HCV NS3基因转化人肝细胞及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙型肝炎病毒(HCV)感染是目前影响人类健康的严重问题,它的持续感染可引起慢性肝炎、肝硬化和肝细胞癌(HCC)的发生,但对于HCV 持续感染导致慢性肝疾病的机理还不清楚。HCV 是一种RNA 病毒,无逆转录酶活性,只在细胞胞浆内复制,不能与宿主基因整合,主要是通过其表达的蛋白质起作用。尽管对于HCV 是否直接参与肝细胞恶性转化这一问题尚不清楚,但已有研究显示HCV 的结构蛋白C 和非结构蛋白NS3、NS4B、NS5A 具有致癌作用。其中HCV NS3 蛋白(核苷酸3420~5312,含631 个氨基酸残基)是一个多功能的蛋白质,其N 端1/3 具有丝氨酸蛋白酶活性,C 端2/3 则表现为解旋酶和NTP 酶活性,HCV NS3 介导的蛋白酶解过程是病毒在体内复制所必需。因HCV NS3 在病毒生活周期中起重要作用,并可和宿主蛋白相互作用,故其在HCV 相关性HCC 中的作用已成为研究的热点之一。
    HCV 为嗜肝细胞病毒,其自然宿主细胞是人或黑猩猩的肝细胞,采用非肝细胞作为研究体系,不能真实反映HCV 感染的自然进程,而以往的大部分研究均未采用肝细胞。因此本研究首次选用人源性永生化非瘤性肝细胞株QSG7701 作为研究对象,将HCV NS3 基因导入QSG7701 细胞,观察转染肝细胞生物学特性的改变。
    实验表明HCV NS3 转染的肝细胞(pRcHCNS3/QSG)显示出增殖旺盛的的特点,G0/G1 期细胞数目减少而S 期细胞数目增加。pRcHCNS3/QSG 细胞的倍增时间较空白质粒转染细胞
Hepatitis C virus (HCV) infection is one of major worldwide health problem. Persistent infection with it can lead to chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It is not well understood the mechanism of persistent viral infection and the pathogenesis of HCC. HCV, as a RNA virus, only replicates in the cytosol and fails to integrate with the host genome to activate oncogene. Most researches indicate that the interaction between HCV protein and liver cell gene/protein has been involved in the pathogenesis of HCC. Some evidences support that C, NS3, NS4B and NS5A have oncogenic potential,although it remains unclear if HCV exerts direct effects on liver cell transformation. HCV NS3 protein (nucleotide 3420 to 5312 with 631 amino acid residues) is a multi-functional viral protein. In addition to serine proteinase activity, which is located in the one-third of NS3 protein at the N-terminal end, helicase and nucleotide triphosphatase activities are identified in the C-terminal half of NS3 protein. The proteolytic events mediated by NS3 serine protease are believed to be essential for viral replication in vivo. HCV NS3 that plays a key role in the life cycle of virus and interacts with
    host cellular protein has become one of hotspots in recent research. As a hepacivirus, HCV natural host is the hepatocyte of human or chimpanzee. But the cell lines used by most researches were not based on HCV natural host cell─hepatocyte. In order to simulate the HCV infection model more clearly, non-tumorigenic human liver cell line QSG7701 was choosed and transfected with HCV NS3 plasmid. The biological behavior of transfected QSG7701 cells was observed. Flow cytometry analysis indicated that expression of HCV NS3 could accelerate the progression of G1 to S in cell cycle. Cell proliferation assay showed that the population doubling time in HCV NS3 transfected cells was much shorter than that in vector plasmid (pRcCMV) transfected cells and non-transfected cells (24h, 26h, 28h respectively). The cloning ratio of pRcHCNS3/QSG cells, pRcCMV/QSG cells and non-transfected QSG7701 cells was 33%, 1.46% and 1.11% respectively; the former is higher than the followed two. Tumor development was seen in nude mice inoculated with pRcHCNS3/QSG cells after 15 days. HE staining showed its hepatocarcinoma feature, and immunohistochemistry confirmed the expressions of HCV NS3 proteins in tumor tissue. The positive control group inoculated with HepG2 also showed tumor development, while no tumor developed in the nude mice injected with pRcCMV/QSG cells and
    non-transfected QSG7701 cells after 40 days. Our study showed for the first time that the HCV NS3 transformed QSG7701 cells and induced tumor development in human liver cells while the carcinogenesis mechanism of HCV NS3 is still unclear. Based on the advantages of proteomics on carcinogenesis studies, we turned to this new technology –“proteomics”which would help to comprehensively clarify the carcinogenesis in protein level and provide evidences for HCC diagnosis and treatment. According to this method, the total proteins from the pRcHCNS3/QSG cells and pRcCMv/QSG cells were separated by 2D electrophoresis respectively. A total of 1183±77 and 1035±82 spots were detected in pRcHCNS3/QSG cells and pRcCMv/QSG cells respectively. The IEF direction deviation of pRcHCNS3/QSG cells and pRcCMv/QSG cells is 0.978 ±0.136mm and 0.865 ±0.122mm respectively and the SDS-PAGE direction deviation of pRcHCNS3/QSG cells and pRcCMv/QSG cells is 0.978±0.136mm and 0.951±0.203 mm. Here the well-resolved and reproducible 2DE pattern of pRcHCNS3/QSG cells and pRcCMv/QSG cells was established. There were 920±60 spots matched between pRcHCNS3/QSG and pRcCMv/QSG cells. 55 spots were up regulated in pRcHCNS3/QSG cells and 40 spots up regulated in pRcCMv/QSG cells. Subsequently 21
    interesting protein spots were excised from gels and digested by trypsin in-gel respectively, then the matrix assisted laser desorption/ionization time of flying mass spectrometry (MALDI-TOF-MS) was utilized to search the SWISS-PORT and TrEMBL database with Peptident software. We successfully identified 15 of those protein spots. Some proteins are involved in cell proliferation, apoptosis and immune response respectively. Much of them play an important role in cell signal transduction. The results suggested that hepatocyte transformation induced by HCV NS3 is a complex procedure. The balance between cell proliferation and apoptosis is broken in HCV NS3 transfected cells, which may lead cell to grow limitlessly and develop tumor. Further study with those differential expression proteins might provide a target for HCC diagnosis and treatment. More interestingly, signaling molecules such as Ras、P38 and HD53 were upregulated in transfected cells,which provided an evidence that the MAPK signal transduction pathway may play an important role in cell transformation. The MAPK molecule is activated by phosphorylation and inactivated by dephosphorylation. Because MALDI-TOF-MS analysis can not provide sequence information directly, it is essential to study the expression of MAPK in HCV NS3 transfected cells. Western blot analysis showed that pRcHCNS3/QSG cells resulted in a higher
    activity of phosphorylated ERK1/2, P38 and JNK in comparision with pRcCMv/QSG cells and QSG7701 cells while the basal expression of ERK1/2 and P-38 showed no difference,which suggested that the MAPK signal molecules may play an important role in HCV NS3 related carcinogenesis. Immunoprecipitation analysis displayed higher lever of tyrosine phosphorylation in HCV NS3 transformed cells. Although the exact protein above-mentioned still need to be identified, we showed here that HCV NS3 may affect cell signaling pathway through activating tyrosine kinase and following with several cytoplasmic signaling molecules such as MAPKs, and result in hepatocyte transformation and tumor development.
引文
[1] Kolykhalov AA Mihalik K Feinstone SM, et al.Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol, 2000, 74(4): 2046 -2051
    [2] Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol, 1995, 69(6): 3893-3896
    [3] Park JS, Yang JM, Min MK. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem Biophys Res Commun, 2000,267(2): 581-587
    [4] Ghosh AK, Steele R, Meyer K, Ray R, Ray RB. Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth..J Gen Virol, 1999, 80 (Pt 5): 1179-1183
    [5] Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med, 1998, 4(9): 1065-1067
    [6] Grakoui A, McCourt DW, Wychowski C, Feinstone SM, Rice CM. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J Virol, 1993,67(5): 2832-2843
    [7] Zemel R, Gerechet S, Greif H, Bachmatove L, Birk Y, Golan-Goldhirsh A, Kunin M, Berdichevsky Y, Benhar I, Tur-Kaspa R. Cell transformation induced by hepatitis C virus NS3 serine protease. J Viral Hepat,2001,8(2): 96-102
    [8] 欧阳小明,程瑞雪,冯德云,郑晖. 丙型肝炎病毒非结构蛋白NS3 对端粒酶活性影响的研究. 中华病理学杂志,2001,30(6):443-447
    [9]冯德云,郑晖,严亚晖. 程瑞雪. 肝癌发生中丙型肝炎病毒NS3 蛋白对P53基因蛋白表达的影响. 中华医学杂志, 1998,78(4):278-280
    [10] Borowski P, Zur Wiesch JS, Resch K, et al. Protein kinase C recognizes the protein kinase A-binding motif of nonstructural protein 3 of hepatitis C virus.J Biol Chem,1999,274(43):30722-8.
    [11] Borowski P, Heiland M, Feucht H, et al. Characterisation of non-structural protein 3 of hepatitis C virus as modulator of protein phosphorylation mediated by PKA and PKC: evidences for action on the level of substrate and enzyme. Arch Virol, 1999,144(4): 687-701.
    [12] Borowski P, Oehlmann K, Heiland M, et al. Nonstructural protein 3 of hepatitis C virus blocks the distribution of the free catalytic subunit of cyclic AMP-dependent protein kinase. J Virol, 1997,71(4): 2838-43
    [13] Borowski P, Heiland M, Oehlmann K, et al. Non-structural protein 3 of hepatitis C virus inhibits phosphorylation mediated by cAMP-dependent protein kinase. Eur J Biochem, 1996,237(3): 611-8.
    [14] Borowski P, Kuhl R, Laufs R, et al. Identification and characterization of a histone binding site of the non-structural protein 3 of hepatitis C virus. J Clin Virol, 1999,13(1-2): 61-9.
    [15] Wilkins MR, Pasquali C, Appel RD,et al From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis.Biotechnology (N Y),1996 ,14(1):61-5.
    [16] Rappsilber J, Mann M. What does it mean to identify a protein in proteomics? Trends Biochem Sci, 2002, 27(2): 74-8.
    [17]陈主初,梁宋平. 肿瘤蛋白质组学. 长沙:湖南科学技术出版社,2002.1~7;
    [18] Abbott A. And now for the proteome Nature, 2001,409(6822): 747.
    [19] Fields S. Proteomics in genomeland. Science, 2001,291 (5507): 1221-4.
    [20]夏睛,沈倍奋.蛋白质组学研究的主要策略及其在肿瘤研究中的作用.中国肿瘤生物治疗杂志,2003,10(1):60-62
    [21]钱小红,贺福初. 蛋白质组学:理论与方法.北京:科学出版社,2003.1~18
    [22] Klose J. Large-gel 2-D electrophoresis. Methods Mol Biol,1999,112:147-72.
    [23] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 1988,60(20): 2299-301.
    [24] Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246(4926): 64-71.
    [25] Vihinen M. Bioinformatics in proteomics. Biomol Eng, 2001,18(5):241-8.
    [26] Fenyo D. Identifying the proteome: software tools. Curr Opin Biotechnol, 2000, 11(4): 391-5.
    [27] Zeindl-Eberhart E, Jungblut P, Rabes HM. Expression of tumor-associated protein variants in chemically induced rat hepatomas and transformed rat liver cell lines determined by two-dimensional electrophoresis. Electrophoresis, 1994, 15(3-4): 372-81
    [28] Sanchez JC, Appel RD, Golaz O, et al. Inside SWISS-2DPAGE database. Electrophoresis, 1995, 16(7): 1131-51
    [29] Seow TK, Ong SE, Liang RC, et al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis. 2000; 21(9): 1787-813
    [30] Ou K, Seow TK, Liang RC, et al. Proteome analysis of a human heptocellular carcinoma cell line, HCC-M: an update. Electrophoresis. 2001; 22(13): 2804-11
    [31] Wirth PJ, Hoang TN, Benjamin T. Micropreparative immobilized pH gradienttwo-dimensional electrophoresis in combination with protein microsequencing for the analysis of human liver proteins. Electrophoresis, 1995, 16(10): 1946-60.
    [32] Yu LR, Zeng R, Shao XX, et al. Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis, 2000, 21(14): 3058-68.
    [33]王征,阮幼冰,官阳.肝细胞癌患者血清蛋白质组成分的双向凝胶电泳-飞行时间质谱分析.中华病理学杂志,2003,32(4):333~336
    [34] Steel LF, Shumpert D, Trotter M, et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics. 2003; 3(5): 601-9.
    [35] Le Naour F, Brichory F, Misek DE, et al. A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics. 2002; 1(3): 197-203.
    [36] J. 萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南,北京:科学出版社,1986, 16-34
    [37]姜泊,张亚历,周殿元.分子生物学常用实验方法,北京:人民军医出版社,1996, 65-67
    [38] J. 萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南,北京:科学出版社,1986, 888-897
    [39]司徒镇强,吴军正.细胞培养,西安:世界图书出版西安公司,1996, 200-203
    [40] Yang JM, Wang RQ, Bu BG, Zhou ZC, Fang DC, Luo YH. Effect of HCV infection on expression of several cancer-associated gene products in HCC. World J Gastroenterol, 1999,5(1): 25-27.
    [41] Ohishi M, Sakisaka S, Harada M, Koga H, Taniguchi E, Kawaguchi T, Sasatomi K, Sata M, Kurohiji T, Tanikawa K. Detection of hepatits-C virus and hepatitis-C virus replication in hepatocellular carcinoma by in situ hybridization. Scanf J Gastroenterol, 1999,34(4): 432-8
    [42]成军.肝炎病毒蛋白对肝细胞基因组转录调节及信号传导机制的影响.世界华人消化杂志,2004,12(2):253~257.
    [43] Zemel R, Kazatsker A, Greif F, et al. Mutations at vicinity of catalytic sites of hepatitis C virus NS3 serine protease gene isolated from hepatocellular carcinoma tissue. Dig Dis Sci, 2000,45(11): 2199-202.
    [44] Fujita T, Ishido S, Muramatsu S, et al. Suppression of actinomycin D-induced apoptosis by the NS3 protein of hepatitis C virus. Biochem Biophys Res Commun, 1996,229(3): 825-31.
    [45] Borowski P, Heiland M, Oehlmann K, et al. Non-structural protein 3 of hepatitis C virus inhibits phosphorylation mediated by cAMP-dependent protein kinase. Eur J Biochem, 1996,237(3): 611-8.
    [46] Zhu DH, Wang JB. The culture of HCC host hepatocyte QSG7701 cell line and as compared with hepatocarcinoma cell. Zhongliu Fangzhi Yanjiu, 1979,5:7-9
    [47] Tessitore L, Costelli P, Sacchi C, et al. The role of apoptosis in growing and stationary rat ascites hepatoma, Yoshida AH-130. J Pathol,1993; 171(4):301-9.
    [48] Fukuda K, Kojiro M, Chiu JF. Demonstration of extensive chromatin cleavage in transplanted Morris hepatoma7777 tissue: apoptosis or necrosis? Am J Pathol, 1993, 142(3): 935-46.
    [49] Tessitore L. Apoptosis and cell proliferation are involved in the initiation of liver carcinogenesis by a subnecrogenic dose of diethylnitrosamine in refed rats. J Nutr, 2000, 130(1): 104-10.
    [50]冯德云,郑晖,程瑞雪等,肝硬变和肝癌中细胞凋亡与增殖的关系.湖南医科大学学报,1998,23(2):120~122.
    [51] James SJ, Miller BJ, Basnakian AG, et al. Apoptosis and proliferation under conditions of deoxynucleotide pool imbalance in liver of folate/methyl deficient rats. Carcinogenesis, 1997, 18(2): 287-93.
    [52] Hino N, Higashi T, Nouso K, Nakatsukasa H, Tsuji T. Apoptosis and proliferation of human hepatocellular carcinoma. Liver. 1996 ,16(2):123-9.
    [53]孙保存,赵秀兰,惠京等.大肠癌及其癌前病变中细胞凋亡与细胞增殖间关系的原位观察.中华医学杂志,1996,76(11):848~851
    [54]谢锦云,梁宋平.蛋白质组双向凝胶电泳分离技术.见:陈主初,梁宋平主编,肿瘤蛋白质组学.长沙:湖南科学技术出版社,2002.23~36
    [55] 贾宇峰,林秋霞,郭尧君等.蛋白质双向电泳图象分析.生物化学与生物物理进展.2001,28(2): 246~250
    [56] Corbett JM, Dunn MJ, Posch A, et al. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis. 1994, 15(8-9):1205-11.
    [57]陈平,谢锦云,梁宋平.双向凝胶电泳银染蛋白质点的肽质指纹图谱分析. 生物化学与生物物理学报,2000,32(4):387~391
    [58]梁宋平,陈平,王贤纯.蛋白质鉴定技术. 见:陈主初,梁宋平主编,肿瘤蛋白质组学.长沙:湖南科学技术出版社,2002.37~109
    [59] 李萃,陈主初,肖志强等.人肺鳞癌组织及癌旁组织蛋白质双向电泳图谱的差异分析.癌症,2004,23(1):28~35
    [60] Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem, 2001,70:437-73.
    [61] Kim J, Kim SH, Lee SU, et al. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of disease-related proteins. Electrophoresis. 2002; 23(24): 4142-56.
    [62] Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21(6): 1037-53.
    [63] Kirikoshi H, Katoh M. Expression of TFF1, TFF2 and TFF3 in gastric cancer. Int J Oncol, 2002, 21(3): 655-9.
    [64] Leung WK, Yu J, Chan FK, et al. Expression of trefoil peptides (TFF1, TFF2, and TFF3) in gastric carcinomas, intestinal metaplasia, and non-neoplastic gastric tissues. J Pathol. 2002, 197(5): 582-8.
    [65] Dhar DK, Wang TC, Maruyama R, et al. Expression of cytoplasmic TFF2 is a marker of tumor metastasis and negative prognostic factor in gastric cancer. Lab Invest. 2003, 83(9): 1343-52.
    [66] 孙宝华,武忠弼,阮幼冰等.肝细胞癌mdm2基因表达及其与P53基因突变的关系.世界华人消化杂志.1999,7(4): 291~294.
    [67] Endo K, Ueda T, Ohta T, et al. Protein expression of MDM2 and its clinicopathological relationships in human hepatocellular carcinoma. Liver. 2000, 20(3): 209-15.
    [68] 罗育林,程瑞雪,冯德云等.MDM2蛋白过度表达致P53功能失活在原发性肝细胞癌发生中的作用.湖南医科大学学报.2001,26(1): 13~16.
    [69] Kinugasa, N., Higashi, T., Nouso, K., et al. Expression of membrane cofactor protein (MCP, CD46) in human liver diseases. Br. J. Cancer1999; 80, 1820-1825.
    [70] Blok VT, Gelderman KA, Tijsma OH, et al. Cytokines affect resistance of human renal tumour cells to complement-mediated injury. Scand J Immunol.2003, 57(6): 591-9.
    [71] Rushmere NK, Knowlden JM, Gee JM, et al. Analysis of the level of mRNA expression of the membrane regulators of complement, CD59, CD55 and CD46, in breast cancer. Int J Cancer. 2004, 108(6):930-6.
    [72] Byrne JA, Mattei MG, Basset P. Definition of the tumor protein D52 (TPD52) gene family through cloning of D52 homologues in human (hD53) and mouse (mD52). Genomics. 1996, 35(3): 523-32.
    [73] Boutros R, Bailey AM, Wilson SH, et al. Alternative splicing as a mechanism for regulating 14-3-3 binding: interactions between hD53 (TPD52L1) and 14-3-3 proteins. J Mol Biol. 2003, 332(3):675-87.
    [74]章必成,张巍,李青等.TNF,P38 MAPK 与细胞凋亡.国外医学.生理、病理科学与临床分册.2001,21(6): 464~466.
    [75] Valladares A, Alvarez AM, Ventura JJ, et al. p38 mitogen-activated protein kinase mediates tumor necrosis factor-alpha-induced apoptosis in rat fetal brown adipocytes. Endocrinology. 2000, 141(12): 4383-95.
    [76] Tobiume K, Matsuzawa A, Takahashi T, et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep, 2001, 2(3): 222-8.
    [77] Morita Y, Naka T, Kawazoe Y, et al. Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts. Proc Natl Acad Sci U S A., 2000, 97(10): 5405-10.
    [78] Varghese J, Chattopadhaya S, Sarin A. Inhibition of p38 kinase reveals a TNF-alpha-mediated, caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line. J Immunol, 2001,166(11): 6570-7.
    [79] Remacle-Bonnet MM, Garrouste FL, et al. Insulin-like growth factor-I protects colon cancer cells from death factor-induced apoptosis by potentiating tumor necrosis factor alpha-induced mitogen-activated protein kinase and nuclear factor kappaB signaling pathways. Cancer Res, 2000,60(7): 2007-17.
    [80] Simon C, Goepfert H, Boyd D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res, 1998,58(6): 1135-9.
    [81] Rousseau S, Houle F, Landry J, et al. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene,1997 ,15(18):2169-77.
    [82] 阮幼冰.肝癌研究中当前关注的几个问题.中华病理学杂志.1998; 27(2):85~86.
    [83] 孟运莲,袁华,Isom H, 等.湖北医科大学学报,1994,15(3):199~201.
    [84] Ray RB, Lagging LM, Meyer K, et al. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol, 1996, 70(7): 4438-43.
    [85] Feng DY, Zheng H, Tan Y, et al. Effect of phosphorylation of MAPK and Stat3 and expression of c-fos and c-jun proteins on hepatocarcinogenesis and their clinical significance. World J Gastroenterol, 2001,7(1): 33-6
    [86] Ito Y, Sasaki Y, Horimoto M, et al. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology, 1998, 27(4): 951-8
    [87] Schmidt CM, McKillop IH, Cahill PA, et al. Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys Res Commun, 1997,236(1): 54-8.
    [88] Kogawa K, Ogawa K, Hayashi Y, et al. Immunohistochemical localization of follistatin in rat tissues. Endocrinol Jpn. 1991,38(4): 383-91.
    [89] Phillips DJ, de Kretser DM. Follistatin: a multifunctional regulatory protein. Front Neuroendocrinol, 1998, 19(4): 287-322.
    [90] Kogure K, Omata W, Kanzaki M, et al. A single intraportal administration of follistatin accelerates liver regeneration in partially hepatectomized rats. Gastroenterology, 1995,108(4): 1136-42.
    [91] Rossmanith W, Chabicovsky M, Grasl-Kraupp B, et al. Follistatin overexpression in rodent liver tumors: a possible mechanism to overcome activin growth control. Mol Carcinog, 2002, 35(1): 1-5.
    [92] Liu H, Wang Y, Zhang Y, et al. TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem Biophys Res Commun, 1999,254(1): 203-10.
    [93] Rui M, Chen Y, Zhang Y, et al. Transfer of anti-TFAR19 monoclonal antibody into HeLa cells by in situ electroporation can inhibit the apoptosis.Life Sci,2002,71(15):1771-8.
    [94] 李惠平,曾志敏,邵玉霞等.重组人TFAR19蛋白对羟基喜树碱诱导人7721肝癌细胞凋亡的增敏作用.北京医科大学学报,2000,32(5):408~410.
    [95] Seraj MJ, Samant RS, Verderame MF, et al. Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res, 2000, 60(11): 2764-9.
    [96] Shevde LA, Samant RS, Goldberg SF, et al.Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res, 2002; 273 (2): 229-39.
    [97] Meyyappan M, Atadja PW, Riabowol KT. Regulation of gene expression and transcription factor binding activity during cellular aging. Biol Signals, 1996, 5(3): 130-8.
    [98] Meyyappan M, Wong H, Hull C, et al. Increased expression of cyclin D2 during multiple states of growth arrest in primary and established cells.Mol Cell Biol, 1998 ,18(6):3163-72.
    [99] Oshimo Y, Nakayama H, Ito R, et al. Promoter methylation of cyclin D2 gene in gastric carcinoma. Int J Oncol,2003 ,23(6):1663-70.
    [100] Evron E, Umbricht CB, Korz D, et al. Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res,2001,61(6):2782-7.
    [101] Madden SL, Galella EA, Riley D, et al. Induction of cell growth regulatory genes by p53. Cancer Res,1996,56(23):5384-90
    [102] 刘新,王梦华.肿瘤的HLA表达及其临床意义.微生物学杂志.2003,23(3):48~49
    [103] Chang CC, Campoli M, Ferrone S.HLA class I defects in malignant lesions: what have we learned? Keio J Med,2003,52(4):220-9.
    [104] 佐佐木裕,伊良民.肝癌与凋亡抵抗性--肝癌发病进展中的免疫监视逃逸机制.日本医学介绍,2003,24(1):13~15
    [105] Vollmer CM Jr, Eilber FC, Butterfield LH, et al. Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer Res,1999 ,59 (13):3064-7.
    [106] Christenson LK, Strauss JF 3rd. Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol. Biochim Biophys Acta. 2000; 1529(1-3): 175-87.
    [107] Pandak WM, Ren S, Marques D, et al. Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. J Biol Chem. 2002; 277(50): 48158-64.
    [108] Kortschak RD, Tucker PW, Saint R. ARID proteins come in from the desert. Trends Biochem Sci. 2000; 25(6):294-9.
    [109] Whitson RH, Tsark W, Huang TH, et al. Neonatal mortality and leanness in mice lacking the ARID transcription factor Mrf-2. Biochem Biophys Res Commun. 2003; 312(4): 997-1004.
    [110] Whitson RH, Huang T, Itakura K. The novel Mrf-2 DNA-binding domain recognizes a five-base core sequence through major and minor-groove contacts. Biochem Biophys Res Commun. 1999; 258(2): 326-31.
    [111] Huang TH, Oka T, Asai T, et al. Repression by a differentiation-specific factor of the human cytomegalovirus enhancer. Nucleic Acids Res. 1996; 24(9): 1695-701.
    [112] Watanabe M, Layne MD, Hsieh CM, et al. Regulation of smooth muscle cell differentiation by AT-rich interaction domain transcription factors Mrf2alpha and Mrf2beta. Circ Res. 2002; 91(5): 382-9.
    [113] Hitto K, James E B, Martin F.Use of antibodies for detection of phosphorylated proteins separated by two-dimensinal gel electrophroresis. Proteomics, 2001, 1: 194-199
    [114] 敖世洲.蛋白质可逆磷酸化对细胞活动的调节。见:国家高技术研究发展计划生物领域战略研讨会论文集。上海:上海科学出版社,1994
    [115] Lewis GD, Lofgren JA, McMurtrey AE, et al. Growth regulation of human breast and ovarian tumor cells by heregulin: Evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res,1996,56(6):1457-65.
    [116] 邱红,苏长青.细胞周期调控与信号传导途径的研究进展.临床肿瘤学杂志,1999,4(2):77~78;
    [117] 张忠东,成军,钟彦伟等.乙型和丙型肝炎病毒对MAPKK信号传导的影响.世界华人消化杂志,2003,11(8):1258~1260;
    [118]端木德强,李中海,王敬泽.MAPK信号传导通路研究进展.细胞生物学杂志,2002,24(3):151~155;
    [119] Zhu J, Leng X, Dong N, et al. Expression of mitogen-activated protein kinase and its upstream regulated signal in human hepatocellular carcinoma. Zhonghua Wai Ke Za Zhi, 2002,40(1): 1-16
    [120] Vicent S, Lopez-Picazo JM, Toledo G, et al. ERK1/2 is activated in non-small-cell lung cancer and associated with advanced tumours. Br J Cancer, 2004, 90(5):1047-52.
    [121] Pinkas J, Leder P. MEK1 signaling mediates transformation and metastasis of EpH4 mammary epithelial cells independent of an epithelial to mesenchymal transition. Cancer Res, 2002,62(16): 4781-90
    [122] Tsutsumi T, Suzuki T, Moriya K, et al. Hepatitis C virus core protein activates ERK and p38 MAPK in cooperation with ethanol in transgenic mice. Hepatology,2003 ,38(4):820-8.
    [123]赵兰娟,刘厚奇,曹洁等.丙型肝炎病毒E2蛋白对HepG2细胞的激活.生物化学与生物物理学报,2001,33(6):691-695.
    [124] Erhardt A, Hassan M, Heintges T, et al. Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology, 2002, 292(2): 272-84.
    [125] Giambartolomei S, Covone F, Levrero M, t al. Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene, 2001, 20(20): 2606-10
    [126] Iyoda K, Sasaki Y, Horimoto M, et al. Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer. 2003; 97(12): 3017-26.
    [127] Roberts RA, James NH, Cosulich SC. The role of protein kinase B and mitogen-activated protein kinase in epidermal growth factor and tumor necrosis factor alpha-mediated rat hepatocyte survival and apoptosis. Hepatology, 2000, 31(2): 420-7.
    [128] Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med, 2002, 8(9): 979-86.
    [129] Kim MS, Lee EJ, Kim HR, et al. p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res, 2003, 63(17): 5454-61.
    [130] Behrens A, Jochum W, Sibilia M, et al. Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene, 2000, 19(22):2657-63
    [131]胡智,曹亚.MAPK/JNK信号传导通路研究进展.国外医学分子生物学分册,2002,24(4):222~225.
    [132] Eferl R, Ricci R, Kenner L, et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell, 2003,112(2): 181-92.
    [133] Erhardt A, Hassan M, Heintges T, et al.Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line.Virology, 2002,292(2):272-84.
    [134] Tsutsumi T, Suzuki T, Moriya K, et al. Hepatitis C virus core protein activates ERK and p38 MAPK in cooperation with ethanol in transgenic mice. Hepatology, 2003, 38(4): 820-8.
    [135] Marshall M. Interactions between Ras and Raf: key regulatory proteins in cellular transformation. Mol Reprod Dev. 1995,42(4): 493-9.
    [136] Hafner S, Adler HS, Mischak H, Janosch P, et al. Mechanism of inhibition of Raf-1 by protein kinase A. Mol Cell Biol, 1994,14(10): 6696-703.
    [137] 丁晓辉,赵丽嫣.酪氨酸激酶介导的细胞信号传递与肿瘤的关系.肿瘤防治研究,1999,26(6):471~473.
    [138]周意明,孙黎光.酪氨酸蛋白激酶抑制剂的研究进展.解剖科学进展,2000,6(3):214~217.
    [139] Gibbs JB. Anticancer drug targets: growth factors and growth factor signaling. J Clin Invest, 2000, 105(1): 9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700