel, bio-based, photoactive arsenic sorbent:TiO2-impregnated chitosan bead, Water Research,2010,44(19SI):5722-5729
    [155] Miller S. M., Spaulding M. L., Zimmerman J. B., Optimization of capacity andkinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead,Water Research,2011,45(17):5745-5754
    [156] Yao S., Jia Y., Shi Z., et al, Photocatalytic Oxidation of Arsenite by aComposite of Titanium Dioxide and Activated Carbon Fiber, Photochemistryand Photobiology,2010,86(6):1215-1221
    [157] Yao S. H., Jia Y. F., Zhao S. L., Photocatalytic oxidation and removal ofarsenite by titanium dioxide supported on granular activated carbon,Environmental Technology,2012,33(9):983-988
    [158]龙小燕,涂书新,活性炭负载纳米二氧化钛对水体中砷的去除,工业水处理,2012(04):29-32
    [159] Zhang F., Itoh H., Photocatalytic oxidation and removal of arsenite from waterusing slag-iron oxide-TiO2adsorbent, Chemosphere,2006,65(1):125-131
    [160] Dinhthao V., Li X., Li Z., et al, Phase-Structure Effects of Electrospun TiO2Nanofiber Membranes on As(III) Adsorption, Journal of Chemical andEngineering Data,2013,58(1):71-77
    [161] Deng S., Li Z., Huang J., et al, Preparation, characterization and application of aCe-Ti oxide adsorbent for enhanced removal of arsenate from water, Journal ofHazardous Materials,2010,179(1-3):1014-1021
    [162] Zhou W., Fu H., Pan K., et al, Mesoporous TiO2/α-Fe2O3: BifunctionalComposites for Effective Elimination of Arsenite Contamination throughSimultaneous Photocatalytic Oxidation and Adsorption, Journal of PhysicalChemistry C,2008,112(49):19584-19589
    [163]那平,脱砷离子筛的研制及机理初探,[博士学位论文],天津大学,2006
    [164]刘剑锋,柱撑蒙脱土的合成及吸附性能研究,[硕士学位论文],天津大学,2006
    [165]贾秀敏,砷在钛柱撑蒙脱土上的吸附行为及机理研究,[硕士学位论文],天津大学,2008
    [166]司涛,除砷吸附剂的脱附及再生过程,[硕士学位论文],天津大学,2008
    [167] Brunauer S., Emmett P. H., Teller E., Adsorption of Gases in MultimolecularLayers, Journal of the American Chemical Society,1938,60(2):309-319
    [168] Deng S. B., Ting Y. P., Fungal biomass with grafted poly(acrylic acid) forenhancement of Cu(II) and Cd(II) biosorption, Langmuir,2005,21(13):5940-5948
    [169] Brunauer S., Deming L. S., Deming W. E., et al, On a Theory of the van derWaals Adsorption of Gases, Journal of the American Chemical Society,1940,62(7):1723-1732
    [170] De B. J. H., Everett D. H., Stone F. S., The structure and properties of porousmaterials, Butter Worths London,1958
    [171] Barrett E. P., Joyner L. G., Halenda P. P., The Determination of Pore Volumeand Area Distributions in Porous Substances. I. Computations from NitrogenIsotherms, Journal of the American Chemical Society,1951,73(1):373-380
    [172] Gupta K., Ghosh U. C., Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution, Journal of HazardousMaterials,2009,161(2-3):884-892
    [173]张雯,王绪绪,林华香等,磁场对光催化反应羟基自由基生成速率的影响,化学学报,2005(18):1765-1768
    [174] Sun R. D., Nakajima A., Fujishima A., et al, Photoinduced surface wettabilityconversion of ZnO and TiO2thin films, Journal of Physical Chemistry B,2001,105(10):1984-1990
    [175] Zhang Y., Yang M., Dou X. M., et al, Arsenate adsorption on an Fe-Ce bimetaloxide adsorbent: Role of surface properties, Environmental Science&Technology,2005,39(18):7246-7253
    [176] Burgos M., Langlet M., The sol-gel transformation of TIPT coatings: a FTIRstudy, Thin Solid Films,1999,349(1-2):19-23
    [177] Tan J., Yang L., Kang Q., et al, In Situ ATR-FTIR and UV-VisibleSpectroscopy Study of Photocatalytic Oxidation of Ethanol over TiO2Nanotubes, Analytical Letters,2011,44(PII9353471546):1114-1125
    [178] Gu Q., Fu X., Wang X., et al, Photocatalytic reforming of C3-polyols for H2production Part II. FTIR study on the adsorption and photocatalytic reformingreaction of2-propanol on Pt/TiO2, Applied Catalysis B-Environmental,2011,106(3-4):689-696
    [179] Ma L., Tu S. X., Removal of arsenic from aqueous solution by two types ofnano TiO2crystals, Environmental Chemistry Letters,2011,9(4):465-472
    [180] Fang J., Bi X., Si D., et al, Spectroscopic studies of interfacial structures ofCeO2-TiO2mixed oxides, Applied Surface Science,2007,253(22):8952-8961
    [181] Sicard L., Le Meins J., Methivier C., et al, Polyol synthesis and magnetic studyof Mn3O4nanocrystals of tunable size, Journal of Magnetism and MagneticMaterials,2010,322(18):2634-2640
    [182] Zhang G., Qu J., Liu H., et al, Removal mechanism of As(III) by a novel Fe-Mnbinary oxide adsorbent: Oxidation and sorption, Environmental Science&Technology,2007,41(13):4613-4619
    [183] Maliyekkal S. M., Philip L., Pradeep T., As(III) removal from drinking waterusing manganese oxide-coated-alumina: Performance evaluation andmechanistic details of surface binding, Chemical Engineering Journal,2009,153(1-3):101-107
    [184] Silva G. C., Almeida F. S., Dantas M. S. S., et al, Raman and IR spectroscopicinvestigation of As adsorbed on Mn3O4magnetic composites, SpectrochimicaActa Part a-Molecular and Biomolecular Spectroscopy,2013,100(SI):161-165
    [185] Frost R. L., Bahfenne S., Raman spectroscopic study of the arsenite mineralsleiteite ZnAs2O4, reinerite Zn3(AsO3)2and cafarsite Ca5(Ti,Fe,Mn)7(AsO3)124H2O, Journal of Raman Spectroscopy,2010,41(3):325-328
    [186] Pinnavaia T. J., Intercalated clay catalysts, Science,1983,220(4595):365-371
    [187] Burch R., Warburton C. I., Pillared clays as demetallisation catalysts, Appliedcatalysis,1987,33(2):395-404
    [188] Yang R. T., Baksh M. S. A., Pillared clays as a new class of sorbents for gasseparation, Journal of the American Institute of Chemical Engineers,1991,37(5):679-686
    [189] Zhao S., Feng C., Huang X., et al, Role of uniform pore structure and highpositive charges in the arsenate adsorption performance of Al13modifiedmontmorillonite, Journal of Hazardous Materials,2012,203:317-325
    [190] Huerta L., Meyer A., Choren E., Synthesis, characterization and catalyticapplication for ethylbenzene dehydrogenation of an iron pillared clay,Microporous and Mesoporous Materials,2003,57(PII S1387-1811(02)00593-03):219-227
    [191] Kameshima Y., Tamura Y., Nakajima A., et al, Preparation and properties ofTiO2/montmorillonite composites, Applied Clay Science,2009,45(1-2):20-23
    [192] Zhou J., Wu P., Dang Z., et al, Polymeric Fe/Zr pillared montmorillonite for theremoval of Cr(VI) from aqueous solutions, Chemical Engineering Journal,2010,162(3):1035-1044
    [193] Ramesh A., Hasegawa H., Maki T., et al, Adsorption of inorganic and organicarsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite,Separation and Purification Technology,2007,56(1):90-100
    [194] Binitha N. N., Sugunan S., Preparation, characterization and catalytic activity oftitania pillared montmorillonite clays, Microporous and Mesoporous Materials,2006,93(1-3):82-89
    [195] Ooka C., Akita S., Ohashi Y., et al, Crystallization of hydrothermally treatedTiO2pillars in pillared montmorillonite for improvement of the photocatalyticactivity, Journal of Materials Chemistry,1999,9(11):2943-2952
    [196] Carriazo J. G., Influence of iron removal on the synthesis of pillared clays: Asurface study by nitrogen adsorption, XRD and EPR, Applied Clay Science,2012,67:99-105
    [197]吴平霄,张惠芬,王辅亚等,蒙脱石热处理产物的电子顺磁共振研究,岩石矿物学杂志,1998(04):50-57
    [198] D Arcy M., Weiss D., Bluck M., et al, Adsorption kinetics, capacity andmechanism of arsenate and phosphate on a bifunctional TiO2-Fe2O3bi-composite, Journal of Colloid and Interface Science,2011,364(1):205-212
    [199] Li Q., Easter N. J., Shang J. K., As(III) Removal by Palladium-ModifiedNitrogen-Doped Titanium Oxide Nanoparticle Photocatalyst, EnvironmentalScience&Technology,2009,43(5):1534-1539
    [200] Gang D. D., Deng B., Lin L., As(III) removal using an iron-impregnatedchitosan sorbent, Journal of Hazardous Materials,2010,182(1-3):156-161
    [201] Lin T. F., Wu J. K., Adsorption of arsenite and arsenate within activatedalumina grains: Equilibrium and kinetics, Water Research,2001,35(8):2049-2057
    [202] Luengo C., Puccia V., Avena M., Arsenate adsorption and desorption kineticson a Fe(III)-modified montmorillonite, Journal of Hazardous Materials,2011,186(2-3):1713-1719
    [203] Jansson P. J., Hawkins C. L., Lovejoy D. B., et al, The iron complex ofDp44mT is redox-active and induces hydroxyl radical formation: An EPR study,Journal of Inorganic Biochemistry,2010,104(11):1224-1228
    [204] Fabrega C., Andreu T., Cabot A., et al, Location and catalytic role of ironspecies in TiO2:Fe photocatalysts: An EPR study, Journal of Photochemistryand Photobiology a-Chemistry,2010,211(2-3):170-175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700