CDK11p58激酶活性及SGT/PIAS1相互作用与凋亡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分CDK11p58激酶活性与凋亡的研究
     CDK11p58是一种在G2/M期特异性表达的蛋白激酶,在许多细胞中被证明与细胞凋亡相关,但机制仍不明确。我们实验室之前的研究证明CDK11p58能够促进放线菌酮(cycloheximide,CHX)诱导的SMMC-7721肝癌细胞的凋亡,然而其机制尚不明确。本文首次发现在SMMC-7721细胞中外转表达CDK11p58能够在CHX诱导凋亡过程中下调抗凋亡蛋白Bcl-2的蛋白水平,也下调Bcl-2的Ser70和Ser87的磷酸化水平。同时,我们也发现过表达Bcl-2能够抑制CDK11p58的促凋亡活性。进一步研究表明,CDK11p58的激酶活性在下调Bcl-2蛋白水平以及促凋亡过程中发挥关键作用。综上所述,CDK11p58在促凋亡过程中下调Bcl-2及其Ser70和Ser87磷酸化水平,并且该过程依赖于CDK11p58的蛋白激酶活性。
     第二部分:SGT与PIS1相互作用及其在凋亡中的作用
     Small glutamine-rich tetratricopeptide repeat-containing protein(SGT)在细胞中发挥分子伴侣蛋白的辅分子的作用,与一些重要的伴侣蛋白相互作用,例如热休克蛋白70和热休克蛋白90。我们实验室之前的研究表明SGT具有促凋亡的作用,但是其生物学机制并不清楚。为了进一步研究SGT的功能,我们采用酵母双杂交的方法,以SGT全长为诱饵筛人胎肝eDNA文库,发现了与其相互作用的蛋白PIAS1(protein inhibitor ofactivated STAT 1),体外GST-pull down实验也验证了它们之间的相互作用。由于SGT与PIAS1在细胞内的定位不同,PIAS1定位于胞核,而SGT一般定位于胞浆中,SGT在格尔德酶素(Geldanamycin,GA,一种热休克蛋白90的抑制剂)或凋亡信号的刺激下向核内转运,在体内试验中我们发现SGT在转运至核内后才与PIAS1发生相互作用。进一步的研究表明,采用RNA干扰的方式抑制PIAS1的表达之后,影响了SGT的促凋亡活性。通过本研究我们得出结论:SGT在一些凋亡信号的刺激下,向核内转运,通过与PIAS1相互作用促进细胞凋亡,PIAS1在SGT促凋亡的过程中发挥重要作用。
PARTⅠ:The research of CDK11p58 protein kinase activity in apoptosis
     CDK11p58,a G2/M-specific protein kinase,has been shown to be associated with apoptosis in many cell lines,with largely unknown mechanisms.Our previous study proved that CDK11p58 enhanced cycloheximide(CHX)-induced apoptosis in SMMC-7721 hepatocarcinoma cells.Here we reported for the first time that ectopic expression of CDK11p58 down-regulated the expression of Bcl-2 and its Ser70,Ser87 phosphorylation in CHX-induced apoptosis in SMMC-7721 cells.Overexpression of Bcl-2 counteracted the pro-apoptotic activity of CDK11p58.Furthermore,we confirmed that the kinase activity of CDK11p58 was essential to the down-regulation of Bcl-2 as well as apoptosis.Taken together,these results demonstrated that CDK11p58 down-regulated Bcl-2 in pro-apoptosis pathway depending on its kinase activity,which elicited survival signal in hepatocarcinoma cells.
     PARTⅡ:The research of the interaction of SGT with PIAS1 and its function in apoptosis
     Small glutamine-rich tetratricopeptide repeat-containing protein(SGT) acts as a co-chaperone,interacting with several essential chaperones,such as Hsp70 and Hsp90. Our previous study showed the pro-apoptosis activity of SGT.However,the biological mechanism remains unclear.To further investigate its functions,we used the yeast two-hybrid system to screen a human fetal liver cDNA library and identified PIAS1(protein inhibitor ofαctivated STAT 1) as an interacting partner of SGT.The association of SGT with PIAS1 was further confirmed by GST-pull down in vitro. Based on the different subcellular location of this two molecule and the fact that SGT translocates into nucleus after Geldanamycin(GA,an Hsp90 inhibitor) or other apoptosis inducer treatment,we revealed SGT interacted with PIAS1 in vivo after it translocated into the nucleus.Further studies showed that inhibition of PIAS1 expression by siRNA infected the pro-apoptosis activity of SGT.Collectively we concluded that SGT transloacted into the nucleus and induced apoptosis upon stress stimuli.SGT interacted with PIAS1 in the nucleus,and PIAS1 played a role in the pro-apoptosis process of SGT.
引文
[1] Ellis RE, Yuan JY, and Horvitz HR. (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663-698
    [2] Williams GT and Smith CA. (1993) Molecular regulation of apoptosis: genetic controls on cell death. Cell 74:777-779
    [3] Ashkenazi A and Dixit VM. (1998) Death receptors: signaling and modulation. Science 281:1305-1308
    [4] Evan G and Littlewood T. (1998) A matter of life and cell death. Science 281:1317-1322
    [5] Adams JM and Cory S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322-1326
    [6] Oltvai ZN, Milliman CL and Korsmeyer SJ. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609-619
    [7] Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479-489
    [8] Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405-413
    [9] Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S. (2000) Prottranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 20:1886-96
    [10] Ito T, Deng X, Carr B, May WS. (1997) Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 272:11671-11673
    [11] Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, Raff MC. (1996) Constitutive expression of the machinery for programmed cell death. J Cell Biol 133:1053-1059
    [12] Shi L, Nishioka WK, Th'ng J, Bradbury EM, Litchiield DW, Greenberg AH. (1994) Premature p34cdc2 activation required for apoptosis. Science 263:1143-1145
    [13]Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323-330
    [14]Lahti JM, Xiang J, Heath LS, Campana D, Kidd VJ. (1995) PITSLRE protein kinase activity is associated with apoptosis. Mol Cell Biol 15:1-11
    [15]Cai MM, Zhang SW, Zhang S, Chen S, Yan J, Zhu XY, Hu Y, Chen C, Gu JX. (2002) Different effects of p58PITSLRE on the apoptosis induced by etoposide, cycloheximide and serum-withdrawal in human hepatocarcinoma cells. Mol Cell Biochem 238:49-55
    [16]Zhang S, Cai M, Zhang S, Xu S, Chen S, Chen X, Chen C, Gu J. (2002) Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3. J Biol Chem 277: 35314-35322
    [17]Tan KO, Tan KM, Chan SL, Yee KS, Bevort M, Ang KC, Yu VC. (2001) MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J Biol Chem 276:2802-2807
    [18]Li Z, Wang H, Zong H, Sun Q, Kong X, Jiang J, Gu J. (2005) Downregulation of beta1,4-galactosyltransferase 1 inhibits CDK11(p58)-mediated apoptosis induced by cycloheximide. Biochem Biophys Res Commun 327:628-636
    [19]Yin XM, Oltvai ZN and Korsmeyer SJ. (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321-3
    [20]Tschopp J, Thome M, Hofmann K, Meinl E. (1998) The fight of viruses against apoptosis. Curr Opin Genet Dev 8:82-7
    [21]Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285-91
    [22]Sawada M, Nakashima S, Banno Y, Yamakawa H, Takenaka K, Shinoda J, Nishimura Y, Sakai N, Nozawa Y. (2006) Influence of Bax or Bcl-2 overexpression on the ceramide-dependent apoptosis pathway in glioma cells. Oncogene 25: 7440
    [23]Armstrong RC, Aja T, Xiang J, Gaur S, Krebs JF, Hoang K, Bai X, Korsmeyer SJ, Karanewsky DS, Fritz LC, Tomaselli KJ. (1996) Fas-induced activation of the cell death-related protease CPP32 Is inhibited by Bcl-2 and by ICE family protease inhibitors. J Biol Chem 271:16850-16855
    [24]Lamothe B and Aggarwal BB. (2002) Ectopic expression of Bcl-2 and Bcl-xL inhibits apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL) through suppression of caspases-8, 7, and 3 and BID cleavage in human acute myelogenous leukemia cell line HL-60. J Interferon Cytokine Res 22:269-279
    [25]Cornelis S, Bruynooghe Y, Denecker G, Van Huffel S, Tinton S, Beyaert R. (2000) Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5:597-605
    [26]Xiang J, Lahti JM, Grenet J, Easton J, Kidd VJ. (1994) Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms. J Biol Chem 269:15786-15794
    [27]Zong H, Li Z, Liu L, Hong Y, Yun X, Jiang J, Chi Y, Wang H, Shen X, Hu Y, Niu Z, Gu J. (2005) Cyclin-dependent kinase 11(p58) interacts with HBO1 and enhances its histone acetyltransferase activity. FEBS Lett 579: 3579-3588
    [28]Hockenbery D, Nu(?)ez G, Milliman C, Schreiber RD, Korsmeyer SJ. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334-336
    [29]Zhu W, Cowie A, Wasfy GW, Perm LZ, Leber B, Andrews DW. (1996) Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. Embo J 15:4130-4141
    [30]Jin Z, May WS, Gao F, Flagg T, Deng X. (2006) Bcl2 suppresses DNA repair by enhancing c-Myc transcriptional activity. J Biol Chem 281:14446-14456
    [31]Beyaert R, Kidd VJ, Cornelis S, Van de Craen M, Denecker G, Lahti JM, Gururajan R, Vandenabeele P, Fiers W. (1997) Cleavage of PITSLRE kinases by ICE/CASP-1 and CPP32/CASP-3 during apoptosis induced by tumor necrosis factor. J Biol Chem 272:11694-11697
    [32]Chen C, Yan J, Sun Q, Yao L, Jian Y, Lu J, Gu J. (2006) Induction of apoptosis by p110C requires mitochondrial translocation of the proapoptotic BCL-2 family member BAD. FEBS Lett 580:813-821
    [33]Thomas A, Giesler T and White E. (2000) p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene 19:5259-5269
    [1] Angeletti PC, W. D., Panganiban AT. 2002. Small glutamine-rich protein/viral protein U-binding protein is a novel cochaperone that affects heat shock protein 70 activity. Cell Stress Chaperones. 7:258-268.
    [2] Cziepluch, C., E. Kordes, R. Poirey, A. Grewenig, J. Rommelaere, and J. C. Jauniaux. 1998. Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. J Virol 72:4149-56.
    [3] Demonacos, C., M. Krstic-Demonacos, and N. B. La Thangue. 2001. A TPR motif cofactor contributes to p300 activity in the p53 response. Mol Cell 8:71-84.
    [4] Gross, M., B. Liu, J. Tan, F. S. French, M. Carey, and K. Shuai. 2001. Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene 20:3880-7.
    [5] H., N. T. a. Y. 2002. PIAS1 and PIASxa function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. . J. Biol.Chem. 277:41311-41317.
    [6] Imai, Y., M. Soda, S. Hatakeyama, T. Akagi, T. Hashikawa, K. I. Nakayama, and R. Takahashi. 2002. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 10:55-67.
    [7] K., S. 2000. Modulation of STAT signaling by STAT-interacting proteins. . Oncogene 19:2638-2644.
    [8] Kahyo, T., T. Nishida, and H. Yasuda. 2001. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8:713-8.
    [9] Klenk, C., J. Humrich, U. Quitterer, and M. J. Lohse. 2006. SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem 281:8357-64.
    [10] Lamb, J. R., S. Tugendreich, and P. Hieter. 1995. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257-9.
    [11] Lassie, M., G. L. Blatch, V. Kundra, T. Takatori, and B. R. Zetter. 1997. Stress-inducible, murine protein mSTI1. Characterization of binding domains for heat shock proteins and in vitro phosphorylation by different kinases. J Biol Chem 272:1876-84.
    [12] Lesko, E., J. Gozdzik, J. Kijowski, B. Jenner, 0. Wiecha, and M. Majka. 2007. HSP90 antagonist, geldanamycin, inhibits proliferation, induces apoptosis and blocks migration of rhabdomyosarcoma cells in vitro and seeding into bone marrow in vivo. Anticancer Drugs 18:1173-81.
    [13] Liou, S. T., and C. Wang. 2005. Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch Biochem Biophys 435:253-63.
    [14] Liu, B., J. Liao, X. Rao, S. A. Kushner, C. D. Chung, D. D. Chang, and K. Shuai. 1998. Inhibition of Statl-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A 95:10626-31.
    [15] Liu, B., R. Yang, K. A. Wong, C. German, N. Stein, M. A. Teitell, G. Cheng, H. Wu, and K. Shuai. 2005. Negative regulation of NF-kappaB signaling by PIAS1. Mol Cell Biol 25:1113-23.
    [16] Liu B., a. S. K. 2001. Induction of apoptosis by protein inhibitor of activated Statl through c-Jun NH2-terminal kinase activation. J Biol.Chem. 276:36624-36631.
    [17] M.A. Callahan, M. A. H., Y.H. Lee, K.J. Talbot, J.W. Harper,, and A. T. Panganiban. 1998. Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J. Virol. 72:5189-5197.
    [18] Megidish T., X. J. H. a. X. C. W. 2002. Activation of P53 by protein inhibitor of activated Stats (PIAS1).. J boil Chem. 277:8255-8259.
    [19] Moilanen, A. M., U. Karvonen, H. Poukka, W. Yan, J. Toppari, O. A. Janne, and J. J. Palvimo. 1999. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem 274:3700-4.
    [20] Okubo, S., F. Hara, Y. Tsuchida, S. Shimotakahara, S. Suzuki, H. Hatanaka, S. Yokoyama, H. Tanaka, H. Yasuda, and H. Shindo. 2004. NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. J Biol Chem 279:31455-61.
    [21] Sachdev, S., L. Bruhn, H. Sieber, A. Pichler, F. Melchior, and R. Grosschedl. 2001. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088-103.
    [22] Shen, J. H., Y. Zhang, N. H. Wu, and Y. F. Shen. 2007. Resistance to geldanamycin-induced apoptosis in differentiated neuroblastoma SH-SY5Y cells. Neurosci Lett 414:110-4.
    [23] Tan, J., S. H. Hall, K. G. Hamil, G. Grossman, P. Petrusz, J. Liao, K. Shuai, and F. S. French. 2000. Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1) is a nuclear receptor coregulator expressed in human testis. Mol Endocrinol 14:14-26.
    [24] Tan, J. A., S. H. Hall, K. G. Hamil, G. Grossman, P. Petrusz, and F. S. French. 2002. Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J Biol Chem 277:16993-7001.
    [25] Tobaben S, V. F., Brose N, Stahl B, Meyer G 2003. A brain-specific isoform of small glutamine-rich tetratricopeptide repeat-containing protein binds to Hsc70 and the cysteine string protein. J Biol Chem. 278:38376-38383.
    [26] Wang, H., H. Shen, Y. Wang, Z. Li, H. Yin, H. Zong, J. Jiang, and J. Gu. 2005. Overexpression of small glutamine-rich TPR-containing protein promotes apoptosis in 7721 cells. FEBS Lett 579:1279-84.
    [27] Wang, H., Q. Zhang, and D. Zhu. 2003. hSGT interacts with the N-terminal region of myostatin. Biochem Biophys Res Commun 311:877-83.
    [28] Winnefeld, M., A. Grewenig, M. Schnolzer, H. Spring, T. A. Knoch, E. C. Gan, J. Rommelaere, and C. Cziepluch. 2006. Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp Cell Res 312:2500-14.
    [29] Winnefeld, M., J. Rommelaere, and C. Cziepluch. 2004. The human small glutamine-rich TPR-containing protein is required for progress through cell division. Exp Cell Res 293:43-57.
    [30] Yin, H., H. Wang, H. Zong, X. Chen, Y. Wang, X. Yun, Y. Wu, J. Wang, and J. Gu. 2006. SGT, a Hsp90beta binding partner, is accumulated in the nucleus during cell apoptosis. Biochem Biophys Res Commun 343:1153-8.
    [1]Weissman,A.M.(2001) Themes and variations on ubiquitylation Nat Rev Mol Cell Biol 2(3),169-178
    [2]Hilt,W.,and Wolf,D.H.(2004) The ubiquitin-proteasome system:past,present and future Cell Mol Life Sci 61(13),1545
    [3]Melchior,F.(2000) SUMO--nonclassical ubiquitin Annu Rev Cell Dev Biol 16,591-626
    [4]Tsytsykova,A.V.,Tsitsikov,E.N.,Wright,D.A.,Futcher,B.,and Geha,R.S.(1998) The mouse genome contains two expressed intronless retroposed pseudogenes for the sentrin/sumo-1/PIC1 conjugating enzyme Ubc9 Mol Immunol 35(16),1057-1067
    [5]Stemsdorf,T.,Jensen,K.,and Will,H.(1997) Evidence for covalent modification of the nuclear dot-associated proteins PML and Spl00 by PIC1/SUMO-1 J Cell Biol 139(7),1621-1634
    [6]Sun,L.G.,Jiang,Y.,and Yu,Y.L.(2002)[Discovery of Cervus nippon Temminck-dedved sentrin/SUMO]Y/Chuan 24(1),22-26
    [7]Saitoh,H.,and Hinchey,J.(2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3 J Biol Chem 275(9),6252-6258
    [8]Tatham,M.H.,Jaffray,E.,Vaughan,O.A.,Desterro,J.M.,Botting,C.H.,Naismith,J.H.,and Hay,R.T.(2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9 J Biol Chem 276(38),35368-35374
    [9]Bohren,K.M.,Nadkami,V.,Song,J.H.,Gabbay,K.H.,and Owerbach,D.(2004)A M55V polymorphism in a novel SUMO gene(SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type Ⅰ diabetes mellitus J Biol Chem 279(26),27233-27238
    [10]Rui,H.L.,Fan,E.,Zhou,H.M.,Xu,Z.,Zhang,Y.,and Lin,S.C.(2002)SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling J Biol Chem 277(45), 42981-42986
    [11] Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G, and Chen, Y. (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins Proc Natl Acad Sci U S A 101(40), 14373-14378
    [12] Dohmen, R. J. (2004) SUMO protein modification Biochim Biophys Acta 1695(1-3), 113-131
    [13] Dohmen, R. J., Stappen, R., McGrath, J. P., Forrova, H., Kolarov, J., Goffeau, A., and Varshavsky, A. (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme J Biol Chem 270(30), 18099-18109
    [14] Johnson, E. S., Schwienhorst, I., Dohmen, R. J., and Blobel, G. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer Embo J 16(18), 5509-5519
    [15] Hochstrasser, M. (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein Cell 107(1), 5-8
    [16] Jones, D., Crowe, E., Stevens, T. A., and Candido, E. P. (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins Genome Biol 3(1), RESEARCH0002
    [17] Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., Pandolfi, P. P., and Dejean, A. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice Dev Cell 9(6), 769-779
    [18] Liu, B., Liao, J., Rao, X., Kushner, S. A., Chung, C. D., Chang, D. D., and Shuai, K. (1998) Inhibition of Statl-mediated gene activation by PIAS1 Proc Natl Acad Sci U S A 95(18), 10626-10631
    [19] Jimenez-Lara, A. M., Heine, M. J., and Gronemeyer, H. (2002) PIAS3 (protein inhibitor of activated STAT-3) modulates the transcriptional activation mediated by the nuclear receptor coactivator TIF2 FEBS Lett 526(1-3), 142-146
    [20] Nishida, T, and Yasuda, H. (2002) PIASl and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription J Biol Chem 277(44), 41311-41317
    [21] Junicho, A., Matsuda, T., Yamamoto, T., Kishi, H., Korkmaz, K., Saatcioglu, R, Fuse, H., and Muraguchi, A. (2000) Protein inhibitor of activated STAT3 regulates androgen receptor signaling in prostate carcinoma cells Biochem Biophys Res Commun 278(1), 9-13
    [22] Sturm, S., Koch, M., and White, F. A. (2000) Cloning and analysis of a murine PIAS family member, PIASgamma, in developing skin and neurons J Mol Neurosci 14(1-2), 107-121
    [23] Pichler, A., Gast, A., Seeler, J. S., Dejean, A., and Melchior, F. (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity Cell 108(1), 109-120
    [24] Haindl, M., Harasim, T., Eick, D., and Muller, S. (2008) The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing EMBO Rep 9(3), 273-279
    [25] Di Bacco, A., and Gill, G (2006) SUMO-specific proteases and the cell cycle. An essential role for SENP5 in cell proliferation Cell Cycle 5(20), 2310-2313
    [26] Veltman, I. M., Vreede, L. A., Cheng, J., Looijenga, L. H., Janssen, B., Schoenmakers, E. F., Yeh, E. T, and van Kessel, A. G. (2005) Fusion of the SUMO/Sentrin-specific protease 1 gene SENP1 and the embryonic polarity-related mesoderm development gene MESDC2 in a patient with an infantile teratoma and a constitutional t(12;15)(q13;q25) Hum Mol Genet 14(14), 1955-1963
    [27] Johnson, E. S. (2004) Protein modification by SUMO Annu Rev Biochem 73, 355-382
    [28] Yamaguchi, T, Sharma, P., Athanasiou, M., Kumar, A., Yamada, S., and Kuehn, M. R. (2005) Mutation of SENPl/SuPr-2 reveals an essential role for desumoylation in mouse development Mol Cell Biol 25(12), 5171-5182
    [29] Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M., and Lamond, A. I. (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. In. Mol Cell Proteomics
    [30] Yang, S. H., and Sharrocks, A. D. (2006) Convergence of the SUMO and MAPK pathways on the ETS-domain transcription factor Elk-1 Biochem Soc Symp (73), 121-129
    [31] Yang, S. H., and Sharrocks, A. D. (2005) PIASx acts as an Elk-1 coactivator by facilitating derepression Embo J 24( 12), 2161-2171
    [32] Hirano, Y., Murata, S., Tanaka, K., Shimizu, M., and Sato, R. (2003) Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway J Biol Chem 278(19), 16809-16819
    [33] Rogers, R. S., Horvath, C. M., and Matunis, M. J. (2003) SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation J Biol Chem 278(32), 30091-30097
    [34] Matsuzaki, K., Minami, T., Tojo, M., Honda, Y., Uchimura, Y., Saitoh, H., Yasuda, H., Nagahiro, S., Saya, H., and Nakao, M. (2003) Serum response factor is modulated by the SUMO-1 conjugation system Biochem Biophys Res Commun 306(1), 32-38
    [35] Sramko, M., Markus, J., Kabat, J., Wolff, L., and Bies, J. (2006) Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins J Biol Chem 281(52), 40065-40075
    [36] Subramanian, L., Benson, M. D., and Iniguez-Lluhi, J. A. (2003) A synergy control motif within the attenuator domain of CCAAT/enhancer-binding protein alpha inhibits transcriptional synergy through its PIASy-enhanced modification by SUMO-1 or SUMO-3 JBiol Chem 278(11), 9134-9141
    [37] Zhou, S., Si, J., Liu, T., and DeWille, J. W. (2008) PIASy represses CCAAT/enhancer-binding protein delta (C/EBPdelta) transcriptional activity by sequestering C/EBPdelta to the nuclear periphery J Biol Chem 283(29), 20137-20148
    [38] Mohan, R. D., Rao, A., Gagliardi, J., and Tini, M. (2007) SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment Mol Cell Biol 27(1), 229-243
    [39] Sentis, S., Le Romancer, M., Bianchin, C, Rostan, M. C, and Corbo, L. (2005) Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity Mol Endocrinol 19(11), 2671-2684
    [40] Ross, S., Best, J. L., Zon, L. I., and Gill, G. (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization Mol Cell 10(4), 831-842
    [41] Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002) Transcription factor Sp3 is silenced through SUMO modification by PIAS1 Embo J 21(19), 5206-5215
    [42] Lin, D. Y., Fang, H. I., Ma, A. H., Huang, Y. S, Pu, Y. S., Jenster, G., Kung, H. J., and Shih, H. M. (2004) Negative modulation of androgen receptor transcriptional activity by Daxx Mol Cell Biol 24(24), 10529-10541
    [43] Chang, C. C., Lin, D. Y., Fang, H. I., Chen, R. H., and Shih, H. M. (2005) Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4 J Biol Chem 280(11), 10164-10173
    [44] Maul, G G., Negorev, D., Bell, P., and Ishov, A. M. (2000) Review: properties and assembly mechanisms of ND10, PML bodies, or PODs J Struct Biol 129(2-3), 278-287
    [45] Melnick, A., and Licht, J. D. (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia Blood 93(10), 3167-3215
    [46] Muller, S., Matunis, M. J., and Dejean, A. (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus Embo J 17(1), 61-70
    [47] Schmidt, D., and Muller, S. (2003) PIAS/SUMO: new partners in transcriptional regulation Cell Mol Life Sci 60(12), 2561-2574
    [48] Weis, K. (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle Cell 112(4), 441-451
    [49] Matunis, M. J., Wu, J., and Blobel, G. (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAPl, to the nuclear pore complex J Cell Biol 140(3), 499-509
    [50] Sobko, A., Ma, H., and Firtel, R. A. (2002) Regulated SUMOylation and ubiquitination of DdMEKl is required for proper chemotaxis Dev Cell 2(6), 745-756
    [51] Long, J., Wang, G., He, D., and Liu, F. (2004) Repression of Smad4 transcriptional activity by SUMO modification Biochem J379(Pt 1), 23-29
    [52] Steffan, J. S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L. C., Slepko, N., Illes, K., Lukacsovich, T., Zhu, Y. Z., Cattaneo, E., Pandolfi, P. P., Thompson, L. M., and Marsh, J. L. (2004) SUMO modification of Huntingtin and Huntington's disease pathology Science 304(5667), 100-104
    [53] Papouli, E., Chen, S., Davies, A. A., Huttner, D., Krejci, L., Sung, P., and Ulrich, H. D. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p Mol Cell 19(1), 123-133
    [54] Sacher, M., Pfander, B., Hoege, C., and Jentsch, S. (2006) Control of Rad52 recombination activity by double-strand break-induced SUMO modification Nat Cell Biol 8(11), 1284-1290
    [55] Klenk, C., Humrich, J., Quitterer, U., and Lohse, M. J. (2006) SUMO-1 controls the protein stability and the biological function of phosducin J Biol Chem 281(13), 8357-8364
    [56] Takahashi, K., Ishida, M., Komano, H, and Takahashi, H. (2008) SUMO-1 immunoreactivity co-localizes with phospho-Tau in APP transgenic mice but not in mutant Tau transgenic mice Neurosci Lett 441(1), 90-93
    [57] Kracklauer, M. P., and Schmidt, C. (2003) At the crossroads of SUMO and NF-kappaB Mol Cancer 2, 39
    [58] Buschmann, T., Fuchs, S. Y., Lee, C. G., Pan, Z. Q., and Ronai, Z. (2000) SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53 Cell 101(7), 753-762
    [59] Rodriguez, M. S., Desterro, J. M., Lain, S., Midgley, C. A., Lane, D. P., and Hay, R. T. (1999) SUMO-1 modification activates the transcriptional response of p53 Embo J 18(22),6455-6461
    [60] Muller, S., Hoege, C., Pyrowolakis, G., and Jentsch, S. (2001) SUMO, ubiquitin's mysterious cousin Nat Rev Mol Cell Biol 2(3), 202-210
    [61] Meluh, P. B., and Koshland, D. (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C Mol Biol Cell 6(7), 793-807
    [62] Hari, K. L., Cook, K. R., and Karpen, G H. (2001) The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family Genes Dev 15(11), 1334-1348
    [63] Strunnikov, A. V., Aravind, L., and Koonin, E. V. (2001) Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation Genetics 158(1), 95-107
    [64] Xhemalce, B., Seeler, J. S., Thon, G., Dejean, A., and Arcangioli, B. (2004) Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance Embo J 23(19), 3844-3853
    [65] Zhao, J. (2007) Sumoylation regulates diverse biological processes Cell Mol Life Sci 64(23), 3017-3033
    [66] Potts, P. R., and Yu, H. (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair Mol Cell Biol 25(16), 7021-7032
    [67] Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C., and Jentsch, S. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase Nature 436(7049), 428-433
    [68] Baba, D., Maita, N., Jee, J. G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H., and Shirakawa, M. (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1 Nature 435(7044), 979-982
    [69] Valin, A., and Gill, G. (2007) Regulation of the dual-function transcription factor Sp3 by SUMO Biochem Soc Trans 35(Pt 6), 1393-1396
    [70] Shalizi, A., Bilimoria, P. M., Stegmuller, J., Gaudilliere, B., Yang, Y., Shuai, K., and Bonni, A. (2007) PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis J Neurosci 27(37), 10037-10046
    [71] Van Dyck, F., Delvaux, E. L., Van de Ven, W. J., and Chavez, M. V. (2004) Repression of the Transactivating Capacity of the Oncoprotein PLAG1 by SUMOylation J Biol Chem 279(34), 36121-36131
    [72] Salinas, S., and Hipskind, R. A. (2005) [SUMO pins Elk-1 in the nucleus] Med Sci (Paris) 21(2), 121-123
    [73] Hietakangas, V., Ahlskog, J. K., Jakobsson, A. M., Hellesuo, M., Sahlberg, N. M., Holmberg, C. I., Mikhailov, A., Palvimo, J. J., Pirkkala, L., and Sistonen, L. (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1 Mol Cell Biol 23(8), 2953-2968
    [74] Yamashita, D., Yamaguchi, T., Shimizu, M., Nakata, N., Hirose, F., and Osumi, T. (2004) The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain Genes Cells 9(11), 1017-1029
    [75] Utsubo-Kuniyoshi, R., Terui, Y., Mishima, Y., Rokudai, A., Mishima, Y., Sugimura, N., Kojima, K., Sonoda, Y., Kasahara, T., and Hatake, K. (2007) MEK-ERK is involved in SUMO-1 foci formation on apoptosis Cancer Sci 98(4), 569-576
    [76] Hilgarth, R. S., Hong, Y., Park-Sarge, O. K., and Sarge, K. D. (2003) Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification Biochem Biophys Res Commun 303(1), 196-200
    [77] Goodson, M. L., Hong, Y., Rogers, R., Matunis, M. J., Park-Sarge, O. K., and Sarge, K. D. (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor J Biol Chem 276(21), 18513-18518
    [78] Lee, J. S., and Thorgeirsson, S. S. (2004) Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets Gastroenterology 127(5 Suppl 1), S51-55
    [79] Mo, Y. Y., Yu, Y., Theodosiou, E., Ee, P. L., and Beck, W. T. (2005) A role for Ubc9 in tumorigenesis Oncogene 24(16), 2677-2683
    [80] Tagawa, H., Miura, I., Suzuki, R., Suzuki, H., Hosokawa, Y., and Seto, M. (2002) Molecular cytogenetic analysis of the breakpoint region at 6q21-22 in T-cell lymphoma/leukemia cell lines Genes Chromosomes Cancer 34(2), 175-185
    [81] Wood, L. D., Irvin, B. J., Nucifora, G., Luce, K. S., and Hiebert, S. W. (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor Proc Natl Acad Sci USA 100(6),3257-3262
    [82]Deyrieux,A.F.,Rosas-Acosta,G.,Ozbun,M.A.,and Wilson,V.G.(2007)Sumoylation dynamics during keratinocyte differentiation J Cell Sci 120(Pt 1),125-136
    [83]Pountney,D.L.,Chegini,F.,Shen,X.,Blumbergs,P.C.,and Gai,W.P.(2005)SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy Neurosci Lett 381(1-2),74-79
    [84]Pountney,D.L.,Huang,Y.,Burns,R.J.,Haan,E.,Thompson,P.D.,Blumbergs,P.C.,and Gai,W.P.(2003) SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease Exp Neurol 184(1),436-446
    [85]Dorval,V.,and Fraser,P.E.(2006) Small ubiquitin-like modifier(SUMO)modification of natively unfolded proteins tau and alpha-synuclein J Biol Chem 281(15),9919-9924
    [86]Li,Y.,Wang,H.,Wang,S.,Quon,D.,Liu,Y.W.,and Cordell,B.(2003) Positive and negative regulation of APP amyloidogenesis by sumoylation Proc Natl Acad Sci USA 100(1),259-264
    [87]Terashima,T.,Kawai,H.,Fujitani,M.,Maeda,K.,and Yasuda,H.(2002)SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death Neuroreport 13(17),2359-2364
    [88]Fei,E.,Jia,N.,Yan,M.,Ying,Z.,Sun,Q.,Wang,H.,Zhang,T.,Ma,X.,Ding,H.,Yao,X.,Shi,Y.,and Wang,G.(2006) SUMO-1 modification increases human SOD1 stability and aggregation Biochem Biophys Res Commun 347(2),406-412
    [89]Wang,Z.,Jones,G.M.,and Prelich,G.(2006) Genetic analysis connects SLX5and SLX8 to the SUMO pathway in Saccharomyces cerevisiae Genetics 172(3),1499-1509
    [90]Li,M.,Guo,D.,Isales,C.M.,Eizirik,D.L.,Atkinson,M.,She,J.X.,and Wang,C.Y.(2005) SUMO wrestling with type 1 diabetes JMol Med 83(7),504-513
    [91]Lin,H.Y.,Wang,C.L.,Hsiao,P.J.,Lu,Y.C.,Chen,S.Y.,Lin,K.D.,Hsin,S.C.,Hsieh,M.C.,and Shin,S.J.(2007) SUMO4 M55V variant is associated with diabetic nephropathy in type 2 diabetes Diabetes 56(4), 1177-1180
    [92] Guo, D., Han, J., Adam, B. L., Colburn, N. H., Wang, M. H., Dong, Z., Eizirik, D. L., She, J. X., and Wang, C. Y. (2005) Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress Biochem Biophys Res Commun 337(4), 1308-1318
    [93] Giorgino, F., de Robertis, O., Laviola, L., Montrone, C., Perrini, S., McCowen, K. C., and Smith, R. J. (2000) The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells Proc Natl Acad Sci U S A 97(3), 1125-1130
    [94] Lalioti, V. S., Vergarajauregui, S., Pulido, D., and Sandoval, I. V. (2002) The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1 J Biol Chem 277(22), 19783-19791
    [95] Dadke, S., Cotteret, S., Yip, S. C., Jaffer, Z. M., Haj, F., Ivanov, A., Rauscher, F., 3rd, Shuai, K., Ng, T, Neel, B. G., and Chernoff, J. (2007) Regulation of protein tyrosine phosphatase 1B by sumoylation Nat Cell Biol 9(1), 80-85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700