几种典型手性农药对映体的环境行为及水生生物毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性农药在农业生产过程中的广泛使用,使其不可避免地进入到生物体、土壤和水体等环境系统中。手性农药的特点在于其对映异构体的物理、化学性质基本相同,但在具有手性特征的生物体内或环境中往往会表现出不同的生物活性、生态毒理及环境行为。然而,大多数手性农药至今仍是以外消旋体形式生产、销售和施用。为此,手性农药的使用与环境安全成为近几年新的热点问题。目前,有关手性农药对映异构体的环境行为和生态毒性研究还十分有限。本论文对几种典型手性农药对映体的环境行为和对非靶标水生生物的毒性进行研究。主要研究内容和结果如下:
     首先,利用高效液相色谱串联质谱结合反相手性固定相法,建立了三唑类手性杀菌剂氟环唑在葡萄与土壤中对映体水平的残留分析方法,进一步通过田间茎叶喷雾法开展了氟环唑在大田条件下葡萄与土壤中的立体选择性行为研究。结果表明:氟环唑对映体在葡萄果实内的降解符合一级动力学方程(R2>0.92),并且在喷药后2h就出现明显的立体选择性。在葡萄果实内,(-)-氟环唑平均半衰期为9.3天,而其对映体(+)-氟环唑的平均半衰期为13.2天,说明优先降解(-)-氟环唑,随着施药后时间的推移,造成葡萄果实中(+)-氟环唑的富集。但是,氟环唑对映体在土壤中的降解却不符合一级动力学方程,降解大致可以分为3个阶段:上升期(0d-3d)、快速降解期(3d-7d)和相对稳定期(7d-60d);通过对映体EF值的计算,发现其土壤降解过程中也存在明显立体选择性,而且同样是(-)-氟环唑降解快于(+)-氟环唑,易造成土壤中(+)-氟环唑的富集。
     其次,比较了纤维素-三(3,5-二甲基苯基氨基甲酸酯)和直链淀粉-三[(s)-α-甲基苯基氨基甲酸酯]两种手性固定相对手性三唑类杀菌剂三唑酮(TF)及其手性代谢物三唑醇(TN)共6个对映体的分离效果,结果表明纤维素-三(3,5-二甲基苯基氨基甲酸酯)能实现三唑酮和三唑醇共6个对映体的较好分离。通过进一步对改性剂种类和含量的优化,最终获得了三唑酮和三唑醇对映体同时手性分离的最佳色谱条件,并利用液相色谱串联质谱结合反相手性固定相法,建立了三唑酮及其代谢产物三唑醇在麦粒、麦秆和土壤中同时提取、净化及分析的方法。在实际大田生产施药方式下,进行了三唑酮在麦粒、麦秆和土壤中的立体选择性降解代谢研究。结果表明:(1)在麦粒中三唑酮和三唑醇的残留量低于检测方法的最低定量限。(2)三唑酮在麦秆中降解迅速,两个对映体的降解趋势符合一级反应动力学规律,通过考察三唑酮的降解半衰期和EF值发现,在三个试验地中,S-(+)-三唑酮和R-(-)-三唑酮降解速率均没有显著性差别,即三唑酮在麦秆中的降解不具有立体选择性。(3)三唑酮两个对映体在土壤中的降解趋势同样也符合一级反应动力学规律,通过比较其半衰期和EF值来衡量对映体在土壤中的立体选择性强度,发现三唑酮对映体在北京和郑州采集的土壤中存在立体选择性降解,均为R-(-)-三唑酮被优先降解,造成S-(+)-三唑酮在土壤中富集。(4)进一步考查了三唑酮在麦秆和土壤中转化成三唑醇4个对映体的规律,发现三地实验中,麦秆中三唑醇4个对映体生成浓度的大小顺序依次为SR-(-)-TN> RR-(+)TN>RS-(+)-TN>SS-(-)-TN.但是,在土壤中4个对映体的生成浓度大小顺序则是RR-(+)TN>SS-(-)-tn>sr-(-)-tn>RS-(+)-TN
     第三,开展了己唑醇外消旋体及两个光学纯对映体对大型溞、斑马鱼(胚胎、仔鱼、成鱼)两种非靶标水生生物的急性毒性差异研究。结果表明:己唑醇外消旋体及两个光学纯对映体对两种水生生物的急性毒性以及对斑马鱼胚胎的发育毒性都存在立体选择性,其急性毒性及致畸效应大小顺序是:(-)-己唑醇>Rac-己唑醇>(+)-己唑醇。同时,斑马鱼胚胎、仔鱼、成鱼对己唑醇及其对映体的敏感性不同,且有较明显的差异,总体上96h的LCso大小顺序为胚胎>仔鱼(3d)>成鱼,即成鱼对己唑醇及其对映体更敏感,胚胎的敏感性最低。
     最后,开展了新型噁二嗪类杀虫剂茚虫威在斑马鱼体内的选择性富集以及不同对映体对斑马鱼胚胎-仔鱼的发育毒性研究。结果表明:(1)斑马鱼对茚虫威的富集存在明显立体选择性,其优先富集的是(-)-R-茚虫威;对映体在斑马鱼体内的代谢较快,在清水中恢复饲养阶段,(-)-R-茚虫威和(+)-S-茚虫威的平均半衰期分别为4.2和2.4d。(2)茚虫威外消旋体及两个光学纯对映体对斑马鱼胚胎-仔鱼发育的影响存在显著性差异。以斑马鱼的胚胎卵内自主运动、心跳次数、孵化率和致畸率为检测终点,发现茚虫威存在显著的对映体选择性毒性,其毒性大小顺序为:(-)-R-茚虫威>(+)-S-茚虫威>外消旋体。
Widespread application of chiral pesticides results in their occurrence in the organism, plant, soil, water and other environmental systems. In general, the enantiomers of chiral compounds are different in biological activities, enantioselective behavior and eoctoxicity because of their different interactions with enzymes and other naturally occurring chiral molecules. However, most of the chiral pesticides are still marketed and applied in racemates. Consequently, the application and envinormental safety of chiral pesticides have been the new concern of scientific researches. So far, the environmental behaviors and eoctoxicity of chiral pesticides have received limited research. In this study, the enantiomeric separation, environmental behaviors, bioaccumulation and biotoxicity of several typical chiral pesticides were investigated.
     (1) A sensitive and convenient chiral liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for measuring epoxiconazole stereoisomers in grape and soil. Then the proposed method was successfully applied to investigate the possible stereoselective degradation of Rac-epoxiconazole in grape and soil under field conditions. The results of field experiment showed that the dissipations of epoxiconazole stereoisomers in grape followed first-order kinetics (R2>0.92) and stereoselectivity occurred in2h after spraying. The (-)-stereoisomer of expoxiconazole with half-life of9.3d degraded faster than (+)-stereoisomer with that of13.2d, which would resulted in relative enrichment of (+)-stereoisomer in grape. However, the stereoisomeric dissipations of expoxiconazole in soil were triphasic ("increase-decrease-steady") with lower dissipation rates, although it also occurred with preferential degradation of (-)-stereoisomer under field condition.
     (2) The separation of triadimefon (TF) and its major metabolite triadimenol (TN) including their simultaneous stereoseparation was studied; using two different polysaccharide-type chiral stationary phases inculding Cellulose-tris(3,5-dimethyphenylcarbamate)(CDMPC) and Amylose-tris(3,5-dimethylphenylcarbamate)(ADMPC) on reverse-phase high-performance liquid chromatography. Compared with two chiral stationary phases, CDMPC exhibited higher resolving ability for TF and TN. And after the optimization of other chromatographic conditions such as the mobile phase composition, a good enantioseparation of two enantiomers of TF and four stereoisomers of TN was successfully achieved. Then we developed a sensitive and rapid analytical method for simultaneous determination of TF and TN stereoisomers in wheat, straw, and soil by LC-MS/MS.
     Racemic triadimefon (TF) was applied to wheat and soil at three sites (Beijing, Huaibei, and Zhengzhou in China) under open field conditions. Its enantioselective degradation and stereoselective transformation to the major metabolite, triadimenol (TN), in wheat straw, grain and soil were investigated. At all three sites, the degradation of TF enantiomers in straw and soil followed first-order kinetics, In soil from Beijing and Zhengzhou,,R-(—)-TF was preferentially degraded; however, preferential enantioselective degradations were not observed in soil from Huaibei or in the straw from all sites. There were noticeable differences in the stereoselective formation of TN stereoisomers in all straw and soil samples. Different TN concentrations were found in the order of SR-(-)-TN> RR-(+)-TN>RS-(+)-TN>SS-H-TN in straw, and RR-(+)-TN>SS-(-)-TN> SR-(-)-TN> RS-(+)-TN in soil. Neither TF nor TN was found in wheat grain at harvest.
     (3)The toxicity of each isomer and racemate of hexaconazole (HZ) to two aquatic orgnisms including Daphnia magna (D. magna), adult zebrafish (Danio rerio), zebrafish embryos and larvae (3d old) were tested. For the aquatic organisms metioned above, significant enantioselectivity were observed in the acute toxicity and development toxicity among the enantiomers of HZ. The order of the acute toxicity to the aquatic organisms of the enantiomers of HZ was (-)-HZ> Rac-HZ>(+)-HZ. At specified stages (24,48,72,96and120hour postfertilization), spontaneous movement, survival, heart beats and hatching as well as non-lethal malformation like crooked body or edema were recorded in detail in zebrafish embryo tests. The results indicated that the (-)-enantiomer of HZ enantioselectively inhibited of hatching and heart beats of embryos and induced significantly more crooked body, yolk sac edema, pericardial edema than (+)-enantiomer. Moreover,(-)-enantiomer also enantioselectively caused morphological impairments, and inhibited the free swimming of the larvae of zebrafish.
     (4) The enantioselective bioaccumulation of indoxacarb in adult zabrafish and the effects of two indoxacarb enantiomers on zebrafish embryos and larvae were studied. The results demonstrated that the accumulation of (-)-R-indoxacarb was approximately13-fold more than that of (+)-S-indoxacarb in adult zabrafish, indicating a clear enantioselectivity of indoxacarb in bioaccumulation. The depuration of the two enantiomers followed first-order kinetics and the average half-lives of (-)-R-indoxacarb and (+)-S-indoxacarb were4.2and2.4d, respectively.
     The results also indicated that (-)-R-indoxacarb was more toxic than (+)-S-indoxacarb to embryo-larval zebrafish in causing mortality, inhibition of hatching and heart beats, and in inducing yolk sac edema, pericardial edema and crooked body. The enantioselective toxicity of indoxacrb was consistent with its enantioselectivity in bioaccumulation. The Rac-indoxacarb had the least potency of development toxicity as compared to its two enantiomers.
引文
[1]伊莱尔,威伦,多伊尔,等.基础有机立体化学[M].科学出版社,2005.
    [2]尤启冬,林国强.手性药物:研究与应用[M].化学工业出版社:2004.
    [3]Eliel E L, Wilen S H. Stereochemistry of organic compounds[M] John Wiley & Sons,2008.
    [4]Siegel J S. Chemical chirality from the frontier of mathematics to biology:Chirality medalist Kurt Martin Mislow[J]. Chirality,1998,10(1-2):3-7.
    [5]王东,范青华.影响人类生活的手性异构体[J].中国高校科技与产业化,2001,11:008.
    [6]杜灿屏,林国强,施敏,等.手性与手性药物研究中的若干科学问题[J].中国科学基金,2003,2:72-72.
    [7]Ariens E J, Wuis E W, Veringa E J. Stereoselectivity of bioactive xenobiotics:a pre-Pasteur attitude in medicinal chemistry, pharmacokinetics and clinical pharmacology[J]. Biochemical Pharmacology,1988, 37(1):9-18.
    [8]吴再坤,钟宏,王微宏,等.手性药物的活性分析与生物转化[J].化工技术与开发,2006,35(9):24-27.
    [9]刘惠君,田宝莲,熊明瑜,等.Rac-异丙甲草胺及 S-异丙甲草胺与镉复合污染对土壤酶活性的影响[J].土壤学报,2009,46(1):122-126.
    [10]魏云亭,黄润秋,毕富春.β-氯代-取代烯丙醇菊酸酯类化合物的合成及生物活性[J].高等学校化学学报,1999,3.
    [11]Jantunen L M M, Bidleman T F. Organochlorine pesticides and enantiomers of chiral pesticides in Arctic Ocean water[J]. Archives of environmental contamination and toxicology,1998,35(2):218-228.
    [12]Hegeman WJM, Laane R W P M. Enantiomeric enrichment of chiral pesticides in the environment[J]. Reviews of Environmental Contamination and Toxicology 173,2001,173:85-116.
    [13]Liu W, Gan J, Schlenk D, et al. Enantioselectivity in environmental safety of current chiral insecticides[J]. Proceedings of the National Academy of Sciences of the United States of America,2005, 102(3):701-706.
    [14]Carlsson G, Patring J, Ulleras E, et al. Developmental toxicity of albendazole and its three main metabolites in zebrafish embryos[J]. Reproductive Toxicology,2011,32(1):129-137.
    [15]Xu C, Zhao M, Liu W, et al. Enantioselectivity in zebrafish embryo toxicity of the insecticide acetofenate[J]. Chemical research in toxicology,2008,21(5):1050-1055.
    [16]李远播.几种典型手性三唑类杀菌剂对映体的分析,环境行为及其生物毒性研究[D].中国农业科学院,2013.
    [17]李晶.三唑类手性杀菌剂苯醚甲环唑的立体选择性生物活性与环境行为研究[D].中国农业科学院,2012.
    [18]Lewis D L, Garrison A W, Wommack K E, et al. Influence of environmental changes on degradation of chiral pollutants in soils[J]. Nature,1999,401(6756):898-901.
    [19]Garrison A W. Probing the enantioselectivity of chiral pesticides[J]. Environmental science & technology,2006,40(1):16-23.
    [20]Armstrong D W, Reid Iii G L, Hilton M L, et al. Relevance of enantiomeric separations in environmental science[J]. Environmental Pollution,1993,79(1):51-58.
    [21]姚彤炜.手性药物分析[M].人民卫生出版社,2008.
    [22]尤田耙,化学家.手性化合物的现代研究方法[M].中国科学技术大学出版社,1993.
    [23]Francotte E. Contribution of preparative chromatographic resolution to the investigation of chiral phenomena[J]. Journal of Chromatography A,1994,666(1):565-601.
    [24]Ward T J, Baker B A. Chiral separations[J]. Analytical chemistry,2008,80(12):4363-4372.
    [25]罗维早,李章万,张志荣.手性药物的色谱分离进展[J].华西药学杂志,2000,15(4):295-298.
    [26]余露山,姚彤炜,王向军,等.手性固定相法和手性衍生化法拆分β-受体阻断剂类药物及其结构类似物[J].浙江大学学报(医学版),2002,31(6):414-414.
    [27]赵华,母昭德,李惠芝,等.柱前手性衍生化反相高效液相色谱分离酮洛芬对映体[J].中国药学杂志,2000,35(3):194-194.
    [28]文岳中,蔡喜运,马云,等.衍生化手性毛细管色谱分离和测定水中的2,4-滴丙酸[J].分析化学(FENXI HU AXUE),2004,32(11):1492-1494.
    [29]袁合金,张安平.手性气相色谱同时测定土壤中5种有机氯农药对映体分数[J].分析化学,2009,37(4):630-630.
    [30]Leone A D, Amato S, Falconer R L. Emission of chiral organochlorine pesticides from agricultural soils in the cornbelt region of the US[J]. Environmental science & technology,2001,35(23):4592-4596.
    [31]Pirkle W H, Finn J M, Schreiner J L, et al. A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers[J]. Journal of the American Chemical Society,1981,103(13):3964-3966.
    [32]Gao R Y, Yang G S, Yang H Z, et al. Enantioseparation of fourteen O-ethyl O-phenyl N-isopropyl phosphoroamidothioates by high-performance liquid chromatography on a chiral stationary phase[J]. Journal of Chromatography A,1997,763(1):125-128.
    [33]Lisseter S G, Hambling S G. Chiral high-performance liquid chromatography of synthetic pyrethroid insecticides[J]. Journal of Chromatography A,1991,539(1):207-210.
    [34]Wang P, Jiang S, Liu D, et al. Enantiomeric resolution of chiral pesticides by high-performance liquid chromatography [J]. Journal of agricultural and food chemistry,2006,54(5):1577-1583.
    [35]李朝阳,张智超,张玲,等.拟除虫菊酯农药和氰戊菊酸手性分离的研究[J].分析试验室,2006,25(11):11-14.
    [36]韩小茜,温晓光,管永红,等.流动相组成及温度对4种1,2,4-三唑类农药对映体手性拆分的影响[J].应用化学,2004,21(2):140-143.
    [37]Buser H R, Mueller M D. Isomer-selective and enantiomer-selective determination of DDT and related compounds using chiral high-resolution gas chromatography/mass spectrometry and chiral HPLC[J]. Analytical Chemistry,1995,67(15):2691-2698.
    [38]Nillos M G, Gan J, Schlenk D. Chirality of organophosphorus pesticides:analysis and toxicity[J]. Journal of Chromatography B,2010,878(17):1277-1284.
    [39]侯经国,陈立仁,欧庆瑜.高效液相色谱蛋白质手性固定相[J].分析化学,1996,10:1227-1232.
    [40]穆惠英,敦惠娟,苗凤智,等.高效液相色谱中的蛋白质手性固定相[J].河北师范大学学报(自然科学版),2009,3:020.
    [41]Armstrong D W, Stalcup A M, Hilton M L, et al. Derivatized cyclodextrins for normal-phase liquid chromatographic separation of enantiomers[J]. Analytical Chemistry,1990,62(15):1610-1615.
    [42]史雪岩,王敏,傅若农.环糊精衍生物气相色谱手性固定相研究进展[J].分析测试学报,2001,20(6):75-79.
    [43]Beesley T E. The effects of temperature on chiral selectivity as a function of solvent composition[C]. Abstracts of papers of the American Chemical Society.1999,217:U144-U144.
    [44]李懿睿,张敏如.分子印迹整体柱在高效液相色谱中的研究进展[J].中国医药工业杂志,2007,38(4):313.
    [45]Chankvetadze B. Capillary electrophoresis in chiral analysis[M]. John Wiley,1997.
    [46]Ha P T T, Hoogmartens J, Van Schepdael A. Recent advances in pharmaceutical applications of chiral capillary electrophoresisfJ]. Journal of pharmaceutical and biomedical analysis,2006,41(1):1-11.
    [47]Nielen MWF, (Enantio-) separation of phenoxy acid herbicides using capillary zone electrophoresisfJ]. Journal of Chromatography A,1993,637(1):81-90.
    [48]Shea D, Penmetsa K V, Leidy R B. Enantiomeric and isomeric separation of pesticides by cyclodextrin-modified micellar electrokinetic chromatography [J]. Journal of AOAC International,1999,82: 1550-1561.
    [49]Schmitt P, Garrison A W, Freitag D, et al. Application of cyclodextrin-modified micellar electrokinetic chromatography to the separations of selected neutral pesticides and their enantiomers[J]. Journal of Chromatography A,1997,792(1):419-429.
    [50]Ward T J, Baker B A. Chiral separations[J]. Analytical chemistry,2008,80(12):4363-4372.
    [51]冯硕立.超临界色谱拆分手性唑类农药的研究[D].浙江工业大学,2010.
    [52]Toribio L, Del Nozal M J, Bemal J L, et al. Chiral separation of some triazole pesticides by supercritical fluid chromatography[J]. Journal of Chromatography A,2004,1046(1):249-253.
    [53]Cole J, Dolak L A, LFLER J L. The chiral resolution of an herbicidal product by SFC[J]. Chimica oggi, 2007,25(5):34-36.
    [54]高伟亮.手性多氯联苯和拟除虫菊酯类农药在超临界流体色谱中的对映体分离研究[D].浙江工业大学,2011.
    [55]高伟亮,金丽霞,傅贤伟,等.四种拟除虫菊酯的超临界色谱手性分离[J].浙江工业大学学报,2012,40(3):295-298.
    [56]Kallenborn R, Oehme M, Vetter W, et al. Enantiomer selective separation of toxaphene congeners isolated from seal blubber and obtained by synthesisfJ]. Chemosphere,1994,28(3):89-98.
    [57]Oehme M, Kallenborn R, Wiberg K, et al. Simultaneous enantioselective separation of chlordanes, a nonachlor compound, and o, p'-DDT in environmental samples using tandem capillary columns[J]. Journal of High Resolution Chromatography,1994,17(8):583-588.
    [58]Mueller M D, Buser H R. Environmental behavior of acetamide pesticide stereoisomers.2. Stereo-and enantioselective degradation in sewage sludge and soil[J]. Environmental science & technology,1995,29(8): 2031-2037.
    [59]Harner T, Wiberg K, Norstrom R. Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis[J]. Environmental science & technology,2000,34(1):218-220.
    [60]Ulrich E M, Helsel D R, Foreman W T. Complications with using ratios for environmental data: comparing enantiomeric ratios (ERs) and enantiomer fractions (EFs)[J]. Chemosphere,2003,53(5):531-538.
    [61]牟树森,青长乐.环境土壤学[M].农业出版社,1993.
    [62]Falconer R L, Bidleman T F, Szeto S Y. Chiral pesticides in soils of the Fraser Valley, British Columbia[J). Journal of agricultural and food chemistry,1997,45(5):1946-1951.
    [63]Wiberg K, Harner T, Wideman J L, et al. Chiral analysis of organochlorine pesticides in Alabama soils[J]. Chemosphere,2001,45(6):843-848.
    [64]Kurt-Karakus P B, Bidleman T F, Jones K C. Chiral organochlorine pesticide signatures in global background soils[J]. Environmental science & technology,2005,39(22):8671-8677.
    [65]Kurt-Karakus P B, Stroud J L, Bidleman T, et al. Enantioselective degradation of organochlorine pesticides in background soils:variability in field and laboratory studies[J]. Environmental science & technology,2007,41(14):4965-4971.
    [66]Li J, Zhang G, Qi S, et al. Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China[J]. Science of the Total Environment,2006, 372(1):215-224.
    [67]Finizio A, Bidleman T F, Szeto S Y. Emission of chiral pesticides from an agricultural soil in the Fraser Valley, British Columbia[J]. Chemosphere,1998,36(2):345-355.
    [68]Wang W, Li X H, Wang X F, et al. Levels and chiral signatures of organochlorine pesticides in urban soils of Yinchuan, China[J]. Bulletin of environmental contamination and toxicology,2009,82(4):505-509.
    [69]Buser H R, Mueller M D. Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions[J]. Environmental science & technology,1995,29(3):664-672.
    [70]Wu C, Zhang A, Liu W. Risks from sediments contaminated with organochlorine pesticides in Hangzhou, China[J]. Chemosphere,2012.
    [71]Yang H, Xue B, Yu P, et al. Residues and enantiomeric profiling of organochlorine pesticides in sediments from Yueqing Bay and Sanmen Bay, East China Sea[J]. Chemosphere,2010,80(6):652-659.
    [72]Qin S, Budd R, Bondarenko S, et al. Enantioselective degradation and chiral stability of pyrethroids in soil and sediment[J]. Journal of agricultural and food chemistry,2006,54(14):5040-5045.
    [73]Li Z, Zhang Z, Zhang L, et al. Isomer-and enantioselective degradation and chiral stability of fenpropathrin and fenvalerate in soils[J]. Chemosphere,2009,76(4):509-516.
    [74]Li Z Y, Zhang Z C, Zhang L, et al. Enantioselective degradation and chiral stability of phenthoate in soil[J]. Bulletin of environmental contamination and toxicology,2007,79(2):153-157.
    [75]Sun M, Liu D, Zhou G, et al. Enantioselective degradation and chiral stability of malathion in environmental samples[J]. Journal of agricultural and food chemistry,2011,60(1):372-379.
    [76]Mueller M D, Buser H R. Environmental behavior of acetamide pesticide stereoisomers.2. Stereo-and enantioselective degradation in sewage sludge and soil[J]. Environmental science & technology,1995,29(8): 2031-2037.
    [77]Monkiedje A, Spiteller M, Bester K. Degradation of racemic and enantiopure metalaxyl in tropical and temperate soils[J]. Environmental science & technology,2003,37(4):707-712.
    [78]Buerge I J, Poiger T, Müller M D, et al. Enantioselective degradation of metalaxyl in soils:chiral preference changes with soil pH[J]. Environmental science & technology,2003,37(12):2668-2674.
    [79]Muller M D, Buser H R. Conversion reactions of various phenoxyalkanoic acid herbicides in soil.1. Enantiomerization and enantioselective degradation of the chiral 2-phenoxypropionic acid herbicides[J]. Environmental science& technology,1997,31(7):1953-1959.
    [80]Tan H, Cao Y, Tang T, et al. Biodegradation and chiral stability of fipronil in aerobic and flooded paddy soils[J]. Science of the Total Environment,2008,407(1):428-437.
    [81]Wang P, Jiang S R, Qiu J, et al. Stereoselective degradation of ethofumesate in turfgrass and soil[J]. Pesticide Biochemistry and Physiology,2005,82(3):197-204.
    [82]Diao J, Xu P, Wang P, et al. Environmental behavior of the chiral aryloxyphenoxypropionate herbicide diclofop-methyl and diclofop:Enantiomerization and enantioselective degradation in soil[J]. Environmental science & technology,2010,44(6):2042-2047.
    [83]Zhang Y, Liu D, Diao J, et al. Enantioselective environmental behavior of the chiral herbicide fenoxaprop-ethyl and its chiral metabolite fenoxaprop in soil[J]. Journal of agricultural and food chemistry, 2010,58(24):12878-12884.
    [84]Ramezani M K, Oliver D P, Kookana R S, et al. Faster degradation of herbicidally-active enantiomer of imidazolinones in soils[J]. Chemosphere,2010,79(11):1040-1045.
    [85]Buerge I J, Muüer M D, Poiger T. The chiral herbicide beflubutamid (Ⅱ):enantioselective degradation and enantiomerization in soil, and formation/degradation of chiral metabolites[J]. Environmental Science & Technology,2013.
    [86]Faller J, Huehnerfuss H, Koenig WA, et al. Do marine bacteria degrade alpha-HCH stereoselectively? [J]. Environmental science & technology,1991,25(4):676-678.
    [87]Faller J, Huhnerfuss H, Konig W A, et al. Gas chromatographic separation of the enantiomers of marine organic pollutants:Distribution of a-HCH enantiomers in the North Sea[J]. Marine pollution bulletin,1991, 22(2):82-86.
    [88]Huhnerfuss H, Faller J, Kallenborn R, et al. Enantioselective and nonenantioselective degradation of organic pollutants in the marine ecosystem[J]. Chirality,1993,5(5):393-399.
    [89]Pfaffenberger B, Huhnerfuss H, Kallenborn R, et al. Chromatographic separation of the enantiomers of marine pollutants. Part 6:Comparison of the enantioselective degradation of α-hexachlorocyclohexane in marine biota and water[J]. Chemosphere,1992,25(5):719-725.
    [90]Jantunen L M M, Bidleman T F. Organochlorine pesticides and enantiomers of chiral pesticides in Arctic Ocean water[J]. Archives of environmental contamination and toxicology,1998,35(2):218-228.
    [91]Law S A, Bidleman T F, Martin M J, et al. Evidence of enantioselective degradation of α-hexachlorocyclohexane in groundwater[J]. Environmental science & technology,2004,38(6):1633-1638.
    [92]张智超,戴树桂,朱昌寿,等.海河河口水和新港港湾水中a-六六六对映体选择性降解及α,β,γ,8-六六六浓度[J].中国环境科学,1998,18(3):197-201.
    [93]Zipper C, Suter M J F, Haderlein S B, et al. Changes in the enantiomeric ratio of (R)-to (S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer[J]. Environmental science & technology,1998,32(14):2070-2076.
    [94]Rugge K, Juhler R K, Broholm M M, et al. Degradation of the (P)-and (S)-enantiomers of the herbicides MCPP and dichlorprop in a continuous field-injection experiment[J]. Water research,2002,36(16): 4160-4164.
    [95]Williams G M, Harrison I, Carlick C A, et al. Changes in enantiomeric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer[J]. Journal of contaminant hydrology,2003,64(3):253-267.
    [96]Ludwig P, Gunkel W, Huhnerfuss H. Chromatographic separation of the enantiomers of marine pollutants. Part 5:Enantioselective degradation of phenoxycarboxylic acid herbicides by marine microorganisms[J]. Chemosphere,1992,24(10):1423-1429.
    [97]Liu W, Gan J J. Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction-enantioselective gas chromatography[J]. Journal of agricultural and food chemistry,2004, 52(4):736-741.
    [98]Hegeman W J M, Laane R W P M. Enantiomeric enrichment of chiral pesticides in the environment[J]. Reviews of Environmental Contamination and Toxicology 173,2001,173:85-116.
    [99]Pfaffenberger B, Huhnerfuss H, Kallenborn R, et al. Chromatographic separation of the enantiomers of marine pollutants. Part 6:Comparison of the enantioselective degradation of a-hexachlorocyclohexane in marine biota and water[J]. Chemosphere,1992,25(5):719-725.
    [100]Pfaffenberger B, Hardt I, Huhnerfuss H, et al. Enantioselective degradation of α-HCH and cyclodiene insecticides in roe-deer liver samples from different regions of Germany[J]. Chemosphere,1994,29(7): 1543-1554.
    [101]Klobes U, Vetted W, Luckas B, et al. Levels and enantiomeric ratios of α-HCH, oxychlordane, and PCB 149 in blubber of harbour seals (Phoca vitulina) and grey seals (Halichoerus grypus) from iceland and further species[J]. Chemosphere,1998,37(9):2501-2512.
    [102]Móssner S, Spraker T R, Becker P R, et al. Ratios of enantiomers of alpha-HCH and determination of alpha-, beta-, and gamma-HCH isomers in brain and other tissues of neonatal northern fur seals (Callorhinus ursinus)[J]. Chemosphere,1992,24(9):1171-1180.
    [103]Ulrich E M, Willett K L, Caperell-Grant A, et al. Understanding enantioselective processes:A laboratory rat model for a-hexachlorocyclohexane accumulation[J]. Environmental science & technology, 2001,35(8):1604-1609.
    [104]Tanabe S, Kumaran P, Iwata H, et al. Enantiomeric ratios of a-hexachlorocyclohexane in blubber of small cetaceans[J]. Marine pollution bulletin,1996,32(1):27-31.
    [105]Wiberg K, Letcher R J, Sandau C D, et al. The enantioselective bioaccumulation of chiral chlordane and a-HCH contaminants in the polar bear food chain[J]. Environmental science & technology,2000,34(13): 2668-2674.
    [106]Karlsson H, Oehme M, Skopp S, et al. Enantiomer ratios of chlordane congeners are gender specific in cod(Gadus morhua) from the Barents Sea[J]. Environmental science & technology,2000,34(11): 2126-2130.
    [107]Fisk A T, Hobson K A, Norstrom R J. Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the Northwater Polynya marine food web[J]. Environmental science & technology,2001,35(4):732-738.
    [108]Herzke D, Kallenborn R, Nygard T. Organochlorines in egg samples from Norwegian birds of prey: congener-, isomer-and enantiomer specific considerations[J]. Science of the total environment,2002,291(1): 59-71.
    [109]Takamatsu Y, Kaneko H, Abiko J, et al. In vivo and in vitro stereoselective hydrolysis of four chiral isomers of fenvalerate[J]. Nippon Noyaku Gakkaishi,1987,12(3):397-404.
    [110]Wang Q, Qiu J, Zhu W, et al. Stereoselective degradation kinetics of theta-cypermethrin in rats[J]. Environmental science & technology,2006,40(3):721-726.
    [111]王秋霞.手性农药对映体在动物体内立体选择性行为的研究[D].中国农业大学,2006.
    [112]Qiu J, Wang Q X, Wang P, et al. Enantioselective degradation kinetics of metalaxyl in rabbits[J]. Pesticide Biochemistry and Physiology,2005,83(1):1-8.
    [113]Zhang P, Shen Z, Xu X, et al. Stereoselective degradation of metalaxyl and its enantiomers in rat and rabbit hepatic microsomes in vitro[J]. Xenobiotica,2012,42(6):580-586.
    [114]Konwick B J, Garrison A W, Avants J , et al. Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (pncorhynchus mykiss)[J]. Aquatic toxicology,2006,80(4):372-381.
    [115]Zadra C, Marucchini C, Zazzerini A. Behavior of metalaxyl and its pure R-enantiomer in sunflower plants (Helianthus annus)[J]. Journal of agricultural and food chemistry,2002,50(19):5373-5377.
    [116]Marucchini C, Zadra C. Stereoselective degradation of metalaxyl and metalaxyl-M in soil and sunflower plantsfJ]. Chirality,2002,14(1):32-38.
    [117]White J C, Mattina M J I, Eitzer B D, et al. Tracking chlordane compositional and chiral profiles in soil and vegetation[J]. Chemosphere,2002,47(6):639-646.
    [118]Mattina M J I, White J, Eitzer B, et al. Cycling of weathered chlordane residues in the environment: compositional and chiral profiles in contiguous soil, vegetation, and air compartments[J]. Environmental toxicology and chemistry,2002,21(2):281-288.
    [119]Schneiderheinze J M, Armstrong D W, Berthod A. Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides[J]. Chirality,1999,11(4):330-337.
    [120]Liu D, Wang P, Zhu W, et al. Enantioselective degradation of fipronil in Chinese cabbage (Brassica pekinensis)[J]. Food Chemistry,2008,110(2):399-405.
    [121]Gu X, Wang P, Liu D, et al. Stereoselective degradation of diclofop-methyl in soil and Chinese cabbage[J]. Pesticide Biochemistry and Physiology,2008,92(1):1-7.
    [122]Gu X, Wang P, Liu D, et al. Stereoselective degradation of benalaxyl in tomato, tobacco, sugar beet, capsicum, and soil[J]. Chirality,2008,20(2):125-129.
    [123]Wang M, Zhang Q, Cong L, et al. Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi[J]. Chemosphere,2014,95:241-246.
    [124]Li Y, Dong F, Liu X, et al. Enantioselective separation and transformation of metalaxyl and its major metabolite metalaxyl acid in tomato and cucumber[J]. Food Chemistry,2013,141(1):10-17.
    [125]Ohkawa H, Mikami N, Kasamatsu K, et al. Stereoselectivity in toxicity and acetylcholinesterase inhibition by the optical isomers of "Papthion" and papoxon[J]. Agricultural and Biological Chemistry,1976, 40.
    [126]Leader H, Casida J E. Resolution and biological activity of the chiral isomers of O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate (profenofos insecticide)[J]. Journal of Agricultural and Food Chemistry,1982,30(3):546-551.
    [127]Miyazaki A, Nakamura T, Marumo S. Stereoselectivity in metabolic sulfoxidation of propaphos and biological activity of chiral propaphos sulfoxide[J]. Pesticide biochemistry and physiology,1989,33(1): 11-15.
    [128]杨光富,袁继伟,刘钊杰.合成农用化学品的手性-生物活性及安全性的思考[J].农药译丛,1999,21(2):1-12.
    [129]Miyamoto J. Degradation, metabolism and toxicity of synthetic pyrethroids[J]. Environmental Health Perspectives,1976,14:15.
    [130]Tundo P, Anastas P, Black D S C, et al. Synthetic pathways and processes in green chemistry. Introductory overview[J]. Pure and applied chemistry,2000,72(7):1207-1228.
    [131]Elliott M, Janes N F, Potter C. The future of pyrethroids in insect control[J]. Annual Review of Entomology,1978,23(1):443-469.
    [132]Matell M. Stereochemical studies on plant growth regulators. VII. Optically active a-(2-methyl-4-chlorophenoxy)-propionic acid and a-(2,4-dichlorophenoxy)-n-butyric acid and their steric relations[J]. Ark Kemi,1953,6:365-373.
    [133]Cai X, Liu W, Sheng G. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures[J]. Journal of agricultural and food chemistry,2008,56(6):2139-2146.
    [134]Nakahira K, Uchiyama M, Ikai T, et al. Mechanism of action of the herbicide quizalofopethyl.2. Effect of (R)-(+)-and (S)-(-)-quizalofop-ethyl on lipid metabolism in excised corn stem-base meristems[J]. Journal of Pesticide Science,1988,13(2):269-276.
    [135]杨丽萍,李树正,李煜昶,等.三种三唑类杀菌剂对映体生物活性的研究[J].农药学学报,2002,4(2):67-70.
    [136]Kurihara N, Miyamoto J, Paulson G D, et al. Chirality in synthetic agrochemicals:bioactivity and safety consideration[J]. Pure Appl Chem,1997,69(9):2007-2025.
    [137]Nuninger C, Watson G, Leadbitter N, et al. CGA329351:introduction of the enantiomeric form of the fungicide metalaxyl[A]. Brighton Crop Protection Conference on Pests and Diseases,1996,1-3:41-46.
    [138]刘西莉,马安捷,林吉柏,等.精甲霜灵与外消旋体甲霜灵对掘氏疫霉菌的抑菌活性比较[J].农药学学报,2003,5(3):45-49.
    [139]Fayez K A, Kristen U. The influence of herbicides on the growth and proline content of primary roots and on the ultrastructure of root caps[J]. Environmental and experimental botany,1996,36(1):71-81.
    [140]Whittington J, Jacobsen S, Rose A. Optically pure (-)-clethodim, compositions and methods for controlling plant growth comprising the same:U.S. Patent 6,300,281[P].2001-10-9.
    [141]张安平,林坤德,徐超,等.手性有机磷农药的对映体拆分及对大型蚤的选择性毒性[J].第三届全国环境化学学术大会论文集,2005.
    [142]刘维屏,张颖.手性农药毒性评价进展[J].浙江大学学报(农业与生命科学版),2012,38(1):63-70.
    [143]Ma Y, Chen L, Lu X, et al. Enantioselectivity in aquatic toxicity of synthetic pyrethroid insecticide fenvalerate[J]. Ecotoxicology and Environmental Safety,2009,72(7):1913-1918.
    [144]王佳佳.高效氯氰菊酯的手性拆分及其对映体毒性研究[D].浙江工业大学,2008.
    [145]Wang L, Liu W, Yang C, et al. Enantioselectivity in estrogenic potential and uptake of bifenthrin[J]. Environmental Science & Technology,2007,41(17):6124-6128.
    [146]Jin M, Zhang X, Wang L, et al. Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish[J]. Aquatic Toxicology,2009,95(4):347-354.
    [147]徐超.几种内分泌干扰物的对映体选择性毒性及其降解[D].浙江大学,2008.
    [148]Wang L, Zhou S, Lin K, et al. Enantioselective estrogenicity of o,p'-DDT in the MCF-7 human breast carcinoma cell line[J]. Environmental Toxicology and Chemistry,2009,28(1):1-8.
    [149]McBlain W A, Lewin V, Wolfe F H. Differing estrogenic activities for the enantiomers of o,p'-DDT in immature female rats[J]. Canadian Journal of Physiology and Pharmacology,1976,54(4):629-632.
    [150]Yen J H, Tsai C C, Wang Y S. Separation and toxicity of enantiomers of organophosphorus insecticide leptophos[J]. Ecotoxicology and environmental safety,2003,55(2):236-242.
    [151]Lin K, Zhou S, Xu C, et al. Enantiomeric resolution and biotoxicity of methamidophos[J]. Journal of agricultural and food chemistry,2006,54(21):8134-8138.
    [152]Lin K, Liu W, Li L, et al. Single and joint acute toxicity of isocarbophos enantiomers to Daphnia magna[J]. Journal of agricultural and food chemistry,2008,56(11):4273-4277.
    [153]Nillos M G, Rodriguez-Fuentes G, Gan J, et al. Enantioselective acetylcholinesterase inhibition of the organophosphorous insecticides profenofos, fonofos, and crotoxyphos[J]. Environmental Toxicology and Chemistry,2007,26(9):1949-1954.
    [154]Liu H, Xiong M. Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa [J]. Aquatic Toxicology,2009,93(2):100-106.
    [155]张一宾.全球三唑类杀菌剂的市场,品种,特点及发展[J].中国农药,2010(012):11-13.
    [156]李新,严秋旭,赵平,等.氟环唑杀菌剂的市场概况[J].农化市场十日讯,2012(25):18-19.
    [157]陈万义.农药生产与合成[M].化学工业出版社应用化学与三农读物出版中心,2000.
    [158]Burden R S, Carter G A, Clark T, et al. Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis[J]. Pesticide science, 1987,21(4):253-267.
    [159]Hutta M, Rybar I, Chalanyova M. Liquid chromatographic method development for determination of fungicide epoxiconazole enantiomers by achiral and chiral column switching technique in water and soil[J]. Journal of Chromatography A,2002,959(1):143-152.
    [160]Dong F, Liu X, Zheng Y, et al. Stereoselective degradation of fungicide triadimenol in cucumber plants[J]. Chirality,2010,22(2):292-298.
    [161]韩小茜,温晓光,管永红,等.流动相组成及温度对4种1,2,4-三唑类农药对映体手性拆分的影响[J].应用化学,2004,21(2):140-143.
    [162]Del Nozal M J, Toribio L, Bernal J L, et al. Separation of triadimefon and triadimenol enantiomers and diastereoisomers by supercritical fluid chromatography [J]. Journal of Chromatography A,2003,986(1): 135-141.
    [163]冯硕立,徐明仙,高伟亮,等.超临界色谱拆分6种唑类手性农药[J].浙江工业大学学报,2011,39(4):424-428.
    [164]Kenneke J F, Ekman D R, Mazur C S, et al. Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow troutfJ]. Chirality,2010, 22(2):183-192.
    [165]Crowell S R, Henderson W M, Kenneke J F, et al. Development and application of a physiologically based pharmacokinetic model for triadimefon and its metabolite triadimenol in rats and humans[J]. Toxicology letters,2011,205(2):154-162.
    [166]Sancho E, Villarroel M J, Fernandez C, et al. Short-term exposure to sublethal tebuconazole induces physiological impairment in male zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety,2010, 73(3):370-376.
    [167]Stehmann C, De Waard M A. Accumulation of tebuconazole by isolates of Botrytis cinerea differing in sensitivity to sterol demethylation inhibiting fungicides [J]. Pesticide science,1995,45(4):311-318.
    [168]Huang L, Lu D, Diao J, et al. Enantioselective toxic effects of hexaconazole enantiomers against scenedesmus obliquus[J]. Chirality,2012,24:610-614.
    [169]Wang X, Wang X, Zhang H, et al. Enantioselective degradation of tebuconazole in cabbage, cucumber, and soils[J]. Chirality,2012,24(2):104.
    [170]Buerge I J, Poiger T, Mueller M D, et al. Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils[J]. Environmental science & technology,2006,40(17): 5443-5450.
    [171]Garrison A W, Avants J K, Jones W J. Microbial transformation of triadimefon to triadimenol in soils: Selective production rates of triadimenol stereoisomers affect exposure and risk[J]. Environmental science & technology,2011,45(6):2186-2193.
    [172]Li Z, Zhang Y, Li Q, et al. Enantioselective degradation, abiotic racemization, and chiral transformation of triadimefon in soils[J]. Environmental science & technology,2011,45(7):2797-2803.
    [173]Kenneke J F, Ekman D R, Mazur C S, et al. Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout[J]. Chirality,2010, 22(2):183-192.
    [174]Lahm G P, McCann S F, Harrison CR,et al. Evolution of the sodium channel blocking insecticides: the discovery of indoxacarb[C]//ACS Symposium Series. Washington, DC; American Chemical Society; 1999,2000,774:20-34.
    [175]刘长令.新型高效杀虫剂茚虫威[J].农药,2003,42(2):42-44.
    [176]王欢庆.手性杀虫剂茚虫威在黄瓜与番茄中的选择性检测分析[D].东北农业大学,2013.
    [177]Sannino A, Bolzoni L, Bandini M. Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables[J]. Journal of Chromatography A,2004,1036(2):161-169.
    [178]陈丽萍,郭建辉,蔡恩兴,等.茚虫威在菜用大豆上残留动态及安全使用技术[J].农药学学报,2008,10(4):443-449.
    [179]杨淑娟,郭建辉,蔡恩兴,等.茚虫威在豇豆中残留动态及安全使用技术研究[J].亚热带植物科学,2008,37(2):46-49.
    [180]李畅方,何强,徐伟松,等.茚虫威在甘蓝和土壤中的残留量及消解动态研究[J].农药科学与管理,2005,26(12):8-11.
    [181]Mojtahedi M M, Chalavi S, Ghassempour A, et al. Chiral separation of three agrochemical toxins enantiomers by high-performance liquid chromatography on a vancomycin crystalline degradation products-chiral stationary phase[J]. Biomedical Chromatography,2007,21(3):234-240.
    [182]Saito K, Yato M, Ito T, et al. Verification of the need for optical purity measurement of chiral pesticide standards as agricultural reference materials[J]. Accreditation and Quality Assurance,2008,13(7):373-379.
    [183]董丰收,曹巧,刘新刚,等.茚虫威在直链淀粉手性固定相上的对映体分离研究[J].化学试剂,2008,30(7):517-518.
    [184]Cheng L, Dong F S, Liu X, et al. Determination of indoxacarb enantiomer residues in vegetables, fruits, and soil by high-performance liquid chromatography [J]. Journal of AOAC International,2010,93(3): 1007-1012.
    [185]李晓刚,刘一平,刘双清,等.茚虫威对映体在土壤中的选择性降解[J].环境化学,2012,31(8):1262-1267.
    [186]Sun D, Qiu J, Wu Y, et al. Enantioselective degradation of indoxacarb in cabbage and soil under field conditions[J]. Chirality,2012,24(8):628.
    [187]Sun D, Pang J, Qiu J, et al. Enantioselective degradation and enantiomerization of indoxacarb in soil[J]. Journal of agricultural and food chemistry,2013,61(47):11273-11277.
    [188]Bromilow R H, Evans A A, Nicholls P H. Factors affecting degradation rates of five triazole fungicides in two soil types:1. Laboratory incubations[J]. Pesticide Science,1999,55(12):1129-1134.
    [189]Bromilow RH, Evans A A, Nicholls P H. Factors affecting degradation rates of five triazole fungicides in two soil types:2. Field studies[J]. Pesticide science,1999,55(12):1135-1142.
    [190]李国,李义强,孙惠青,等.三唑酮及其代谢物在水稻中残留规律研究[J].山东农业科学,2008(4):84-87.
    [191]Kenneke J F, Mazur C S, Kellock K A, et al. Mechanistic approach to understanding the toxicity of the azole fungicide triadimefon to a nontarget aquatic insect and implications for exposure assessment J]. Environmental science & technology,2009,43(14):5507-5513.
    [192]US Environmental Protection Agency. Reregistration eligibility decision for triadimefon and tolerence reassessment for triadimenol[J].2006.
    [193]Mukhopadhyay P, Zuber G, Goldsmith M R, et al. Solvent effect on optical rotation:a case study of methyloxirane in water[J]. ChemPhysChem,2006,7(12):2483-2486.
    [194]Li Z, Zhang Y, Li Q, et al. Enantioselective degradation, abiotic racemization, and chiral transformation of triadimefon in soils[J]. Environmental science & technology,2011,45(7):2797-2803.
    [195]Deas A H B, Carter G A, Clark T, et al. The enantiomeric composition of triadimenol produced during metabolism of triadimefon by fungi:Ⅲ. Relationship with sensitivity to triadimefon[J]. Pesticide Biochemistry and Physiology,1986,26(1):10-21.
    [196]马云,徐超,陈胜文,等.淤泥优势菌对手性农药2,4-滴丙酸甲酯的对映体选择性降解[J].环境科学,2005,26(4):152-155.
    [197]Tett V A, Willetts A J, Lappin-Scott H M. Enantioselective degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid] by mixed and pure bacterial cultures[J]. FEMS microbiology ecology,1994,14(3):191-199.
    [198]Tett V A, Willetts A J, Lappin-Scott H M. Biodegradation of the chlorophenoxy herbicide (R)-mecoprop by Alcaligenes denitrificans[J]. Biodegradation,1997,8(1):43-52.
    [199]叶伟红,刘维屏.大型蚤毒理试验应用与研究进展[J].环境污染治理技术与设备,2004,5(4):4-7.
    [200]Villarroel M J, Ferrando M D, Sancho E, et al. Daphnia magna feeding behavior after exposure to tetradifon and recovery from intoxication[J]. Ecotoxicology and environmental safety,1999,44(1):40-46.
    [201]Sanchez M, Ferrando M D, Sancho E, et al. Physiological perturbations in several generations of Daphnia magna Straus exposed to diazinon[J]. Ecotoxicology and environmental safety,2000,46(1):87-94.
    [202]叶伟红,刘维屏,谭亚军.氟氯菊酯对大型蚤的亚慢性毒性及其恢复实验[J].农药,2004,43(2):86-89.
    [203]杨赓,张晓强,钱忠宁,等.多效唑对大型蚤的慢性毒性研究[J].现代农药,2003,2(3):22-25.
    [204]Embry M R, Belanger S E, Braunbeck T A, et al. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research[J]. Aquatic Toxicology,2010,97(2):79-87.
    [205]刘在平,张松林,李运彩,等.斑马鱼胚胎在生态毒理学研究中的应用[J].科学技术与工程,2010(14):3452-3454.
    [206]王佳佳,徐超,屠云杰,等.斑马鱼及其胚胎在毒理学中的实验研究与应用进展[J].生态毒理学报,2007,2(2):123-135.
    [207]刘昌盛,穆宇,杜久林.斑马鱼在生命科学研究中的应用[J].生命科学,2007,19(4).
    [208]Vittozzi L, De Angelis G. A critical review of comparative acute toxicity data on freshwater fish[J]. Aquatic toxicology,1991,19(3):167-204.
    [209]丁中海,杨怡,金洪钧,等.三种农药对斑马鱼的急性毒性和生物浓缩系数[J].应用生态学报,2004,15(5):888-890.
    [210]李丽君,刘振乾,徐国栋,等.工业废水的鱼类急性毒性效应研究[J].生态科学,2006,25(1):43-47.
    [211]Braunbeck T, Lammer E. Background document on fish embryo toxicity assays[J]. UBA,2006, 203(85):422.
    [212]周宇,于红霞,丁翔,等.氯代苯类有机污染物对斑马鱼胚胎联合毒性效应的研究[J].农业环境科学学报,2003,22(3):340-344.
    [213]邓铁柱,苏丽敏,袁星,等.乙草胺与Cu, Zn对发光菌和斑马鱼胚胎的联合毒性效应[J].环境化学,2008,26(6):741-744.
    [214]黄勇,蔡正旺.斑马鱼(Danio rerio)早期胚胎发育分子调节机制研究进展[J].牡丹江师范学院学报:自然科学版,2008(3):4-6.
    [215]王琛.戊吡虫胍对大型溞的毒性评价[D].中国农业大学,2012.
    [216]OECD. Guideline for testing of chemicals, No.202. Daphnia sp.acute immobilisation test and reproduction test [S].1984.
    [217]Dong F, Li J, Chankvetadze B, et al. Chiral triazole fungicide difenoconazole:absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil[J]. Environmental science & technology,2013,47(7):3386-3394.
    [218]Konwick B J, Fisk A T, Garrison A W, et al. Acute enantioselective toxicity of fipronil and its desulfinyl photoproduct to Ceriodaphnia dubia[J]. Environmental toxicology and chemistry,2005,24(9): 2350-2355.
    [219]Stanley J K, Ramirez A J, Mottaleb M, et al. Enantiospecific toxicity of the β-blocker propranolol to Daphnia magna and Pimephales promelas[J]. Environmental toxicology and chemistry,2006,25(7): 1780-1786.
    [220]OECD GUILINDE FOR TESTING OF CHEMICALS:Fish, Embryo Toxicity Test With The Zebrafish.(B.rerio).
    [221]Nagel R. DarT:The embryo test with the Zebrafish Danio rerio-a. general model in ecotoxicology and toxicology[J]. Altex,2002,19:38.
    [222]OECD-203 OECD GUILINDE FOR TESTING OF CHEMICALS:Fish, Toxicity Test With The Zebrafish.(B.rerio).
    [223]Wang L, Liu W, Yang C, et al. Enantioselectivity in estrogenic potential and uptake of bifenthrin[J]. Environmental Science & Technology,2007,41(17):6124-6128.
    [224]Nillos M G, Chajkowski S, Rimoldi J M, et al. Stereoselective biotransformation of permethrin to estrogenic metabolites in fish[J]. Chemical research in toxicology,2010,23(10):1568-1575.
    [225]Fraysse B, Mons R, Garric J. Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals[J]. Ecotoxicology and environmental safety,2006,63(2):253-267.
    [226]Yu L, Chen M, Liu Y, et al. Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole[J]. Aquatic toxicology,2013,138:35-42.
    [227]李翔,马海军,顾林玲,等.茚虫威合成路线研究与比较[J].现代农药,2009,8(5):23-26.
    [228]McCann S F, Annis G D, Shapiro R, et al. The discovery of indoxacarb:oxadiazines as a new class of pyrazoline-type insecticides[J]. Pest management science,2001,57(2):153-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700