重金属Cr(Ⅲ)对红树植物白骨壤幼苗生长及生理生态效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用砂基栽培,研究重金属Cr(Ⅲ)在不同浓度梯度和不同胁迫处理阶段(种苗期和幼苗期)及胁迫处理时间条件下对红树植物白骨壤(Avicenniamarina)幼苗的生长及生理生态效应的影响。设置Cr(Ⅲ)胁迫浓度系列为100、200、300、400、500、600、800 mg·L~(-1),以不加Cr(Ⅲ)为对照,培养基海水盐度均为15‰,培养期分为45d和150d。实验期间全程记录及观测各胁迫组白骨壤种苗萌发及幼苗生长状况,定期记录幼苗的高度生长、叶片大小,并分别在胁迫栽培45d和150d采样测定幼苗根系生长、各组分生物量生长,以及幼苗含水量、叶绿素含量、可溶性蛋白含量、抗氧化酶活性、膜脂过氧化作用、盐分代谢、Cr的累积分布等指标参数。研究结果表明:
     1.种苗期进行Cr(Ⅲ)胁迫处理25d,白骨壤种苗初期萌发率没有受到明显的影响;随着胁迫时间的延长和胁迫强度的提高,白骨壤幼苗幼叶萌生和幼苗成活率均受到抑制。
     2.种苗期进行Cr(Ⅲ)胁迫处理(45d或150d)对白骨壤幼苗根数影响不大,但对根长、苗高、叶片大小、生物量均有不利影响。
     3.种苗期进行Cr(Ⅲ)胁迫(45d或150d)对幼苗各组分含水量均有一定的影响,其中对叶片含水量有较明显的降低作用。
     4.种苗期进行Cr(Ⅲ)胁迫处理45d或150d,对白骨壤幼苗叶片叶绿素含量有一定的促进作用;幼苗期进行胁迫处理45d对叶片叶绿素含量则有抑制作用。
     5.种苗期进行Cr(Ⅲ)胁迫处理(45d或150d),对白骨壤幼苗根尖和叶片可溶性蛋白质含量有促进作用;幼苗期胁迫45d,根尖可溶性蛋白含量变化不显著,叶片可溶性蛋白含量则随Cr(Ⅲ)浓度的提高而提高,但提高幅度小于种苗期。
     6.种苗期进行Cr(Ⅲ)胁迫45d,随着生长基Cr(Ⅲ)浓度的提高,白骨壤幼苗根尖和叶片SOD活性均表现为随之逐渐上升,胁迫时间延长达150d时各胁迫组根尖SOD活性均低于对照组,叶片SOD活性则先下降后上升;幼苗期进行Cr(Ⅲ)胁迫45d,随着Cr浓度的提高根尖SOD活性缓慢升高,叶片SOD活性表现为中低浓度下影响不大,高浓度(>600 mg·L~(-1))则明显下降。
     7.种苗期进行Cr(Ⅲ)胁迫处理(45d或150d),对白骨壤幼苗根尖和叶片POD活性均有明显的促进作用;幼苗期胁迫45d,各组根尖POD活性均显著下降,叶片POD活性则随培养基Cr(Ⅲ)浓度的增加而逐渐提高,但提高幅度较种苗期小。
     8.种苗期进行Cr(Ⅲ)胁迫处理(45d或150d),对白骨壤幼苗根尖CAT活性有促进作用,而对叶片CAT活性则起一定的抑制作用;幼苗期进行Cr(Ⅲ)胁迫栽培45d,各胁迫组幼苗根尖CAT活性变化不大,叶片CAT活性在100mg·L~(-1)Cr(Ⅲ)浓度下达到最大,而后随着生长基Cr(Ⅲ)浓度的增加而下降,但下降幅度小于种苗期。
     9.种苗期进行Cr(Ⅲ)胁迫处理(45d或150d)白骨壤幼苗根尖和叶片AsA含量均有明显的促进作用;幼苗期进行胁迫处理45d,白骨壤幼苗根尖AsA含量均低于对照,叶片AsA含量则没有明显变化。
     10.Cr(Ⅲ)胁迫对白骨壤幼苗根尖和叶片膜脂过氧化作用没有明显负效应。
     11.种苗期进行Cr(Ⅲ)胁迫处理45d,重金属Cr(Ⅲ)对白骨壤幼苗原胚轴、茎、叶片中Cl的累积有负效应,而对根系而言则表现出“低促高抑”的规律,当胁迫时间延长到150d时,白骨壤幼苗各组分Cl含量均表现为先升高后降低的趋势;幼苗期进行Cr(Ⅲ)胁迫处理45d对各组分对Cl的吸收没有明显影响。
     12.白骨壤幼苗各组分对Cr的吸收均表现出先升后降的趋势。白骨壤幼苗根系对培养基Cr的富集系数最大,即根系表现为Cr的最大累积器官。
     13.随着Cr(Ⅲ)胁迫强度的提高,白骨壤幼苗叶片的泌盐速率逐渐提高。
In this paper,mangrove Avicennia marina hypocotyls were cultivated in sand with 15‰seawater.Some were treated with Cr(Ⅲ) once planted,and some were treated when growing 6 months.The influence of increasing concentrations of Cr (Ⅲ)(0,100,200,300,400,500,600,800 mg·L~(-1)) on hypocotyls germination and growth,photosynethesis metabolism,water metabolism,salt contents and membrance protection system were observed to inquire into the ecophysiological responses of mangrove A.gymnorrhiza to Cr phytotoxicity.The results showed:
     1.The germination of A.marina seedlings was not obviously influenced by Cr (Ⅲ) pollution during the early germination period.But with the stress time extending and the stress concentrations increasing,the shooting rate and the survival rate were restrained.
     2.The number of roots was not influenced remarkable by Cr(Ⅲ) whenever stressed 45 days or 150 days,and there were negative effects on the length of roots, the height of stems,the size of leaves and the biomass.
     3.When hypocotyls were stressed(45 days or 150 days),Cr(Ⅲ) had effect on the water content of some parts,especially that of leaves dropped obviously.
     4.When hypocotyls were stressed 45 days or 150 days,the contents of chlorophyll a,chlorophyll b,and total chlorophyll of leaves were higher than CK; Treated 45 days when seedlings growthing 6 months,the contents were below CK remarkably.
     5.The content of soluble protein in roots and leaves were above CK whenever 45 days or 150 days hypocotyls treated;Stressed 45 days when seedlings growthing 6 months,the content of leaves climbed with the increasing of Cr(Ⅲ) concentration, and that in roots was changed unconspicuously.
     6.When hypocotyls were stressed 45 days,the SOD activity of roots and leaves all presented rose,when stress time reached 150 days,the SOD activity of roots was below CK,but that of leaves showed the dropped first and then rosing;Stressed 45 days when seedlings growthing 6 months,SOD in roots rose slowly,and the activity in leaves decreased above 600 mg·L~(-1)Cr(Ⅲ).
     7.When hypocotyls were stressed(45 days or 150 days),the POD activity of roots and leaves all rising with the Cr(Ⅲ) concentration increasing;Stressed 45 days when seedlings growthing 6 months,the activity of roots was decreasing gradually and that of leaves was opposite.
     8.When hypocotyls were stressed(45 days or 150 days),the CAT activity of roots rose but the activity of leaves was decreasing with the Cr(Ⅲ) concentration increasing;Stressed 45 days when seedlings growthing 6 months,the change of CAT of roots was not clear,and CAT activity in leaves reached the peak at 100mg·L~(-1)Cr (Ⅲ) concentration,and then dropped.
     9.The content of AsA in roots and leaves was rising whenever stressed 45 days or 150 days;Stressed 45 days when seedlings growthing 6 months,the content of AsA in roots was lower than CK,but the content of AsA in leaves was not influenced obviously.
     10.The effect of Cr(Ⅲ) on the MDA concentration in the roots and leaves was not abvious.
     11.When hypocotyls were stressed 45 days,the C1 contents of hypocotyls,stems and leaves were decreased with increasing Cr(Ⅲ) concentrations,otherwise the C1 content of roots rose first and then dropped,with the stress time prolonged to 150 days,the C1 contents of each part all rose first and then dropped;Stressed 45 days when seedlings growthing 6 months,the contents were not changed obviously.
     12.The tendency of Cr absorption in each parts of A.marina seedlings rose first and then dropped,and the content of Cr in roots was the highest.
     13.The rate of excreting salt on leaves was increasing with the Cr(Ⅲ) concentration rising.
引文
[1]中国环境监测总站主编.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [2]Han FX,Banin A,Su Y,Monts DL,Plodinec MJ,Kinqery WL,Triplett GE.Industrial age anthropogenic imputs of heavy metals into the pedosphere[J].Naturwissenschaften,2002,89:497-504.
    [3]Adriano DC.Trace elements in the terrestrial environment,2~(nd) ed[M].New York:Springer,2001.
    [4]中国大百科全书编辑部编.中国大百科全书·环境科学卷[M].北京:中国大百科全书出版社,1998.
    [5]井文涌.当代世界环境[M].北京:中国环境科学出版社,2002.
    [6]王立军,章申.土壤水介质中Cr(Ⅲ)与Cr(Ⅵ)形态的转化[J].环境科学,1982,3(4):38-42.
    [7]Nriagu JO,Pacyna JM.Quantitative assessment of worldwide contamination of air,water and soils by trace metals[J].Nature,1988,333:134-139.
    [8]Kim JG,Dixon JB,Chusuei CC,Deng Y.Oxidation of chromium(Ⅲ)to(Ⅵ)by manganese oxides[J].Soil Science Society of America Journal,2002,66:306-315.
    [9]Wittbrodt PR,Palmer CD.Reduction of Cr(Ⅵ) in the presence of excessive soil fulvic acid[J].Environmental Science and Technology,1995,29:255-263.
    [10]Patterson RR,Fendorf SE,Fendorf M.Reduction of hexavalent chromium by amorphous iron sulfide[J].Environmental Science and Technology,1997,31:2039-2044.
    [11]刘云惠,魏显有,王秀敏,高进军.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20.
    [12]李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律[J].工业安全与环保,2005,31(3):31-33.
    [13]陈英旭,朱东华.铬污染地区环境对植物生长的影响[J].农业环境保护,2002,21(3):257-259.
    [14]孙游云.铬对植物体生长生理的影响及其在植物体中的积累规律[J].环境污染与防治,2001,23(1):45-46.
    [15]中国农业部环科所.农业环境保护研究资料[Z].中国农业出版社,2001.
    [16]穆从如,李森照,王立军,何瑞珍.铬在水体、土壤和作物中的迁移转化规律[J].中国环境科学,1982,2(1):19-23.
    [17]Sharma DC,Chatterjee C,Sharma CP.Chromium accumulation and its effects on wheat metabolism[J].Plant Science,1995,Ⅲ:145-151.
    [18]Samantary S.Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium[J].Chemosphere,2002,47:1065-1072.
    [19]Chatterjee C.Phytotoxicity of cobalt,chromium and copper in cauliflower[J].Environmental Pollution,2000,109:69-74.
    [20]史吉平,董永华,檀建新.铬对小麦幼苗超氧化物歧化酶活性的影响[J].河北农业大学学报,1994,11:63-65.
    [21]Janusz B,Joanna K.A comparison of the in vitro genotoxocity of tri-and hexavalent chromium[J].Mutation Research,2000,469:135-145.
    [22]Antonovics J,Bradshaw AD,Turner RG.Heavy metal tolerance in plants[J].Advance in Ecological Research,1971,1:1-85.
    [23]Baker AJM,Walker PL.Physiological responses of plants to heavy metals and the qualification of tolerance and toxicity[J].Chemical Speciation and Bioavailability,1989,1:1-17.
    [24]Baker AJM.Accumulators and excluders strategies in the response of plant to heavy metals[J].Journal of Plant Nutrition.1981,3:643-654.
    [25]Berry WL.Plant factors in influencing the use of plant analysis as a tool for biogeochemical prospecting[J].Biological systems and organic matter,1986,5-13.
    [26]Cumming JR,Taylor.Mechanisms of metal tolerance in plants:Physiological adaptation for exclusion of metal ions from the cytoplasm[M].Stress response in plants,New York:Academic Press,1990,329-356.
    [27]Zenk MH.Heavy metal detoxification in higher plants a review[J].Gene,1996,179:21-30.
    [28]Salt DE,Smith RD,Raskin I.Phytoremediation[M].New York:Annual Review,1998,49:643-668.
    [29]Lytle CM,Lytle FW,Yang N.Reduction of Cr(Ⅵ) to Cr(Ⅲ) by wetland and plants potantial for in situ heavy metal detoxification[J].Environmental Science Technology,1998,32:3087-3093.
    [30]Macnair MR.Tolerance of higher plants to toxic material Genetic Consequence of man made charge[M].New York,Academic Press,1981,177-207.
    [31]郑文教,连玉武,郑逢中,林鹏.广西英罗湾红海榄红树群落锰镍元素的累积和循环[J].厦门大学学报(自然科学版),1995,34(5):829-834.
    [32]郑文教,郑逢中,连玉武,林鹏.福建九龙江秋茄红树林铜铅锌锰元素的累积与动态[J].植物学报,1996,38(3):227-233.
    [33]郑文教,王文卿,林鹏.九龙江口桐花树红树林对重金属的吸收与累积[J].应用与环境生物学报,1996,2(3):207-213.
    [34]郑文教,连玉武,郑逢中,林鹏.广西英罗湾红海榄林重金属元素的累积及动态[J].植物生态学报,1996,20(1):20-27.
    [35]郑文教,林鹏.深圳福田白骨壤群落Cr、Ni、Mn的累积及分布[J].应用生态学报, 1996,7(2):139-144.
    [36]郑文教,林鹏.深圳福田白骨壤红树林Cu、Pb、Zn、Cd的累积及分布[J].海洋与湖沼,1996,27(4):386-393.
    [37]Kehrig HA,Pinto FN,Moreira I,Maim O.Heavy metals and methylmercury in a tropical coastal esturary and a mangrove in Brazil[J].Organic Geochemistry,2003,34:661-669.
    [38]Machado W,Moscatelli M,Rezende LG,Lacerda LD.Mercury zinc and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil[J].Environmental Pollution,2002,120:455-461.
    [39]Tam NFY.Spatial variation of heavy metals in surface sediments of HongKong mangrove swamps[J].Environmental Pollution,2000,11(2):195-205.
    [40]林鹏.中国红树林生态系[M].北京:科学出版社,1997,297-298.
    [41]陈荣华,林鹏.汞和盐度对三种红树种苗生长影响初探[J].厦门大学学报(自然科学版),1988,27(1):110-115.
    [42]郑逢中,林鹏,郑文教.红树植物秋茄幼苗对镉耐性的研究[J].生态学报,1994,14(4):408-414.
    [43]杨盛昌,吴琦.Cd对桐花树幼苗生长及某些生理特性的影响.海洋环境科学,2003,22(1):38-42.
    [44]MacFarlane GR,Burchett MD.Toxicity,growth and accumulation relationships of copper,lead and zinc in the grey mangrove Avicennia marina(Forsk.) Vierh.Marine Environmental Research,2002,54:65-84.
    [45]Walsh GE,Ainsworth KA,Rigby R.Resistance of red mangrove(Rhizophora mangle L.)seedings to lead,cadmium and mercury.Biotropica,1979,11:22-27.
    [46]何斌源,戴培建,范航清.广西英罗湾红树林沼泽沉积物和大型底栖动物中重金属含量的研究[J].海洋环境科学,1996,15(1):35-41.
    [47]Tam NFY.Asia-Pacific symposium on mangrove ecosystem.Hong Kong[N].1993,38-39.
    [48]Wasserman JC,Figueiredo AMG,Pellegatti F,Silva-Filho EV.Elemental composition of sediment cores from a mangrove environment using neutron activation analysis[J].Journal of geochemical exploration,2001,72:129-146.
    [49]日本作物分析法委员会编,邹邦基译.栽培植物营养诊断分析测定法[M].北京:农业出版社,1984,256-258.
    [50]龚子同,张效补.中国的红树林与酸性硫酸盐土[J].土壤学报,1994,31(1):86-94.
    [51]金相灿.沉积物污染化学[M].北京:环境科学出版社,1992,27-56.
    [52]范志杰,宋春印,郭晋萍.海洋盐沼环境中金属行为的研究[J].环境科学,1995,16(5):82-86.
    [53]Clark MW,McConchie D,Lewis DW.Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments[L].A geochemical model chemical geologhy,1998,149:147-171.
    [54]郑文教,郑逢中,连玉武,林鹏.九龙江口秋茄红树林镉铬镍元素的累积及动态[J].环境科学学报,1996,16(2):232-237.
    [55]郑逢中,洪丽玉,郑文教.红树植物落叶碎屑对水中重金属吸附的初步研究[J].厦门大学学报(自然科学版),1998,37:137-141.
    [56]Thomas C.Effect of heavy metals zinc and lead on Rhizophora mucronata Lam.And Avicennia alba BL seedlings[J].Proceedings Asian Symposium Mangrove Environmental Restorement Management,1984,568-574.
    [57]Das AB,Bsdsk UC,Das P.Genetic erosion of wetland biodiversity in Bhitarkanica forest of Orissa[J].India Biologia,1999,54:415-422.
    [58]MacFarlane GR,Burchett MD.Photosynthetic pigments and peroxidase activity heavy metal stress as indicators of the grey mangrove Avicennia marina(Forsk.) Vierh[J].Marine Pollution Bulletin,2001,42:233-240.
    [59]林鹏.红树林.北京:海洋出版社,1984.
    [60]陈福明,陈顺伟.混合液法测定叶绿素含量的研究[J].林业科技通讯,1984(2):4-8.
    [61]Bradford MM.A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J].Annual Biochemistry,1976,72:248-254.
    [62]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:167-169.
    [63]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:371-372.
    [64]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:165-167.
    [65]汤章城.现代植物生理学实验指南[M].北京:科学出版社,1999,315-316.
    [66]吉田昌一,DA福尔诺,JH科克,KA戈梅斯著.北京市农业科学院作物研究所资料情报组译.水稻生理学实验手册.北京:科学出版社,1975:36-38.
    [67]周希琴,李裕红.木麻黄种子萌发对铬胁迫的生理生态响应研究[J].中国生态农业学报,2004,12(1):53-55.
    [68]周希琴,吉前华.铬胁迫下不同品种玉米种子和幼苗的反应及其与铬积累的关系[J].生态学杂志,2005,24(9):1048-1052.
    [69]Gardea-Torresdey JL,Rosa G.de la,Peralta-Videa JR,Montes M,Cruz-Jimenez G,Cano-Aguilera I.Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed(Salsola kali)[J].Archives of Environmental Contamination and Toxicology,2005,48:225-232.
    [70]MacFarlane GR,Burchett MD.Toxicity,growth and accumulation relationships of copper,lead and zinc in the grey mangrove Avicennia marina(Forsk.) Vierh[J].Marine Environmental Research,2002,54:65-84.
    [71]丁海东,万延慧,齐乃敏,朱为民,杨晓峰,邵耀椿.重金属(Cd~(2+)、Zn~(2+))胁迫对番茄幼苗抗氧化酶系统的影响[J].上海农业学报,2004,20(4):79-82.
    [72]荆红梅,郑海雷,赵中秋,张春光.植物对镉胁迫响应的研究进展[J].生态学报,2001,21(12):2125-2130.
    [73]赵士禹,姚民昌,赵树仁.铅对玉米幼苗影响机制的初步研究[J].辽宁师范大学学报,1994,17(3):238-241.
    [74]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001:280.
    [75]许卫锋,桑嗓,陈云,谢虹,梁建生.抗坏血酸、谷胱甘肽参与的信号转导途径在提高植物食品营养品质中的作用[J].广州食品工业科技,2003,19(4):113-115.
    [76]孙娟,郑文教,赵胡.萘胁迫对白骨壤种苗萌生及抗氧化作用的影响[J].厦门大学学报,2005,44(3):433-436.
    [77]郑文教,林鹏.红树植物秋茄和海莲幼苗过氧化物酶对栽培盐度条件的反应[J].植物生态学与地植物学学报,1991,15(3):234-239.
    [78]郑爱珍.重金属Cr~(6+)污染对辣椒幼苗生理生化特性的影响[J].农业环境科学学报,2007,26(4):1343-1346.
    [79]王洪政,沈振国.根系抗坏血酸在小麦幼苗铝耐性中的作用[J].西北植物学报,2006,26(4):0753-0758.
    [80]Ding HD,Zhu WM,Yang SJ,Yang XF.Dynamic changes in antioxidative systems in roots of tomato(Lycopersicom esculentum MILL.)seedling under zinc stress and recovery[J].Chinese Journal of Applied and Environmental Biology,2005,11(5):531-535.
    [81]Gallego JM,Maria P,Maria LT.Effect of heavy metal ion excess on Sunflower leaves:evidence for involvement of oxidative stress[J].Plant Science,1996,121:151-159.
    [82]Palma JM,Sandalio LM,Corpas FJ,Romero-Puertas MC,McCarthy I,Rio LA.Plant proteases,protein degradation and oxidative stress:role of peroxisomes[J].Plant Physiology and Biochemistry,2002,40:521-530.
    [83]Andres S,Petia N,Claudia RAP.Cadmium and H_2O_2-induced oxidative stress in populus canescens roots[J].Plant Physiology and Biochemistry,2002,40:577-584.
    [84]Koricheva J,Roy S,Vranjic JA,Haukioja E,Hughes PR,Hanninen O.Antioxidant responses to simulated acid rain and heavy metal desposition in birch seedlings[J].Environmental Pollution,1997,95(2):249-258.
    [85]Markkola AM,Tarvainen O,Jonnarth UA,Strommer R.Urban polluted forest soils induce elevated root peroxidase activity in Scots Pine(Pinus sylvestris L.) seedlings[J].Environmental Pollution,2002,116:273-278.
    [86]Prasad.MNV,Strzalka K.Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants[M].Kluwer Academic Publishers.2002.
    [87]Muller DH,Oort F,Gelie B,Balabane M.Strategies of heavy metal uptake by three plant species growing near a metal smelter[J].Environmental Pollution,2000,109:231-238.
    [88]Devkota B,Schmidt GH.Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains,Greece[J].Agriculture,Ecosystems and Environment,2000,78:85-91.
    [89]王文卿,林鹏.红树林生态系统重金属污染的研究[J].海洋科学,1999(3):45-48.
    [90]Vassilev A,Tsonev T,Yordanov I.Physiological response of barley plants(Hordeum vulgate) to cadmium contamination in soil during ontogenesis[J].Environmental Pollution,1998,103:287-293.
    [91]严重玲,李瑞智,钟章成.模拟酸雨对绿豆、玉米生理生态特性的影响[J].应用生态学报,1995,6(增刊):124-131.
    [92]Kar RK,Chondhuri MA.Possible mechanisms of light-induced chlorophyll degradation in senescencing leaves of Hydrilla verticillata[J].Physiol Plant,1987,70:729-734.
    [93]Chatterjee J,Chatterjee C.Phytotoxicity of cobalt chromium and copper in Cauliflower[J].Environmental Pollution,2000,109:64-74.
    [94]Pankovic D,Plesnicar M,Maksimovic AI,Petrovic N,Sakac Z,Kastori R.Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants[J].Annuals of Botany,2000,86:841-847.
    [95]Stobart AK,Grifiths WT,Ameen-Bukhari I,Sherwood RP.The effect of Cd~(2+) on the biosynthesis of chlorophyll in leaves of barley[J].Plant Physiol,1985,63:293-298.
    [96]Vallee BI,Vimer DD.Biochemical effects of mercury cadmium and lead.Annual Review of Biochemistry,1972,41:91-128.
    [97]王学,施国新,徐勤松,王春涛.镧、铈及重金属元素铬、锌对竹叶眼子菜的毒害作用[J].中国稀土学报,2004,22(5):682-686.
    [98]马文岳,施国新,徐勤松,王学,拉非克.Cr~(6+)、Cr~(3+)胁迫对黑藻生理生化影响的比较研究[J].广西植物,2004,24(2):161-165.
    [99]黑淑梅,段志龙,慕明涛,余小平.小麦幼苗在Cr6+胁迫下生长及DNA损伤效应的研究[J].作物杂志,2007,3:42-45.
    [100]叶勇,卢昌义,胡宏友,谭凤仪.三种泌盐红树植物对盐胁迫的耐受性比较[J].生态学报,2004,24(11):2444-2450.
    [101]Ye Y,Tam NFY,Lu CY,Wong YS.Effects of salinity on germination,seedling growth and physiology of three salt-secreting mangrove species[J].Aquatic Botany,2005,83:193-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700