栉孔扇贝(Chlamys farreri)Toll样受体及其信号传递相关基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扇贝是我国海水养殖的重要品种,但自1994年以来,养殖扇贝陆续爆发的大规模死亡,不但造成了巨大的经济损失,而且直接威胁到现有产业的生存和发展。引起扇贝大规模死亡原因是多方面的,其主要原因是养殖环境恶化、扇贝种质衰退和抗病力下降。因此,深入研究扇贝免疫防御机制,探讨提高机体抗病力的有效途径和方法,改良种质和培育抗病品系,无疑是解决目前困扰扇贝养殖业健康可持续发展的必经之路。
    Toll样受体(TLRs)家族是新近发现的模式识别受体(PRRs),参与识别病原体相关的分子模式(PAMPs),在天然免疫系统中起着非常重要的作用。哺乳动物中Toll样受体信号通路还参与诱导树枝状细胞成熟、参与免疫耐受、参与凋亡发生发展、介导非感染性因素的识别等,被视为联系天然免疫和获得性免疫的桥梁。同时果蝇的Toll信号通路也是不具备获得性免疫的果蝇赖以抵御病毒、细菌和真菌感染,介导天然免疫反应的重要信号通路。
    本研究采用大规模EST测序方法,结合Genome Walker库的构建和cDNA末端快速扩增技术,从栉孔扇贝克隆得到CfToll-1、CfMyd88、CfTRAF6和CfCactus这四个Toll样受体信号通路基因的全长cDNA,同时用荧光实时定量PCR技术检测了这些基因的组织分布及在脂多糖(LPS)和肽聚糖(PGN)刺激下的表达规律。
    栉孔扇贝Toll样受体(CfToll-1)的cDNA序列全长4308 bp,包含5'非翻译区(UTR)211 bp,3597 bp的开放阅读框,500 bp的3'UTR,最后为18个腺嘌呤的ploy A尾巴。开放阅读框编码1198个氨基酸的多肽,该多肽的估计分子量为137.41kd,估计的等电点为5.62,该多肽有信号肽,具有一个预测的跨膜区,因此是一种跨膜蛋白。经BLAST比对,CfToll-1基因与节肢动物多种Toll蛋白高度的相似性。SMART(Simple Modular Architecture Research Tool)软件分析,CfToll-1包含典型的Toll样受体的结构:富含亮氨酸的重复序列的胞外区(leucine-richrepeats, LRR),一段跨膜结构域,以及胞内区的TIR结构域(Toll/IL-1 receptorhomologous region)。利用Real-time RT-PCR发现CfToll-1mRNA在扇贝体内普遍存在于血细胞、肌肉、外套膜、心、性腺和鳃组织中。利用体外培养的原代血细
Scallop culture is an important marine aquaculture industry in China. But since 1994,scallop aquaculture in China has been experiencing a continual large-scale mortality,which not only caused a great economic loss but also threatened the existencedevelopment of the culture industry. With the improvement and control of the marineenvironment, enhancing the disease resistance of scallop is commonly believed to beresolution to the control of the disease. The cloning and expression of the genes involvedimmune defense are now considered to be a basic solution in the disease control becauseof their potential use in the development of therapeutic agents, study of immune defensemechanism and genetic improvement to increase the resistance to disease.
     Toll-like receptors (TLRs) are an ancient family of pattern recognition receptors,which show homology with the Drosophila Toll protein and play key roles in detectingvarious non-self substances and then initiating and activating immune system. Inaddition, TLRs could induce DC maturation, participate in immune tolerance, participatein apoptosis, and mediate recognition of non-infection factors et al, which have beenconsidered as a linkage of innate and adaptive immunity. In Drosophila devoid of anadaptive immune system, Toll proteins also play very important role to mediate innateimmunity for resistance to bacteria and fungal infection. But full length and relatedresearch about Toll pathway have never been reported in bivalve before.
    In the present study, large scale EST sequencing method together with GenomeWalker and RACE technique was used to isolate and clone the genes involved in Toll
    pathway signaling from Zhikong scallop. Four full length cDNA sequences wereobtained and the tissue distribution and the temporal expression of these genes with thetreatment of LPS or PGN were measured by Real-time RT-PCR.CfToll-1 was the only Toll-like receptor identified from the six homology ESTfragments from a cDNA library of Zhikong scallop (Chlamys farreri). The full lengthcDNA of CfToll-1 consisted of 4308 nucleotides with a polyA tail, encoding a putativeprotein of 1198 amino acids with a 5' UTR (untranslated region) of 211bp and a 3'UTRof 500bp. The predicted amino acid sequence comprised an extracellular domain with apotential signal peptide, nineteen leucine-rich repeats (LRR), two LRR-C-terminal(LRRCT) motifs, and a LRR-N-terminal (LRRNT), followed by a transmembranesegment of 20 amino acids, and a cytoplasmic region of 138 amino acids containing theToll/IL-1R domain (TIR). The deduced amino acid sequence of CfToll-1 was homologyto Drosophila melanogaster Tolls (DmTolls) with 23-35% amino acids sequencesimilarity and 30-54% in the TIR domain. Real-time PCR showed that the transcriptswere constitutively expressed in tissue of haemocyte, muscle, mantle, heart, gonad andgill. The expression of CfToll-1 could be regulated by LPS, and this regulation was LPSdose-dependent.The first mollusk Myd88 (CfMyd88) consisted of 1554 nucleotides with a polyA tail,encoding a polypeptide of 367 amino acids containing a typical structure with clearmodular parts of TLR and IL-1R-related (TIR) domain and death domain (DD).Homology analysis revealed that the predicted protein was significant homology to avariety of Myd88 previously submitted to the database. The highest BLASTP identitymatch for CfMyd88 was 33% amino acid identity with the Rattus norvegicus Myd88.
    The temporal expression of CfMyd88 in mixed primary cultured haemocytes wasmeasured by Real-time RT-PCR system and found that PGN (peptidoglycans)down-regulated the expression of CfMyd88 obviously.The full-length cDNA of CfTRAF6 was 2510bp, including a 5' UTR of 337 bp, a 3'UTR of 208 bp, a poly (A) tail, and an open reading frame (ORF) of 1965bp encoding apolypeptide of 655 amino acids with a predicted molecular mass of 74.09 kDa. Theputative protein has characteristics motifs of the TRAF family of proteins including oneZinc finger of RING-type, two Zinc finger of TRAF-type, a MATH domain (the meprinand TRAF homology) and a coiled coil region. The highest BLASTP identity match forthis entire scallop TRAF6 was 68% amino acid identity with the squid TRAF6 and 45%amino acid identity with mouse TRAF6. The mRNA transcripts of CfTRAF6 werewidely spread in all the examined tissues with different expression levels. The highestexpression was observed in the gonad, relatively lower expression was observed inmuscle, mantle, heart, gill and haemocyte. After treatment of 500ng.mL-1 PGN, theCfTRAF6 gene transcripts began to diminish at 1.5 h and this trend lasted till 3h. Itrecovered to the original level since 6h. When the concentration of PGN increased to20μg.mL-1, the expression of CfTRAF6 was obviously decreased and never recovered tothe original level in the process of 12h stimulation. And the amount of mRNA transcriptsat 3h reached to the bottom, only about 1/9 times to control.The full-length cDNA of CfCactus was 2488bp, including a 5' UTR of 181 bp, a 3'UTR of 1467 bp with a poly (A) tail, and an open reading frame (ORF) of 840bpencoding a polypeptide of 279 amino acids with a predicted molecular mass of 31.37kDa. The putative protein has three characteristics motif of ankyrin repeats. The highest
    BLASTP identity match for this entire scallop Cactus was 35% amino acid identity withthe Crassostrea gigas IκB and 44% amino acid identity with Carcinoscorpiusrotundicauda IκB. Real-time RT-PCR revealed that the mRNA transcripts of CfCactuswere much more than that of CfMyd88 and CfTRAF6 in tissue of gonad, haemocyte andintestine.The data together leads the strong support that the presence of the canonical TLRssignaling pathway presented in Drosophila and mammals is also likely to exist inmollusk. Further, expression profiles of CfToll-1, CfMyd88 and CfTRAF6 mRNAchallenged by genes bacteria LPS and PGN and tissue distribution profiles implied thatthis pathway would be involved in functional immunity and developmental response ofscallops.
引文
Aderem, A.,Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406: 782-7, 2000
    Ahonen, C. L., Doxsee, C. L., McGurran, S. M., Riter, T. R., Wade, W. F., Barth, R. J., Vasilakos, J. P., Noelle, R. J.,Kedl, R. M. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med 199: 775-84, 2004
    Akira, S., Takeda, K.,Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675-80, 2001
    Altschul, S. F.,Gish, W. Local alignment statistics. Methods Enzymol 266: 460-80, 1996
    Arch, R. H., Gedrich, R. W.,Thompson, C. B. Tumor necrosis factor receptor-associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Genes Dev 12: 2821-30, 1998
    Armant, M. A.,Fenton, M. J. Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 3: REVIEWS3011, 2002
    Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A.,Calderwood, S. K. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277: 15028-34, 2002
    Barcia, R., Cao, A., Arbeteta, J.,Ramos-Martinez, J. I. The IL-2 receptor in hemocytes of the sea mussel Mytilus galloprovincialis Lmk. IUBMB Life 48: 419-23, 1999
    Baroni, A., Orlando, M., Donnarumma, G., Farro, P., Iovene, M. R., Tufano, M. A.,Buommino, E. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res 297: 280-8, 2006
    Barton, G. M.,Medzhitov, R. Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 14: 380-3, 2002
    Bell, J. K., Mullen, G. E., Leifer, C. A., Mazzoni, A., Davies, D. R.,Segal, D. M. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24: 528-33, 2003
    Belvin, M., Anderson, K. A conserved signaling pathway: the Drosophila Toll–dorsal pathway. Ann. Rev. Cell. Dev. Biol. 12, 1996
    Belvin, M. P.,Anderson, K. V. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 12: 393-416, 1996
    Bettencourt, R., Tanji, T., Yagi, Y.,Ip, Y. T. Toll and Toll-9 in Drosophila innate immune response. J Endotoxin Res 10: 261-8, 2004
    Beutler, B. The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57: 385-92, 2005
    Beutler, B., Du, X.,Poltorak, A. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. J Endotoxin Res 7: 277-80, 2001
    Beutler, B.,Rehli, M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 270: 1-21, 2002
    Bilak, H., Tauszig-Delamasure, S.,Imler, J. L. Toll and Toll-like receptors in Drosophila. Biochem Soc Trans 31: 648-51, 2003
    Binder, R. J., Vatner, R.,Srivastava, P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64: 442-51, 2004
    Biswas, C.,Mandal, C. The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails. Scand J Immunol 49: 131-8, 1999
    Boone, D. L., Turer, E. E., Lee, E. G., Ahmad, R. C., Wheeler, M. T., Tsui, C., Hurley, P., Chien, M., Chai, S., Hitotsumatsu, O., McNally, E., Pickart, C.,Ma, A. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5: 1052-60, 2004
    Borghans, J. A.,de Boer, R. J. Neonatal tolerance revisited by mathematical modelling. Scand J Immunol 48: 283-5, 1998
    Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P. O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A. M., Schirle, M., Schlegl, J., Schwab, M., Stein, M. A., Bauer, A., Casari, G., Drewes, G., Gavin, A. C., Jackson, D. B., Joberty, G., Neubauer, G., Rick, J., Kuster, B.,Superti-Furga, G. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6: 97-105, 2004
    Brown, P. Cinderella goes to the ball. Nature 410: 1018-20, 2001
    Buchanan, S. G.,Gay, N. J. Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol 65: 1-44, 1996
    Burnet, M. Auto-immune disease. I. Modern immunological concepts. Br Med J 5153: 645-50, 1959a
    Burnet, M. Auto-immune disease. II. Pathology of the immune response. Br Med J 5154: 720-5, 1959b
    Burns, K., Martinon, F., Esslinger, C., Pahl, H., Schneider, P., Bodmer, J. L., Di Marco, F., French, L.,Tschopp, J. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273: 12203-9, 1998
    Buwitt-Beckmann, U., Heine, H., Wiesmuller, K. H., Jung, G., Brock, R.,Ulmer, A. J. Lipopeptide structure determines TLR2 dependent cell activation level. Febs J 272: 6354-64, 2005
    Cao, A., Ramos-Martinez, J. I.,Barcia, R. In vitro effects of LPS, IL-2, PDGF and CRF on haemocytes of Mytilus galloprovincialis Lmk. Fish Shellfish Immunol 16: 215-25, 2004
    Cao, Z., Xiong, J., Takeuchi, M., Kurama, T.,Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature 383: 443-6, 1996
    Cerenius, L., Liang, Z., Duvic, B., Keyser, P., Hellman, U., Palva, E. T., Iwanaga, S.,Soderhall, K. Structure and biological activity of a 1,3-beta-D-glucan-binding protein in crustacean blood. J Biol Chem 269: 29462-7, 1994
    Cha, G. H., Cho, K. S., Lee, J. H., Kim, M., Kim, E., Park, J., Lee, S. B.,Chung, J. Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by c-Jun N-terminal kinase and NF-kappaB-dependent signaling pathways. Mol Cell Biol 23: 7982-91, 2003
    Choi, Y. Role of TRAF6 in the immune system. Adv Exp Med Biol 560: 77-82, 2005
    Christophides, G. K., Zdobnov, E., Barillas-Mury, C., Birnay, E., Blandin S., Blass, C., Brey, P.T.,Collins, F.H., Danielli, A., Dimopoulos, G., Hetru, C., Hoa, N.T.,Hoffmann, J.A., Kanzok, S.M., Letunic, I., Levashina, E.A., Loukeris T.G.,Lycett, G., Meister, S., Michel, K., Moita, L.F., Muller, H.M., Osta, M.A.,Paskewitz, S.M., Reichhart, J., Rzhetsky, A., Troxler, L., Vernick, K.D., Vlachou,D., Volz, J., von Mering, C., Xu, J., Zheng, L., Bork, P., Katatos, F.C. Immunity-related genes and gene families in Anopheles gambiae. Science 298: 159-165, 2002
    Chung, J. Y., Park, Y. C., Ye, H.,Wu, H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115: 679-88, 2002
    Cunningham-Rundles, C., Radigan, L., Knight, A. K., Zhang, L., Bauer, L.,Nakazawa, A. TLR9 activation is defective in common variable immune deficiency. J Immunol 176: 1978-87, 2006
    Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A.,Kelliher, M. A. Rip1 mediates the Trif-dependent toll-like receptor 3-and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem 280: 36560-6, 2005
    Darnay, B. G., Ni, J., Moore, P. A.,Aggarwal, B. B. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 274: 7724-31, 1999
    De Gregorio, E., Spellman, P. T., Tzou, P., Rubin, G. M.,Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. Embo J 21: 2568-79, 2002
    De Gregorio, E., Spellman, P.T., Rubin, G.M., Lemaitre, B. Genome-wide analysis of the Drosophila immune response using oligonucleotide microarrays. Proc Natl Acad Sci USA 98: 12590-12595, 2001
    De Gregorio E., S. P. T., Tzou P.T., Rubin G.M., Lemaitre B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila adults. EMBO J 21: 2568-2579, 2002
    Dickson, K. M., Bhakar, A. L.,Barker, P. A. TRAF6-dependent NF-kB transcriptional activity during mouse development. Dev Dyn 231: 122-7, 2004
    Didierlaurent, A., Brissoni, B., Velin, D., Aebi, N., Tardivel, A., Kaslin, E., Sirard, J. C., Angelov, G., Tschopp, J.,Burns, K. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol Cell Biol 26: 735-42, 2006
    Dimopoulos, G., Christophides, G.K., Meister, S., Schultz, J., White, K.P., Barillas-Mury, C., Kafatos, F.C. Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge and malaria infection. Proc. Natl Acad Sci USA 99: 6614-8819
    Divanovic, S., Trompette, A., Atabani, S. F., Madan, R., Golenbock, D. T., Visintin, A., Finberg, R. W., Tarakhovsky, A., Vogel, S. N., Belkaid, Y., Kurt-Jones, E. A.,Karp, C. L. Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. J Endotoxin Res 11: 363-8, 2005a
    Divanovic, S., Trompette, A., Atabani, S. F., Madan, R., Golenbock, D. T., Visintin, A., Finberg, R. W., Tarakhovsky, A., Vogel, S. N., Belkaid, Y., Kurt-Jones, E. A.,Karp, C. L. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6: 571-8, 2005b
    Doyle, R. J.,Marquis, R. E. Elastic, flexible peptidoglycan and bacterial cell wall properties. Trends Microbiol 2: 57-60, 1994
    Dziarski, R.,Gupta, D. Peptidoglycan recognition in innate immunity. J Endotoxin Res 11: 304-10, 2005a
    Dziarski, R.,Gupta, D. Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: a reevaluation. Infect Immun 73: 5212-6, 2005b
    Epstein, J., Eichbaum, Q., Sheriff, S.,Ezekowitz, R. A. The collectins in innate immunity. Curr Opin Immunol 8: 29-35, 1996
    Ezekowitz, R. A., Hoffmann, J. The blossoming of innate immunity. Curr Opin Immunol 10, 1998
    FAO. Review of the state of world aquaculture. FAO Fisheries Circular 1: Rome, 1997
    Fearon, D. T.,Locksley, R. M. The instructive role of innate immunity in the acquired immune response. Science 272: 50-3, 1996
    Feterowski, C., Novotny, A., Kaiser-Moore, S., Muhlradt, P. F., Rossmann-Bloeck, T., Rump, M., Holzmann, B.,Weighardt, H. Attenuated pathogenesis of polymicrobial peritonitis in mice after TLR2 agonist pre-treatment involves ST2 up-regulation. Int Immunol 17: 1035-46, 2005
    Filipe, S. R., Tomasz, A.,Ligoxygakis, P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep 6: 327-33, 2005
    Forsthuber, T., Yip, H. C.,Lehmann, P. V. Induction of TH1 and TH2 immunity in neonatal mice. Science 271: 1728-30, 1996
    Fraser, I. P., Koziel, H.,Ezekowitz, R. A. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol 10: 363-72, 1998
    Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S.,Underhill, D. M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197: 1107-17, 2003
    Gauss, G. H.,Lieber, M. R. Mechanistic constraints on diversity in human V(D)J recombination. Mol Cell Biol 16: 258-69, 1996
    Gazzinelli, R. T., Ropert, C.,Campos, M. A. Role of the Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites. Immunol Rev 201: 9-25, 2004
    Giiardin, S. E., Sansonetti, P.J., Philpot, D.J. Intracelular vs extracelular recognition of pathogens-common concepts in mammals and flies. Journal Trends Microbiol 10: 193-199, 2002
    Gobert, V., Gottar, M., Matskevich, A. A., Rutschmann, S., Royet, J., Belvin, M., Hoffmann, J. A.,Ferrandon, D. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302: 2126-30, 2003
    Gonzalez, J. M.,Moran, M. A. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63: 4237-42, 1997
    Goodson, M. S., Kojadinovic, M., Troll, J. V., Scheetz, T. E., Casavant, T. L., Soares, M. B.,McFall-Ngai, M. J. Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl Environ Microbiol 71: 6934-46, 2005
    Grech, A., Quinn, R., Srinivasan, D., Badoux, X.,Brink, R. Complete structural characterisation of the mammalian and Drosophila TRAF genes: implications for TRAF evolution and the role of RING finger splice variants. Mol Immunol 37: 721-34, 2000
    Gregorio, E. D., Spellman, P.T., Tzou, P., Rubin, G.M., Lemaitre, B. The toll and imd pathways are the major regulators of the immune response in Drosophila. The EMBO Journal 21: 2568-2579, 2002
    Gueguen, Y., Cadoret, J.-P., Flament, D., Barreau-Roumiguiere, C., Girardot, A.-L., Garnier, J., Hoareau, A., Bachere, E.,Escoubas, J.-M. Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 303: 139, 2003
    Guha, M.,Mackman, N. LPS induction of gene expression in human monocytes. Cell Signal 13: 85-94, 2001
    Guo, X. M., Ford, S.E., Zhang, G.F. Molluscan aquaculture in China. J. Shellfish Res. 18: 19-31, 1999
    Hacker, H., Mischak, H., Miethke, T., Liptay, S., Schmid, R., Sparwasser, T., Heeg, K., Lipford, G. B.,Wagner, H. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. Embo J 17: 6230-40, 1998
    Hallman, M., Ramet, M.,Ezekowitz, R. A. Toll-like receptors as sensors of pathogens. Pediatr Res 50: 315-21, 2001
    Hashimoto, C., Hudson, K. L.,Anderson, K. V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52: 269-79, 1988
    Herrin, B. R.,Justement, L. B. Expression of the adaptor protein hematopoietic Src homology 2 is up-regulated in response to stimuli that promote survival and differentiation of B cells. J Immunol 176: 4163-72, 2006
    Hoffmann, J. A., Kafatos, F. C., Janeway, C. A.,Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284: 1313-8, 1999
    Horng, T.,Medzhitov, R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci U S A 98: 12654-8, 2001
    Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K.,Akira, S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749-52, 1999
    Hu, X., Yagi, Y., Tanji, T., Zhou, S.,Ip, Y. T. Multimerization and interaction of Toll and Spatzle in Drosophila. Proc Natl Acad Sci U S A 101: 9369-74, 2004
    Humphries, H. E., Triantafilou, M., Makepeace, B. L., Heckels, J. E., Triantafilou, K.,Christodoulides, M. Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cell Microbiol 7: 415-30, 2005
    Huxford, T., Huang, D. B., Malek, S.,Ghosh, G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95: 759-70, 1998
    Imler, J. L.,Zheng, L. Biology of Toll receptors: lessons from insects and mammals. J Leukoc Biol 75: 18-26, 2004
    Inoue, J., Ishida, T., Tsukamoto, N., Kobayashi, N., Naito, A., Azuma, S.,Yamamoto, T. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 254: 14-24, 2000
    Inoue, J., Yagi, S., Ishikawa, K., Azuma, S., Ikawa, S.,Semba, K. Identification and characterization of Xenopus laevis homologs of mammalian TRAF6 and its binding protein TIFA. Gene 358: 53-9, 2005
    Into, T., Kiura, K., Yasuda, M., Kataoka, H., Inoue, N., Hasebe, A., Takeda, K., Akira, S.,Shibata, K. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol 6: 187-99, 2004
    Ishida, T., Mizushima, S., Azuma, S., Kobayashi, N., Tojo, T., Suzuki, K., Aizawa, S., Watanabe, T., Mosialos, G., Kieff, E., Yamamoto, T.,Inoue, J. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 271: 28745-8, 1996
    Itami, T., Asano, M., Tokushige, K., Kubono, K., Nakagawa, A., Takeno, N., Nishimura, H., Maeda, M., Knodo, M., Takahashi, Y. Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administeration of peptidoglycan derived from Bifidobacterium thermophilum. Aquaculture 164: 277-288, 1998
    Iwanaga, S. The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 14: 87-95, 2002
    Jacobs, M. D.,Harrison, S. C. Structure of an IkappaBalpha/NF-kappaB complex. Cell 95: 749-58, 1998
    Janeway, C. A., Jr. Presidential Address to The American Association of Immunologists. The road less traveled by: the role of innate immunity in the adaptive immune response. J Immunol 161: 539-44, 1998
    Janeway, C. A., Jr.,Medzhitov, R. Innate immune recognition. Annu Rev Immunol 20: 197-216, 2002
    Janssens, S.,Beyaert, R. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci 27: 474-82, 2002
    Janssens, S., Burns, K., Vercammen, E., Tschopp, J.,Beyaert, R. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB-and AP-1-dependent gene expression. FEBS Lett 548: 103-7, 2003
    Jiang, H., Kanost, M.R. The clip-domain family of serine proteinases in arthropods. Insect. Biochem. Mol. Biol. 30: 95-105, 2000
    Jiang, H., Wang, Y., Kanost, M.R. Prophenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc. Natl. Acad. Sci. USA 95: 12220-12225, 1998
    Jiang, H., Wang, Y., Kanost, M.R. Four serine proteinases expressed in Manduca sexta haemocytes. Insect Mol. Biol. 8: 39-53, 1999
    Jomori, T.,Natori, S. Function of the lipopolysaccharide-binding protein of Periplaneta americana as an opsonin. FEBS Lett 296: 283-6, 1992
    Jurk, M., Heil, F., Vollmer, J., Schetter, C., Krieg, A. M., Wagner, H., Lipford, G.,Bauer, S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3: 499, 2002
    Kajava, A. V. Structural diversity of leucine-rich repeat proteins. J Mol Biol 277: 519-27, 1998
    Kambris, Z., Hofnann, J.A., Imler, J.L. Tissue and stagespecific expression of the Tolls in Drosophila embryos. Gene Expression Paterns 2: 311-317, 2002
    Kanamori, M., Kai, C., Hayashizaki, Y.,Suzuki, H. NF-kappaB activator Act1 associates with IL-1/Toll pathway adaptor molecule TRAF6. FEBS Lett 532: 241-6, 2002
    Kasof, G. M., Prosser, J. C., Liu, D., Lorenzi, M. V.,Gomes, B. C. The RIP-like kinase, RIP3, induces apoptosis and NF-kappaB nuclear translocation and localizes to mitochondria. FEBS Lett 473: 285-91, 2000
    Kataoka, K., Muta, T., Yamazaki, S.,Takeshige, K. Activation of macrophages by linear (1right-arrow3)-beta-D-glucans. Impliations for the recognition of fungi by innate immunity. J Biol Chem 277: 36825-31, 2002
    Kawai, T.,Akira, S. Toll-like receptor downstream signaling. Arthritis Res Ther 7: 12-9, 2005
    Kim, D. H.,Ausubel, F. M. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr Opin Immunol 17: 4-10, 2005
    Kirschning, C. J.,Schumann, R. R. TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr Top Microbiol Immunol 270: 121-44, 2002
    Kobayashi, K., Hernandez, L. D., Galan, J. E., Janeway, C. A., Jr., Medzhitov, R.,Flavell, R. A. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191-202, 2002
    Kobayashi, T., Walsh, M. C.,Choi, Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect 6: 1333-8, 2004
    Kobayashi, T., Walsh, P. T., Walsh, M. C., Speirs, K. M., Chiffoleau, E., King, C. G., Hancock, W. W., Caamano, J. H., Hunter, C. A., Scott, P., Turka, L. A.,Choi, Y. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 19: 353-63, 2003
    Kodama, H., Hirota, Y., Mukamoto, M., Baba, T., Azuma, I. Activation of rainbow trout (Oncorhynchus mykiss) phagocytes by muramyl dipeptide. Developmental and Comparative Immunology 17: 129-140, 1993
    Koizumi, N., Imamura, M., Kadotani, T., Yaoi, K., Iwahana, H.,Sato, R. The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains. FEBS Lett 443: 139-43, 1999
    Kopp, E., Medzhitov, R., Carothers, J., Xiao, C., Douglas, I., Janeway, C. A.,Ghosh, S. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 13: 2059-71, 1999
    Kumar, S., Tamura, K., Jakobsen, I. B.,Nei, M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-5, 2001
    Lacoste, A., De Cian, M. C., Cueff, A.,Poulet, S. A. Noradrenaline and alpha-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells. J Cell Sci 114: 3557-64, 2001
    Lauw, F. N., Caffrey, D. R.,Golenbock, D. T. Of mice and man: TLR11 (finally) finds profilin. Trends Immunol 26: 509-11, 2005
    Lee, S. Y., Cho, M.Y., Hyun, H.H., Lee, K.M., Homma, K., Natori, S., Kawabata, S., Iwanaga, S.,Lee, B. L. Molecular cloning of cDNA for pro-phenol-oxidase activating factor I, a serine proteinase is induced by lipopolysaccharide or 1, 3-b-glucan in a coleopteran insect Holotrichia diomphalia larvae. Eur. J. Biochem. 257: 625-621, 1998
    Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M.,Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-83, 1996
    Lemaitre, B., Reichhart, J.M. & Hoffmann, J.A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94: 14614-14619, 1997
    LeMosy, E. K., Hong, C.C., Hashimoto, C. Signal transduction by a protease cascade. Trends in Cell Biol. 9: 102-107, 1999
    Letunic, I., Copley, R. R., Schmidt, S., Ciccarelli, F. D., Doerks, T., Schultz, J., Ponting, C. P.,Bork, P. SMART 4.0: towards genomic data integration. Nucleic Acids Res 32: D142-4, 2004
    Leulier, F., Rodriguez, A., Khush, R.S., Abrams, J.M., Lemaitre, B. The Drosophila caspase Dredd is required to resist to Gram negative bacterial infection. EMBO R 4: 353-358, 2000
    Leulier, F., Vidal, S.D., Saigo, K., Ueda, R., Lemaitre, B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Current Biology 12: 996-1000, 2002
    Levashina, E. A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J. A.,Reichhart, J. M. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285: 1917-9, 1999
    Levashina, E. A., Ohresser, S., Lemaitre, B. Two distinct pathways can control expression of the gene encoding the droso-phila antimicrobial peptide metchnikowin. J. Mol. Biol. 278: 515-527, 1998
    Ligoxygakis, P., Pelte, N., Hoffmann, J. A.,Reichhart, J. M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297: 114-6, 2002
    Lomaga, M. A., Yeh, W. C., Sarosi, I., Duncan, G. S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., van der Heiden, A., Itie, A., Wakeham, A., Khoo, W., Sasaki, T., Cao, Z., Penninger, J. M., Paige, C. J., Lacey, D. L., Dunstan, C. R., Boyle, W. J., Goeddel, D. V.,Mak, T. W. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13: 1015-24, 1999
    Lord, K. A., Hoffman-Liebermann, B.,Liebermann, D. A. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5: 1095-7, 1990
    Luna, C., Wang, X., Huang, Y., Zhang, J.,Zheng, L. Characterization of four Toll related genes during development and immune responses in Anopheles gambiae. Insect Biochemistry and Molecular Biology 32: 1171, 2002
    Luo, C.,Zheng, L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics 51: 92-8, 2000
    Magnusson, C.,Vaux, D. L. Signalling by CD95 and TNF receptors: not only life and death. Immunol Cell Biol 77: 41-6, 1999
    Majewska, M.,Szczepanik, M. [The role of Toll-like receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation]. Postepy Hig Med Dosw (Online) 60: 52-63, 2006
    Matsumura, T., Degawa, T., Takii, T., Hayashi, H., Okamoto, T., Inoue, J.,Onozaki, K. TRAF6-NF-kappaB pathway is essential for interleukin-1-induced TLR2 expression and its functional response to TLR2 ligand in murine hepatocytes. Immunology 109: 127-36, 2003
    Matzinger, P. Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991-1045, 1994
    Matzinger, P. An innate sense of danger. Semin Immunol 10: 399-415, 1998
    McCoy, S. L., Kurtz, S. E., Macarthur, C. J., Trune, D. R.,Hefeneider, S. H. Identification of a peptide derived from vaccinia virus A52R protein that inhibits cytokine secretion in response to TLR-dependent signaling and reduces in vivo bacterial-induced inflammation. J Immunol 174: 3006-14, 2005
    McGinnis, S.,Madden, T. L. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32: W20-5, 2004
    Means, T. K., Golenbock, D. T.,Fenton, M. J. The biology of Toll-like receptors. Cytokine Growth Factor Rev 11: 219-32, 2000
    Medzhitov, R.,Janeway, C., Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 173: 89-97, 2000
    Medzhitov, R.,Janeway, C. A., Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9: 4-9, 1997a
    Medzhitov, R.,Janeway, C. A., Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295-8, 1997b
    Medzhitov, R.,Janeway, C. A., Jr. Innate immune recognition and control of adaptive immune responses. Semin Immunol 10: 351-3, 1998a
    Medzhitov, R.,Janeway, C. A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296: 298-300, 2002
    Medzhitov, R., Janeway, C.A.J. Innate immune recognition: mechanisms and pathways. Immunological Reviews 173: 89-97, 2000
    Medzhitov, R., Preston-Hurlburt, P.,Janeway, C. A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-7, 1997
    Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S.,Janeway, C. A., Jr. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2: 253-8, 1998b
    Michel, T., Reichhart, J. M., Hoffmann, J. A.,Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414: 756-9, 2001
    Miyahara, T., Koyama, H., Miyata, T., Shigematsu, H., Inoue, J., Takato, T.,Nagawa, H. Inflammatory signaling pathway containing TRAF6 contributes to neointimal formation via diverse mechanisms. Cardiovasc Res 64: 154-64, 2004
    Mueller, T., Terada, T., Rosenberg, I. M., Shibolet, O.,Podolsky, D. K. Th2 Cytokines Down-Regulate TLR Expression and Function in Human Intestinal Epithelial Cells. J Immunol 176: 5805-14, 2006
    Muta, T., Hashimoto, R., Miyata, T., Nishimura, H., Toh, Y., Iwanaga, S. Proclotting enzyme from horseshoe crab hemocytes: cDNA cloning, disulfide locations, and subcellular localization. J.Biol. Chem. 265: 22426-22433, 1990
    Muta, T., Miyata, T., Misumi, Y., Tokunaga, F., Nakamura, T., Toh, Y., Ikehara, Y.,Iwanaga, S. Limulus factor C. An endotoxin-sensitive serine protease zymogen with a mosaic structure of complement-like, epidermal growth factor-like, and lectin-like domains. J Biol Chem 266: 6554-61, 1991
    Muta, T., Oda, T., Iwanaga, S. Horseshoe crab coagulation factor B: a unique serine proteinase zymogen activated by cleavage of an Ile–Ile bond. J. Biol. Chem. 268, 1993
    Muta, T.,Takeshige, K. Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2-and TLR4-activation by distinguishable ligands in LPS preparations. Eur J Biochem 268: 4580-9, 2001
    Muzio, M., Natoli, G., Saccani, S., Levrero, M.,Mantovani, A. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med 187: 2097-101, 1998
    Muzio, M., Ni, J., Feng, P.,Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278: 1612-5, 1997
    Nagase, H., Okugawa, S., Ota, Y., Yamaguchi, M., Tomizawa, H., Matsushima, K., Ohta, K., Yamamoto, K.,Hirai, K. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol 171: 3977-82, 2003
    Naito, A., Yoshida, H., Nishioka, E., Satoh, M., Azuma, S., Yamamoto, T., Nishikawa, S.,Inoue, J. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci U S A 99: 8766-71, 2002
    Naka, T., Fujimoto, M., Tsutsui, H.,Yoshimura, A. Negative regulation of cytokine and TLR signalings by SOCS and others. Adv Immunol 87: 61-122, 2005
    Netea, M. G., van der Graaf, C., Van der Meer, J. W.,Kullberg, B. J. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J Leukoc Biol 75: 749-55, 2004
    Nikl, L., Albright, L.J. Influence of seven immunostimulants on the immune responses of coho salmon to Aeromonas salmonicida. Diseases of Aquatic Organisms 12, 1991
    Nishimura, M.,Naito, S. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28: 886-92, 2005
    Nusslein-Volhard, C., Lohs-Schardin, M., Sander, K.,Cremer, C. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283: 474-6, 1980
    O'Connell, C. M., Ionova, I. A., Quayle, A. J., Visintin, A.,Ingalls, R. R. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J Biol Chem 281: 1652-9, 2006
    O'Neill, L. Specificity in the innate response: pathogen recognition by Toll-like receptor combinations. Trends Immunol 22: 70, 2001
    O'Neill, L. A. The role of MyD88-like adapters in Toll-like receptor signal transduction. Biochem Soc Trans 31: 643-7, 2003a
    O'Neill, L. A. SIGIRR puts the brakes on Toll-like receptors. Nat Immunol 4: 823-4, 2003b
    O'Neill, L. A., Dunne, A., Edjeback, M., Gray, P., Jefferies, C.,Wietek, C. Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors. J Endotoxin Res 9: 55-9, 2003
    O'Reilly, S. M.,Moynagh, P. N. Regulation of Toll-like receptor 4 signalling by A20 zinc finger protein. Biochem Biophys Res Commun 303: 586-93, 2003
    Ohazama, A., Courtney, J. M., Tucker, A. S., Naito, A., Tanaka, S., Inoue, J.,Sharpe, P. T. Traf6 is essential for murine tooth cusp morphogenesis. Dev Dyn 229: 131-5, 2004
    Peng, J., Zipperlen, P.,Kubli, E. Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr Biol 15: 1690-4, 2005
    Phelan, P. E., Mellon, M. T.,Kim, C. H. Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio). Mol Immunol 42: 1057-71, 2005
    Philbin, V. J., Iqbal, M., Boyd, Y., Goodchild, M. J., Beal, R. K., Bumstead, N., Young, J.,Smith, A. L. Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 114: 507-21, 2005
    Pipe, R. K. Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytilus edulis. Histochem J 22: 595-603, 1990
    Pipe, R. K. Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Dev Comp Immunol 16: 111-22, 1992
    Pipe, R. K., Farley, S. R.,Coles, J. A. The separation and characterisation of haemocytes from the mussel Mytilus edulis. Cell Tissue Res 289: 537-45, 1997
    Pollet, I., Opina, C. J., Zimmerman, C., Leong, K. G., Wong, F.,Karsan, A. Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-kappaB and c-Jun N-terminal kinase. Blood 102: 1740-2, 2003
    Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B.,Beutler, B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085-8, 1998
    Power, C. P., Wang, J. H., Manning, B., Kell, M. R., Aherne, N. F., Wu, Q. D.,Redmond, H. P. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2. J Immunol 173: 5229-37, 2004
    Prinz, M., Garbe, F., Schmidt, H., Mildner, A., Gutcher, I., Wolter, K., Piesche, M., Schroers, R., Weiss, E., Kirschning, C. J., Rochford, C. D., Bruck, W.,Becher, B. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 116: 456-64, 2006
    Pujol, N., Link, E. M., Liu, L. X., Kurz, C. L., Alloing, G., Tan, M.-W., Ray, K. P., Solari, R., Johnson, C. D.,Ewbank, J. J. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biology 11: 809-821, 2001a
    Pujol, N., Link, E. M., Liu, L. X., Kurz, C. L., Alloing, G., Tan, M. W., Ray, K. P., Solari, R., Johnson, C. D.,Ewbank, J. J. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11: 809-21, 2001b
    Qin, J., Qian, Y., Yao, J., Grace, C.,Li, X. SIGIRR inhibits interleukin-1 receptor-and toll-like receptor 4-mediated signaling through different mechanisms. J Biol Chem 280: 25233-41, 2005
    Reichhart, J. M. TLR5 takes aim at bacterial propeller. Nat Immunol 4: 1159-60, 2003 Ridge, J. P., Fuchs, E. J.,Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271: 1723-6, 1996
    Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U., Di Padova, F.,et al. Bacterial endotoxin: molecular relationships of structure to activity and function. Faseb J 8: 217-25, 1994
    Rinkevich, B. Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. Journal of Biotechnology 70: 133-153, 1999
    Roach, J. C., Glusman, G., Rowen, L., Kaur, A., Purcell, M. K., Smith, K. D., Hood, L. E.,Aderem, A. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102: 9577-82, 2005
    Sakai, M. Current research status of fish immunostimulants. Aquaculture 172: 63-92, 1999
    Salati, F. Immune response of red sea bream to Edwardsiella tarda antigens. Fish Pathology 22, 1987
    Sanjuan, M. A., Rao, N., Lai, K. T., Gu, Y., Sun, S., Fuchs, A., Fung-Leung, W. P., Colonna, M.,Karlsson, L. CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion. J Cell Biol 172: 1057-68, 2006
    Sarzotti, M., Robbins, D. S.,Hoffman, P. M. Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 271: 1726-8, 1996
    Sato, S., Sugiyama, M., Yamamoto, M., Watanabe, Y., Kawai, T., Takeda, K.,Akira, S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171: 4304-10, 2003
    Satoh, D., Horii, A., Ochiai, M., Ashida, M. Prophenoloxidase activating enzyme of the silkworm, Bombyx mori: purification, characterization and cDNA cloning. J. Biol. Chem. 274: 7441-7453, 1999
    Schroder, N. W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., Gobel, U. B., Weber, J. R.,Schumann, R. R. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278: 15587-94, 2003
    Schultz, J., Milpetz, F., Bork, P.,Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95: 5857-64, 1998
    Sen, G., Khan, A. Q., Chen, Q.,Snapper, C. M. In vivo humoral immune responses to isolated pneumococcal polysaccharides are dependent on the presence of associated TLR ligands. J Immunol 175: 3084-91, 2005
    Shen, B., Liu, H., Skolnik, E. Y.,Manley, J. L. Physical and functional interactions between Drosophila TRAF2 and Pelle kinase contribute to Dorsal activation. Proc Natl Acad Sci U S A 98: 8596-601, 2001
    Shen, B.,Manley, J. L. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125: 4719-28, 1998
    Shimizu, T., Kida, Y.,Kuwano, K. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6. J Immunol 175: 4641-6, 2005
    Skinner, N. A., MacIsaac, C. M., Hamilton, J. A.,Visvanathan, K. Regulation of Toll-like receptor (TLR)2 and TLR4 on CD14dimCD16+ monocytes in response to sepsis-related antigens. Clin Exp Immunol 141: 270-8, 2005
    Smirnova, I., Hamblin, M. T., McBride, C., Beutler, B.,Di Rienzo, A. Excess of rare amino acid polymorphisms in the Toll-like receptor 4 in humans. Genetics 158: 1657-64, 2001
    Stahl, P. D.,Ezekowitz, R. A. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10: 50-5, 1998
    Stovall, S. H., Yi, A. K., Meals, E. A., Talati, A. J., Godambe, S. A.,English, B. K. Role of vav1-and src-related tyrosine kinases in macrophage activation by CpG DNA. J Biol Chem 279: 13809-16, 2004
    Sun, J., Walsh, M., Villarino, A. V., Cervi, L., Hunter, C. A., Choi, Y.,Pearce, E. J. TLR ligands can activate dendritic cells to provide a MyD88-dependent negative signal for Th2 cell development. J Immunol 174: 742-51, 2005
    Sun, Y.,Leaman, D. W. Ectopic expression of toll-like receptor-3 (TLR-3) overcomes the double-stranded RNA (dsRNA) signaling defects of P2.1 cells. J Interferon Cytokine Res 24: 350-61, 2004
    Sung, H. H., Kou, G.H. Vibriosis resistance induced by glucan treatment in tiger shrimp (Penaeus monodon). Fish Pathology 29, 1994
    Suzuki, H., Kurihara, Y., Takeya, M., Kamada, N., Kataoka, M., Jishage, K., Ueda, O., Sakaguchi, H., Higashi, T., Suzuki, T., Takashima, Y., Kawabe, Y., Cynshi, O., Wada, Y., Honda, M., Kurihara, H., Aburatani, H., Doi, T., Matsumoto, A., Azuma, S., Noda, T., Toyoda, Y., Itakura, H., Yazaki, Y., Kodama, T.,et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386: 292-6, 1997
    Takagi, H., Sanada, T., Minoda, Y.,Yoshimura, A. [Regulation of cytokine and toll-like receptor signaling by SOCS family genes]. Nippon Rinsho 62: 2189-96, 2004
    Takeda, K. Evolution and integration of innate immune recognition systems: the Toll-like receptors. J Endotoxin Res 11: 51-5, 2005
    Takeda, K.,Akira, S. Toll-like receptors in innate immunity. Int Immunol 17: 1-14, 2005
    Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., Takeda, K.,Akira, S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933-40, 2001
    Tanguy, A., Guo, X.,Ford, S. E. Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 338: 121-131, 2004
    Tanji, T.,Ip, Y. T. Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol 26: 193-8, 2005
    Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A.,Imler, J. L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol 3: 91-7, 2002
    Tauszig, S., Jouanguy, E., Hoffmann, J. A.,Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci U S A 97: 10520-5, 2000
    Thomas, C. A., Li, Y., Kodama, T., Suzuki, H., Silverstein, S. C.,El Khoury, J. Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 191: 147-56, 2000
    Thomas, R. The TRAF6-NFkappaB signaling pathway in autoimmunity: not just inflammation. Arthritis Res Ther 7: 170-3, 2005
    Thomassen, E., Renshaw, B. R.,Sims, J. E. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine 11: 389-99, 1999
    Thompson, J. D., Higgins, D. G.,Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-80, 1994
    Tomic, J., White, D., Shi, Y., Mena, J., Hammond, C., He, L., Miller, R. L.,Spaner, D. E. Sensitization of IL-2 signaling through TLR-7 enhances B lymphoma cell immunogenicity. J Immunol 176: 3830-9, 2006
    Triantafilou, K., Vakakis, E., Orthopoulos, G., Ahmed, M. A., Schumann, C., Lepper, P. M.,Triantafilou, M. TLR8 and TLR7 are involved in the host's immune response to human parechovirus 1. Eur J Immunol 35: 2416-23, 2005
    Tsan, M. F.,Gao, B. Endogenous ligands of Toll-like receptors. J Leukoc Biol 76: 514-9, 2004
    Turner, M. W. 90 years on:a therapy to`stimulates the phagocytes'? Scand J Immunol. 48: 124, 1998
    Tzou, P., De Gregorio, E., Lemaitre, B. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Current Opinion in Microbiology 5: 102-110, 2002
    Tzou, P., Reicchart, J.M., Lemaitre, B. Overexpression of a single antimicrobial peptide restores wild-type resistance to infection in immuno-deficient Drosophila mutants. Proc Natl Acad Sci USA 99: 2152-2157, 2002b
    Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D.,Wagner, H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277: 15107-12, 2002
    Volety, A. K., Oliver, J.M., Genthner, F.J., Fisher, W.S. A rapid tetrazolium dye reduction assay to assess the bactericidal activity of oyster (Crassostrea virginica) hemocytes against Vibrio parahamolysticus. Aquaculture 172: 205-222, 1999
    Wallach, D., Varfolomeev, E. E., Malinin, N. L., Goltsev, Y. V., Kovalenko, A. V.,Boldin, M. P. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17: 331-67, 1999
    Wang, L., Song, L., Chang, Y., Xu, W., Ni, D., Guo, X. A preliminary genetic map of Zhikong scallop (Chlamys farreri Jones et Preston 1904). Aquaculture Research 36: 643-653, 2005
    Wang, T. Y., Wang, J. M.,Yao, X. X. [Trif: A new member of Toll-like receptor-associated signal transduction]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 16: 447-8, 2004
    Weber, A. N., Tauszig-Delamasure, S., Hoffmann, J. A., Lelievre, E., Gascan, H., Ray, K. P., Morse, M. A., Imler, J. L.,Gay, N. J. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4: 794-800, 2003
    Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S.,Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837-47, 1997
    Wiens, M., Korzhev, M., Krasko, A., Thakur, N. L., Perovic-Ottstadt, S., Breter, H. J., Ushijima, H., Diehl-Seifert, B., Muller, I. M.,Muller, W. E. Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem 280: 27949-59, 2005
    Williams, M. A., Withington, S., Newland, A. C.,Kelsey, S. M. Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo. J Infect Dis 178: 1421-33, 1998
    Wirtz, S., Becker, C., Fantini, M. C., Nieuwenhuis, E. E., Tubbe, I., Galle, P. R., Schild, H. J., Birkenbach, M., Blumberg, R. S.,Neurath, M. F. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation. J Immunol 174: 2814-24, 2005
    Wong, F., Hull, C., Zhande, R., Law, J.,Karsan, A. Lipopolysaccharide initiates a TRAF6-mediated endothelial survival signal. Blood 103: 4520-6, 2004
    Wooff, J., Pastushok, L., Hanna, M., Fu, Y.,Xiao, W. The TRAF6 RING finger domain mediates physical interaction with Ubc13. FEBS Lett 566: 229-33, 2004
    Wootton, E. C., Dyrynda, E. A.,Ratcliffe, N. A. Bivalve immunity: comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua). Fish Shellfish Immunol 15: 195-210, 2003
    Wu, H.,Arron, J. R. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 25: 1096-105, 2003
    Xiao, T., Towb, P., Wasserman, S. A.,Sprang, S. R. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 99: 545-55, 1999
    Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J. L.,Tong, L. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408: 111-5, 2000
    Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K.,Akira, S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301: 640-3, 2003
    Yang, K., Zhu, J., Sun, S., Tang, Y., Zhang, B., Diao, L.,Wang, C. The coiled-coil domain of TRAF6 is essential for its auto-ubiquitination. Biochem Biophys Res Commun 324: 432-9, 2004a
    Yang, Y., Ma, J., Chen, Y.,Wu, M. Nucleocytoplasmic shuttling of receptor-interacting protein 3 (RIP3): identification of novel nuclear export and import signals in RIP3. J Biol Chem 279: 38820-9, 2004b
    Ye, H., Arron, J. R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N. K., Segal, D., Dzivenu, O. K., Vologodskaia, M., Yim, M., Du, K., Singh, S., Pike, J. W., Darnay, B. G., Choi, Y.,Wu, H. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418: 443-7, 2002
    Yoshida, H., Jono, H., Kai, H.,Li, J. D. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem 280: 41111-21, 2005
    Zambon, R. A., Nandakumar, M., Vakharia, V. N.,Wu, L. P. The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci U S A 102: 7257-62, 2005
    Zanoni, I., Foti, M., Ricciardi-Castagnoli, P.,Granucci, F. TLR-dependent activation stimuli associated with Th1 responses confer NK cell stimulatory capacity to mouse dendritic cells. J Immunol 175: 286-92, 2005
    Zdobnov, E. M., von Mering, C., Letunic, I., Torrents, D., Suyama, M., Copley, R.R., Christophides,G.K., T., D., Holt, R.A., Subramanian, G.M., Mueller, H.M., Dimopoulos, G. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298: 149-159, 2002
    Zhang, G.,Ghosh, S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem 277: 7059-65, 2002
    艾海新. 栉孔扇贝急性病毒性坏死症病毒基因克隆及核酸诊断技术的建立. 中国海洋大学学报: 博士论文, 2004
    陈政良. 世纪之交我国天然免疫研究的挑战与机遇. 中国免疫学杂志 16: 338-341, 2000
    火村英, 周国勤, 杜宣. 酵母多糖的提取及其对鱼类非特异性免疫功能的影响. 生物技术 14: 45-47, 2004
    李登峰, 孙敬锋, 吴信忠. 栉孔扇贝体内寄生的病毒的分离纯化及其形态学观察. 海洋学报: 141-144, 2002
    李太武, 孙修勤, 刘艳, 张进兴. 栉孔扇贝种群的遗传变异分析. 高技术通讯: 28-30, 2001
    刘英杰, 王崇明, 朱洺壮, 王秀华, 李赟, 张宏义, 任晴光, 潘金培. 栉孔扇贝类立克次体自然感染调查及人工感染试验. 中国水产科学: 59-65, 2002
    刘志鸿, 牟海津, 王清印. 软体动物免疫相关酶研究进展. 海洋水产研究 24: 86-90, 2003
    任光圆,晏春根,谢青. Toll 样受体:免疫治疗的新靶位. 中国新药与临床杂志 23: 718-723, 2004
    苏建国, 宋林生, 胥炜, 李红蕾, 吴龙涛, 蔡中华. 栉孔扇贝脂多糖葡聚糖结合蛋白(LGBP) 基因的克隆及其特征分析. 高技术通讯: 89-93, 2004
    苏兆亮. TLRs 在树突状细胞抗感染免疫中的作用研究进展. 国际输血及血液学杂志 29: 54-58, 2006
    孙虎山, 李光友. 双壳贝类参与免疫防御的体液因子. 海洋科学 25: 34-36, 2001
    王金星, 赵小凡. 无脊椎动物先天免疫模式识别受体研究进展. 生物化学与生物物理进展 31: 112-117, 2004
    王文博, 李爱华, 汪建国, 蔡桃珍, 吴玉深. 拥挤胁迫对草鱼非特异性免疫功能的影响. 水产学报 28: 139-144, 2004
    王秀华, 宋晓玲, 黄倢. 肽聚糖制剂对南美白对虾体液免疫因子的影响. 中国水产科学 11: 26-30, 2004
    吴龙涛, 宋林生, 胥炜, 邱丽华, 李红蕾, 苏建国, 相建海. 栉孔扇贝热休克蛋白70 基因 cDNA 的克隆与分析. 高技术通讯: 78-82, 2003
    相建海. 海水养殖生物病害发生与控制. 104-133, 2001
    胥炜, 王昊, 宋林生, 吴龙涛, 常亚青, 夏长革. 栉孔扇贝 C 型凝集素基因的克隆与表达研究. 1, 2005
    张福绥, 何义朝, 亓玲欣, 孙鲁宁. 海湾扇贝引种复状的研究. 海洋与湖沼 28: 146-152, 1997
    张福绥, 杨红生. 栉孔扇贝大规模死亡问题的对策和应急措施. 海洋科学: 38-42, 1999
    张维翥, 吴信忠, 李登峰, 孙敬锋, 张扬, 杨霞. 海湾扇贝养殖过程中的流行病学调查研究. 海洋学报: 139-146, 2005
    周永灿, 潘金培. 贝类细胞和体液的防御机制研究进展. 水产学报 21: 449-454, 1997
    朱 玲, 常亚青, 倪多娇, 宋林生. 栉孔扇贝(Chlamys farreri) 不同野生种群遗传多样性和遗传分化的研究. 海洋与湖沼: 121-127, 2003
    邹慧斌, 宋林生, 胥炜, 杨官品. 海湾扇贝g 型溶菌酶基因cDNA 的克隆与分析. 高技术通讯: 104-109, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700