不同山黧豆品系生理生化及蛋白表达谱的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山黧豆具有许多优良的生物以及农学性状,对环境具有广泛的适应性,一般认为山黧豆中所含的神经毒素ODAP是引起人或动物神经中毒的主要原因,但山黧豆的高营养价值和对环境的广泛适应性是其禁而不绝的主要原因。本研究将不同山黧豆品系的田间生物学性状、毒素含量、抗逆生理生化、蛋白表达谱联合起来进行分析研究,这将为山黧豆种质资源的研究和开发利用提供新的思路,并可为在不影响其抗逆性的同时培育低毒和无毒的山黧豆品系提供重要的参考。主要研究结果概括如下:
     1通过在生物园中引种30个山黧豆品系,对其毒素含量和花、种子等生殖器官的形态特征的比较分析发现,1)毒素β-ODAP的含量极其不稳定,同一品种在不同年份毒素含量有明显差异,甚至在播种前后也不尽相同,其中8#永寿山黧豆毒素含量最高,6#扁荚山黧豆和9#肉色扁荚山黧豆最低;2)6#、7#阿麻山黧豆、9#的花及种子的形态特征与其他品系差别很大,尤其6#和9#两个品系的抗涝能力明显较弱。
     2通过对高(8#)、中(7#)、低(9#)毒三个有代表性的品系进行生理生化的研究,结果发现,1)可溶性糖和脯氨酸等小分子渗透物质、SOD和POD等抗氧化酶类在盆栽10d的幼苗中的基础含量均是8#最高,7#次之,9#最低;2)高毒品系8#的茎杆及主根明显粗壮,且侧根多而长,叶片较大,千粒重也明显较高。这表明毒素含量较高的7#和8#品系其抗逆性、产草量、产籽量均优于低毒品系9#。
     3分别利用SDS-PAGE和2-DE电泳对7#、8#、9#品系的蛋白表达情况进行了比较研究,并重点对2-DE表达谱进行了分析比较,差异分析结果显示,7#和8#、8#和9#、7#和9#两两间分别有21、41、36个差异表达的蛋白点。采用MALDI-TOF/TOF或LTQ(LC-MS-MS)技术对8#和9#品系间的8个有显著差异的蛋白点进行了质谱鉴定,并通过MASCOT、NCBI、SWISS-PROT等数据库对各差异蛋白的功能进行了研究。结果发现:1)低毒品系9#中消失的20kDa伴侣蛋白(20 kDa chaperonin,chloroplast precursor)主要在体内与cpn60家族协同作用,促进核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)大小亚基装配成活性的全酶,利于CO_2的固定;下调的果糖1,6-二磷酸醛缩酶(Fructose-bisphosphate aldolase 2 FDA,chloroplast)主要与叶片淀粉的生物合成能力和蔗糖产量的提高有关,而下调的OSJNEb05K22 5,(Oryza sativa Japonica Group cDNA clone,mRNA sequence)编码蛋白与叶绿体前体、光系统Ⅰ反应中心的亚单位Ⅳ(PSI-E)具73%同源性。显然,这三个蛋白均与碳水化合物的形成有关,其表达量的下调或者消失与9#品系产草量和产籽量相对较低有密切关系。2)新生多肽相关复合体(Nascent polypeptide-associated complex NAC,UBA-like)和核糖核蛋白(ribonucleoprotein RNP)在8#和9#表现为位置的相对迁移,这可能与蛋白的翻译后修饰有关。NAC是一种辅助转录激活因子,具有多种功能,RNP主要在转录水平起作用,与许多细胞进程有关联。二者可能主要在基因的选择性表达过程中起作用,从而使得7#、8#、9#在毒素含量、抗逆性、产草量和产籽量上出现了很大差异。
     4利用PEG模拟自然干旱对高毒品系8#的耐旱生理机制及与毒素含量的关系进行了初步研究,从而获悉了山黧豆对干旱的部分适应性调节机理。同时了解到毒素含量受干旱的影响程度要远小于微量元素如Fe2+的影响,即毒素并非是山黧豆对抗逆境的一种手段。
     综合上述实验结果发现,较高毒素品系7#和8#与低毒品系9#的差异主要体现在毒素含量、抗逆性、产草量和产籽量上,所有这些差异都是差异性基因或基因选择性表达的结果。本研究仅初步探讨了毒素含量、抗逆性、作物产量和差异蛋白的关系,更详细的内在相关性还有待进一步研究。
Grass pea(Lathyrus sativus L.)has many advantageous biological and agronomic characters as well as extensive tolerance to adverse environment,in spite of neurotoxin ODAP.The biological characters of grass pea in field,ODAP content,physiological and biochemical responses combined with protein expression profile were studied in this thesis,which would provide new clues to the research and development of grass pea.The key results are as follows:
     1 Thirty species of grass pea were planted in the field.The differences in ODAP content and the morphologic characteristic of both flowers and seeds were compared among different species. The results showed that:1)ODAP content was changeable,and even in the same species.It was highest in 8#,and lowest in 6# and 9#;2)Flowers and seeds of 6#,7# and 9# were quite different from other varieties,and the resistance to waterlogging of 6# and 9# was less strong especially.
     2 The physiological and biochemical responses among three representative varieties 7#,8#, 9# were studied.The results showed that,1)basal contents of soluble sugar,proline content,SOD and POD were the highest in 8#,lower in 7# and lowest in 9#;2)8# was thicker in stems and roots,bigger in leaf size,higher in 1000-grain weight than 7# and 9#.All above suggested that 7# and 8# were superior to 9# in the aspects of stress resistance,forage yield and grain yield.
     3 Anaysis of 2-DE showed that there were 21,41 and 36 differentially expressed protein spots in 7#,8# and 9#,respectively.Eight differentially expressed protein spots between the gel of 8# and 9# were identified by MALDI-TOF/TOF and LTQ(LC-MS-MS)and their function were analyzed by searching MASCOT,NCBI database and SWISS-PROT.The results showed that:1) 20 kDa chaperonin(chloroplast precursor),disappearing in 9#,was normally coordinated with cpn60 family,and promoted the assembly of Rubisco subunit so as to CO_2 fixation; Fructose-bisphosphate aldolase(FDA,chloroplast),down-regulation in 9#,was related to increasing the production of starch and sucrose,and Oryza sativa Japonica Group cDNA clone OSJNEb05K22 5' mRNA sequence shared 73%identity to PSI-E(photosystemⅠreaction center subunitⅥ,chloroplast precursor).Obviously,these three proteins were related to formation of carbohydrates,and thus changes of expression in 9# may be related to the lower forage yield and grain yield.2)Nascent polypeptide-associated complex NAC and ribonucleoprotein(RNP) different in migration between 8# and 9# were both likely to due to post-translational modification. NAC was one kind of auxiliary transcription factor and had many functions.RNP acted at the transcription level,and related to lots of cellular processes.Probably both of them played roles in alternative expression of gene in species 7#,8# and 9#,and led to great differences in toxin content,stress resistance,forage yield and grain yield.
     4 The drought-resistant responses as well as the relationship between stress and ODAP content were studied.The effect of drought on toxin content was lower than microelement such as Fe~(2+),and it was likely that ODAP played few roles in stress resistance.
     In summary,there were obvious differences in ODAP content,stress resistance,forage yield and grain yield between high-toxic species 8# and low-toxic 9#,which might be the results of alternative expression of related genes,and further study was necessary for understanding the inherent relevant better.
引文
Addis G, Narayan RKJ. Developmental variation of the neurotoxin, β-N-oxalyl-L-α, β-diamino propionic acid(β-ODAP) in Lathyrus sativus. Annals of Botany, 1994,74:209-215
    Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis: Two - dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003, 3(1): 36
    Allkin R, Goyder DJ, Bisby FA, et al. Names and synonyms of species and subspecies in the Vicieae. Vicieae Database Project, 1986, 7: 1-75
    Ana M, Laura GG, Willy RG, et al. Derivatization of biomolecules for chemiluminesoent detection in capillary electrophoresis. Analyt TechnolBiomed Life Sci, 2003, 793(1): 49 - 74
    BAKER FWG. Drought resistance in cereals. CAB International, 1989
    Balmer Yves, Vensel WH, Tanaka CK, et al. Thioredoxin links redox to the regulation of fundamental processes of plan mitochondria. Proceedings of the N at ional Academy of Sciences of the United States America, 2004, 101 (8): 2642- 2647
    
    Barrow MV, Simpson CF, et al. Lathyrism: a review.Quart. Rev. Biol., 1974, 49:101-128
    Berger JD, Loss SP, Siddique KHM. Cool season grain legumes for Mediterranean environments: the effect of environment on non-protein amino acids in vicia and Lathyrus species. Australian Journal of Agricultural Research, 1999, 50(3):403-412.
    Bertsch U, Soll J, Seetharam R, et al. Identification, characterization, and DNA sequence of a functional 'double' groES-like chaperonin from chloroplasts of higher plants. Proc. Natl. Acad. Sci. U.S.A., 1992, 89:8696-8700
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72(3): 248-254
    Bridges RJ, Hatalski C, Shim SN, et al. Brain Res. 1991, 561, 262
    Bruyn AD, Becu C, Lambein F, et al. The mechanism of the rearrangement of the neurotoxinp-ODAP to α-ODAP. Phytochemistry, 1994, 6(1):85-89
    Campbell CG. Grass pea (Lathyrus sativus L.) promoting the conservation and use of underutilized and neglected crops 18. Rome, Italy. International Plant Genetic Resources Institute, 1997: 42-43
    Christian L, Gerhard S, Dun IJ. Proteomic identificatin of nitrosylated proeins in Ara Mdopsis. Plant Physiology, 2005, 137 (3): 921- 930
    Chtourou-Ghorbel N, Lauga B, et al. Comparative genetic diversity studies in the genus Lathyrus using RFLP and RAPD markers. Lathyrus Lathyrism Newsletter, 2001, 2 (2):62-68
    Cregg BM and Zhang JW. Physiology and morphology of Pinussylvestris from diverse sources under cyclic drought stress. Forest Ecol Manag, 2001, 154:131-139
    Cristinalms, Michela M, Flavianl. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. Plant Physiol, 2000, 157: 273-279
    Croft AM, Pang ECK, Taylor, et al. Molecular analysis of Lathyrus sativus L.(grasspea) and related Lathyrus species. Euphytica, 1999, 107:167-176
    Damerval C, Le Guilloux M. Characterization of novel proteins affected by the O_2 mutation and expressed during maize endosperm development. Molecular and General Genetics, 1998, 257: 354- 361
    David JL, ZivyM, CardinML, et al. Protein evolution in dynamically managed populations of wheat adaptive responses to macro environmental conditions. Theoretical and Applied Genetics, 1997, 95: 932- 941
    Davies H, Lomas L, Austen B, et al. Profiling of amyloid beta peptide variants using SELDI Protein Chip arrays. Biotechniques, 1999, 27(6): 1258
    Dong TTX, Cui XM, Song ZH, et al. J. Agricult. Food Chem, 2003, 51:4-17
    Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science, 1996, 274(5289):921- 922
    Englbrecht CC, Facius A. Bioinformatics challenges in proteomics. Comb Chem High Throughput Screen, 2005, 8 (8): 705
    Fatima S, Farooqi AHA, Sharma S. Physiological and metabolic responses of different genotypes of Cymbopogon martinii and C. winterianus to water stress. Plant Growth Regul, 2002, 37: 143-149
    Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340 (6230):245
    Fields S. Proteomics in Genomeland . Science, 2001, 291 (2): 1221-1224
    Foster JG, Flatpea (Lathyrus sylvestris L.): a new forage species- A comprehensive review. Adv. Agron, 1990, 43:241-313
    Fung ET, Vip TT, Lomas L. et al. Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer, 2005
    Gatel F. Protein quality of legume seeds for non-ruminant animals: a literature review. Anim. Feed Sci. Technol. 1994,45:317-348
    Getahun H., Lambein F., Vanhoorne M., et al. Pattern and associated factors of the neurolathyrism epidemic in Ethiopia. Tropical Medicine and international Health, 2002, 7(2): 118-124
    Hanbury CD, White CL, Mullan BP, et al. A review of the potential of Lathyrus sativus L. and L.cicera L. grain for use as animal feed. Animal Feed Science and Technology, 2000, 87:1-27
    HANSON AD, NELSEN CE, Everson EH. Evaluation of free proline accumulation as an index of drought resistance using two barley cultivars. Crop Science, 1997(17): 720-726
    Hartman DJ, Hoogenraad NJ, Condron R., et al. Identification of a mammalian 10-kDa heat shock protein, a mitochondrial chaperonin 10 homologue essential for assisted folding of trimeric ornithine transcarbamoylase in vitro. Proc. Natl. Acad. Sci. U.S.A., 1992, 89:3394-3398
    Heazlewood JL, How ell KA, Whelan JA, et al. Towards an analysis of the rice mitochondrial proteome. Plant Physio logy, 2003, 132: 230- 242
    
    Hernando JE, Bermeijo JL. Plant productiona and protection series, 1994, 26:273-288
    Hirohashi T, Nishio K, Nakai M. cDNA sequence and overexpression of chloroplast chaperonin 21 from Arabidopsis thaliana. Biochim Biophys Acta, 1999,1429:512-515
    Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem, 2003, 377 (3): 528
    Jantasuriyarat C, Gowda M, Haller K, et al. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. J Plant Physiol. 2005, 138 (1), 105-115
    Jiao CJ, Xu QL, Wang CY, et al. Accumulation pattern of toxin p-ODAP during lifespan and effect of nutrient elements on β-ODAP content in Lathyrus sativus seedlings. J Agr Sci, 2006, 144:369-375
    Jimenez-Bremont JF, Becerra-Flora A, Hernandez-Lucero E, et al. Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biol plantarum, 2006, 50: 763-766
    Koopmann J, Zhang Z, White N, et al. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass Spectrometry. Clin Cancer Res, 2004, 10 (3): 860-868
    Kuo YH, Ikegami F, Lambein F. Phytochemistry 2003, 62, 1087
    Kusama-Eguchi K, Ikegami F, Kusama T, et al. Amino Acids 2005, 28:139
    Lambein F, Haque R, Khan JK, et al. From soil to brain: Zinc deficiency increases the neurotoxicity of Lathyrus sativus and may affect the susceptibility for the motorneurone disease neurolathyrism. Toxicon, 1994, 32(4):461-466
    Lambein F, Kuo YH, Kusama-Eguchi K, et al. 3-N-oxalyl-L-2,3-diaminopropanoic acid, a multifunctional plant metabolite of toxic reputation. ARKIVOC (ix), 2007, 45-52
    Lauring B, Kreibich G, Weidmann M. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc Natl Acad Sci USA, 1995, 92 (21): 9435-9439
    Le L, Chi K, Tyklesley S, et al. Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem, 2005, 51(4):695
    Lee S, Lee EJ, Yang EJ, et al. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell, 2004, 16(5): 1378-1391
    LIN KM, LIN B, LIAN IY, et al. Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitoehondrial function and prevents apoptotic cell deaths induced by simulated ischemia - reoxygenation. Circulation, 2001, 103:1787 - 1792
    Liu YD, Cao T, Glime JM. The Changes of Membrane Permeability of Mosses under High Temperature Stress. Bryologist, 2003, 106: 53-60
    Makarova KS, Aravind L, Galperin MY, et al. Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res, 1999, 9: 608-628
    Marsh JJ, Lebherz HG. Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem Sci, 1992, 17:110-113
    Mittler R, Barbara AZ. Regulation of pea cytssolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J, 1994, 5 (3): 397-405
    O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975, 250(10): 4007-4021
    Park Ohkmae K. Proteomic studies in plants. Journal of Biochemistry and Molecular Biology, 2004, 37 (1): 133-138
    Peck SC. Update on proteomics in Arabidopsis. Where do we go from here? Plant Physiol, 2005, 138(6): 591-599
    Plitmann U, Gabay R, Cohen O. Innovations in the tribe Vicieae (Fabaceae) from Israel. Isr. J. Plant Sci., 1995, 43:249-258
    Ravindran V, Blair R. Feed resources for poultry production in Asia and the Pacific. II. Plant protein sources. World Poult. Sci. J., 1992, 48:205-231
    Ravindranath, Neurochem V. Internal, 2002,40: 505
    Razdan K, Heinrikson RL, Zurcher-Neely H, et al. Chloroplast and cytoplasmic enzymes: isolation and sequencing of cDNAs coding for two distinct pea chloroplast aldolases. Arch. Biochem Biophys, 1992, 298:192-197
    Reddy MK, Nair S, Tewari KK, et al. Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis of its expression in relation to cell proliferation. Plant Mol. Biol., 1999, 41 (1): 125-137
    Rensing S, Lang D, Zimmer A, et al. The genome of the moss Physcomitrella patens reveals evolutionary insights into the conquest of land by plants. Science, 2008, In press
    Rospert S, Dubaquie Y, Gautschi M. Nascent-polypeptide-associated complex. Source Cell. Mol. Life Sci., 2002,59:1632-1639
    Roy DN, Spencer PS. Lathyrogens. In: Cheeke, P. R.,(Ed),Toxicants of plant origin. Volume III proteins and amino acids, CRC press, Inc. Boca Raton, Florida, 1991, 170-201
    Sandra K, Devreese B, van Beeumen J, et al. The Q-Trap mass spectrometer, a novel tool in the study of protein glycosylation. J Am Soc Mass Spectrom, 2004, 5(3):413
    Shi Y, Xiang R, Horvath C et al. The role of liquid chromatography in proteomics. J Chromatogr A, 2004, 1053(1-2) :27
    Sidhu SS, Fairbrother WJ, Deshayes K. Exploring protein-protein interactions with phage display. Chembiochem, 2003, 4 (1): 14
    Smartt J, Kaul AK, Araya WA, et al.Grasspea {Lathyrus sativus L.) as a potential safe legume food crop. In: Muehlbauer FJ, Kaiser WJ (Eds.), Expanding the Production and Use of Cool Season Food Legumes. Kluwer Academic Publishers, Dordrecht, Netherlands, 1994: 144-155
    Smartt J. Pulses of the classical world. In: Summerfield RJ, Ellis EH (Eds.), Grain Legumes: Evaluation and Genetic Resources. Cambridge Univ. Press, Cambridge, 1999: 190-200
    Smirnoff N. The role of active oxygen in the response of plant to water deficit and desiccation. New Phytol, 1993, 125:27-58
    Spreter T, Pech M, Beatrix B.The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain.Source J. Biol. Chem., 2005, 280:15849-15854
    Tabata S, Kaneko T, Nakamura Y et al. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature, 2002, 408:823-826
    Tadesse W, Bekele E. Factor analysis of components of yield in grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsletter, 2001a, 2: 91-93
    Tadesse W, Bekele E. Isozymes variability of grasspea (Lathyrus sativus L.) in Ethiopia.Lathyrus Lathyrism Newsletter, 2001b, 2: 43-46
    
    Taylor CB. Proline and water deficit: ups, downs, ins and outs. Plant Cell, 1996, 8: 1221-1224
    Thiede B, Hohenwarter W, Krah A, et al. Peptide mass fingerprinting. Methods, 2005, 35 (3): 237
    Tiwari KR, Campbell CG. Inheritance of neurotoxin (ODAP) content, flower and seed coat color in grass pea (Lathyrus sativus L). Euphytica, 1996, 91:195-203
    Wang F, Chen X, Chen Q, et al. Determination of neurotoxin 3-N-oxalyl-2, 3- diaminopropionic acid and non-protein amino acids in Lathyrus sativus by precolumn derivatization with 1 -fluoro-2,4-dinitrobenzene. Journal of Chromatography A. 2000, 883:113-118
    Wang XF, Warkentin TD, Briggs CJ et al. Trypsin inhibitor activity in field pea (pisum sativum L.) and grass pea.(Lathyrus sativus L.). J Agric Food Chem., 1998,46:2620-2623
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes : Mycoplasma genitalium. Electrophoresis, 1995, 16(7): 1090-1094
    White CL, Hanbury CD, Young P, et al. The nutritional value of Lathyrus cicera and Lupinus angustifolius grain for sheep.Anim. Feed Sci. Technol., 2002, 99:45-64
    Xing G, Cui K, Li J, et al. Water stress and accumulation of β-N-oxalyl-L-α, β-diamino propionic acid in grass pea (Lathyrus sativus). J Agric.Food Chem., 2001, 49: 216-220
    Xing GS, Zhou GK, Li ZX, et al. Effect of osmotic stress on accumulation of H_2O_2 and ODAP in grass pea (Lathyrus sativus). Acta Phytophysiol Sin, 2001, 27: 5-8
    Xiong YC, Xing GM, Li FM, et al. Abscisic acid promotes accumulation of toxin ODAP in relation to free spermine level in grass pea seedlings (Lathyrus sativus L.). Plant Physiol Biochem, 2006, 44: 161-169
    Yamada K, Lim J, Dale JM. et al, Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 2003, 302:842-846
    Yan JX, Devenish AT, Wait R, et al. Fluorescence two-dimensional difference gel electrophoresis and mass Spectrometry based proteomic analysis of Escherichia coli. Proteomics, 2002, 2(12) :1682 -1698
    Yan ZY, Spencer PS, Li ZX, et al. Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry, 2006, 67:107-121
    Yang T, Poovaiah BW. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem. Biophys. Res. Commun., 2000, 275: 601-607
    
    Zeilsta-Ryalls J, Fayet O, Georgopoulos C. Annu. Rev. Microbiol., 1991, 45:301-325
    Zhang J, Xing GM, Yan ZY, et al. b-N-oxalyl-L-a, b-diaminopropionic acid protects the activity of glycolate oxidase in Lathyrus sativus seedlings under high light.Russ J Plant Physiol,2003,50:618-622
    巴赖,谢赫,基肖雷.在转基因植物中表达果糖1,6二磷酸醛缩酶(专利号:98808178)孟山都技术有限公司,美国密苏里州,1998
    陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系.植物生理学报,1999,25(1):49-56
    成军,刘妍,杨倩 等.丙型肝炎病毒对新生多肽相关复合物α多肽基因的表达调节研究进展.胃肠病学和肝病学杂志.2003,12(3):209-212
    程永升,刘进元.串联亲和纯化(TAP)技术在蛋白质组学中的应用.生物化学与生物物理进展,2004,31(4):379
    董滢,周庆安.山黧豆研究进展.饲料工业,2005.26(3):50-53
    蒋明义.水分胁迫下植物体内HO·的产生与细胞的氧化损伤.植物学报,1999,41(3):329-334
    李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000.
    理查德,辛普森(Richard J.Simpson)主编,何大澄主译.蛋白质与蛋白质组学实验指南(Proteins and Proteomics:A Laboratory Manual)化学工业出版社,2006
    刘丽杰,于景华,唐中华等.非模式植物蛋白质组学研究进展.广西植物.2007(2):217-223
    刘绪川,张国伟,李雅茹等.山黧豆及其有毒成分(BOAA)的毒理学研究.中国农业科学,1989,22(5):86-93
    裴英杰.用于玉米品种抗旱鉴定的生理生化指标.华北农学报,1992,7(1):31-35
    覃新程,李志孝,王亚馥.山黧豆及其神经毒素(ODAP)的研究进展.生命科学,2000,12(2):52-56
    王爱国,罗广华,邵从本等.大豆种子超氧物歧化酶的研究.植物生理学报,1983,9(1):77-84
    王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇(Phragmites communis)的可溶性蛋白含量、SOD、POD、CAT活性的影响.西北植物学报,2002,22(3):561-565
    王岚,刘骁勇,张华宁等.生物质谱技术在蛋白质组学研究中的应用.生物技术通讯.2007,18(1):166-168
    吴世容,李志良,李根容等.生物质谱的研究及其应用.重庆大学学报,2004,27(1):123
    肖用森,王正直,郭绍川.渗透胁迫下稻田中游离脯氨酸与膜脂过氧化的关系.武汉植物学研究,1996,14(4):334-340
    邢更生,周功克,李志孝.水分胁迫下山黧豆中ABA及ODAP的积累研究.应用生态学报,2000,11(5):693-698
    杨彩娥,匡铁吉.蛋白质组学研究技术及进展.武警医学,2007,18(1):65-68
    杨洪兵,韩振海,许雪峰.NaCl和等渗聚乙二醇对苹果属植物游离脯氨酸含量的影响.植物生理学通讯,2005,41(2):157-162
    于精忠.山黧豆的利用与栽培.陕西农业科学,1993,(6):35-36
    于丽珺,赵国华,刘勤晋.山黧豆毒素ODAP研究进展.粮食与油脂.2005(4):6-8
    张海霞,刘满仓,靳小舜等.2,4-二硝基氟苯柱前衍生测定山黧豆毒素β-ODAP.分析化学研究简报,2006,34(1):100-102
    张志良.植物生理学实验指导[M].北京:高等教育出版社,2000:45-48
    赵若虹,张宪孔.叶绿体陪伴蛋白在几种藻类中的存在和分布.植物生理学报,1996,22(3):237-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700