金属、生物系统中夹杂与界面的力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文关注了金属系统和生物系统中夹杂与界面的若干力学问题,针对两类系统中研究对象的特点,分别采用连续介质力学理论和分子动力学方法开展了一系列有意义的研究。
     金属材料中夹杂、界面、位错是影响材料宏观变形及微观失效机制的最重要因素,历来是固体力学和材料科学共同关注的研究热点。本文利用连续介质力学方法针对金属系统中的夹杂和界面问题进行研究,取得了以下重要进展:(1)基于弹性理论和Eshelby夹杂理论导出了应力梯度作用下,椭圆夹杂(包括空洞)由界面扩散控制的漂移速度的严密的理论解。该理论解所描述的夹杂迁移规律,可解释梯度应力中(如裂尖应力场)夹杂偏聚及相关的失效现象。(2)建立了位错与任意形状、任意性质非均质体(夹杂)相互作用的近似连续介质力学理论,运用该理论可获得位错与空穴、压力汽泡、剪切带及局部塑性变形区的相互作用力的近似理论解。该理论突破经典位错理论仅局限于处理位错与弹性夹杂相互作用的问题,而对弹性夹杂问题与经典解一致,因此是统一的连续介质理论。(3)分别获得金属基单向纤维增強、颗粒增強复合材料由界面扩散而引起的蠕变率及应力松驰的近似理论解,并讨论了单轴和双轴载荷条件的影响。该解为分析金属基复合材料在高温条件下强度损失、应力稳定性及界面滑移现象提供了理论分析依据。(4)获得金属多晶薄膜由界面扩散、表面扩散及晶界热蚀沟联合控制的蠕变率及应力松弛的理论解,发现具有粗粒化结构、低表面扩散率、高的表面自由能的薄膜有更高的抵抗蠕变能力及应力稳定性。该理论解为多晶薄膜材料的微结构设计、表面改性提供了理论指导。(5)建立了电场作用下的相场法数值分析模型,揭示了微电子器件的薄膜导线中夹杂的形态、电导系数、界面扩散各向异性等对夹杂的迁移与形态演变的影响规律。
     随着纳米科技的兴起和学科间交叉融合,纳米材料在生物系统的应用激发了广泛的关注,并在生物靶向、药物输运、免疫分析以及增强生物成像等领域展现出传统颗粒或蛋白质无法企及的优势。探索纳米材料与细胞界面交互作用的生物力学行为,对纳米材料的生物安全性控制和多功能化设计具有重要意义,是纳米生物力学的前沿热点课题。然而,连续介质力学方法不适用于该前沿问题的研究。本文基于分子动力学方法模拟了纳米材料穿透细胞膜进入细胞的动态过程,通过热力学积分方法与分子动力学方法的融合,计算了穿膜过程中体系自由能的变化,获得了以下学术成果:(1)利用耗散分子动力学的方法研究了四种表面改性的纳米颗粒穿透细胞膜能力,通过热力学积分方法计算了纳米颗粒进入细胞膜内部过程伴随的自由能变化,发现纳米颗粒表面上配体的物理排布能够显著影响颗粒穿膜进入细胞的模式,不仅合理地解释了生物学中令人困惑已久的实验现象,也为提高纳米颗粒的生物靶向、药物输运能力进行表面修饰控制的分子设计提供了依据。(2)结合粗粒化和全原子多尺度的分子动力学模拟以及活体细胞实验的成像观察,研究了石墨烯与细胞膜接触时的相互作用机理,首次揭示了石墨烯片可以通过尖角部位或者边缘上的凸起自发穿透细胞膜的穿膜模式。穿透过程会从局部穿透的部位沿着石墨烯边界进一步扩展。尺寸很小的石墨烯纳米片会在布朗运动和熵驱动力作用下调整到一个尖角垂直与细胞膜的方位,然后发生自发的尖角穿透。(3)选取了四种石墨烯的新型同素异构体,利用分子动力学方法模拟了对应的氢化结构,评估了0到100%范围内的氢化程度所对应结构的杨氏模量和固有强度[1]。结果表明,石墨烯同素异构体的力学性能随着氢化率的增加而逐渐退化,并对氢化表现出不同的敏感度。氢化反应使其力学性能衰退的规律和机理,为石墨烯同素异构体在超导、电子、能源以及光电等领域的潜在应用提供了分析依据。
     本论文的研究进展丰富并深化了近代连续介质力学有关夹杂和界面的理论体系,并通过学科交叉模式突破了连续介质力学的理论框架,拓展了固体力学在纳米生物这一前沿热点研究中的应用。
This thesis deals with the mechanics of inclusions and interfaces in metallic andbiological systems. Based on the nature of the studied subjects, the continuum theory andmolecule dynamics method are employed for these two systems respectively, and a seriesof new models, solutions and observations is drawn.
     The inclusions, interfaces and dislocations in metallic materials are key factorsinfluencing their deformation behavior and failure mechanisms, and they have beenacknowledged as the main focus in the long term research of Solid Mechanics andMaterials Science. Based on the theory of Continuum Mechanics, this thesis hasaccomplished the following important contributions:(1) Based on the theory of Plasticityand Eshelby inclusion theory, an explicit expression is derived for motion velocity of anelliptical inclusion defect (including void defect) in isotropic matrix driven by interfacediffusion under gradient stress field, and it reveals the physical mechanisms ofexperimental observations, such as inclusion aggregation at crack tip and related failurephenomenon.(2) An approximate continuum theory is developed for the interactionbetween dislocations and inhomogeneity of any shape and properties. The proposedcontinuum theory is applicable to a variety of inhomogeneities, such as pore, gas bubble,shear band and plastically deformed zone. Compared to the existing theories which arelimited to the elastic inhomogeneities, the developed theory is one of general continuumtheory that can effectively handle the problems of elastic inhomogeneities as well asnon-elastic inhomogeneities.(3) Approximate analytical solutions are derived for creep rate and stress relaxation induced by interface diffusion in fiber-reinforced andparticle-reinforced metal matrix composites. The effects of the uniaxial and biaxial loadingconditions are compared. The results provide theoretical bases for the strength loss, stressstability and interface slip of Metal Matrix Composites under high temperature.(4) Ananalytical solution that interprets the effects of grain surface and interface diffusion as wellas grain boundary grooving on the creep rate in free-standing polycrystalline thin metalfilms is presented. The results reveal that films with coarse-grained structure, low surfacediffusivity and high surface free energy have high creep resistance and stress stability, andthey provide guidance for the microstructure design and surface characterization ofpolycrystalline thin metal films. And (5) A phase field model is established formorphological evolution of inclusion in interconnects under electric field. The effects ofinclusion shape, conductivity as well as anisotropic inclusion interface are illustrated.
     With the rise of nanotechnology and the advances in interdisciplinary research,nanomaterials have received intense global interest due to their potential biomedicalapplications. Taking advantage of the unique size-dependent properties over traditionaldyes and proteins, nanomaterials have shown great potential applications in the areas ofspecific targeting, drug delivery, and enhanced bioimaging. The investigation about theinteraction between nanomaterials and cell is critical to safe design and functionalization ofnanomaterial-enabled biomedical materials, which is the cutting-edge project in the currentresearch of biomechanics. However, such novel materials cannot be effectively addressedby the theory of continuum mechanics. This thesis thus investigates the penetration ofnanomaterials across a cell membrane using molecular dynamics simulations andcalculates the accompanied free energy evolution of the biological system bythermodynamic integration method. The following progresses are achieved:(1) Thedissipative particle dynamics simulations are performed to analyze the evolution of freeenergy as the ligand-coated nanoparticles (NPs) pierce through a lipid bilayer. Fourcharacteristic ligand patterns are considered, and their penetration modes are found to be strongly influenced by the ligand pattern on the nanoparticle surface. The results reveal thephysical mechanism behind an intriguing experimental phenomenon, and they provideuseful guidelines for the molecular design of patterned NPs for controllable cellpenetrability.(2) The interactions of graphene microsheets with cell membrane areinvestigated by combining coarse-grained molecular dynamics (MD), all-atom MD,analytical modeling, confocal fluorescence imaging, and electron microscopic imaging.The entry mode for graphene is proposed for the first time that the penetration initiates atcorners or asperities. Local piercing by these sharp protrusions initiates the membranepropagation along the extended graphene edge. For a small graphene flake, the Brownianmotion and entropic driving forces in the near-membrane region first position the flakeorthogonal to the bilayer plane, leading to spontaneous corner piercing.(3) Moleculardynamics simulations are performed to investigate the mechanical properties of hydrogenfunctionalized graphene allotropes (GAs) for H-coverage spanning the entire range(0-100%). Four allotropes with larger unit lattice size than graphene are considered. Themechanical properties of the hydrogenated GAs are found to deteriorate drastically withincreasing H-coverage within the sensitive threshold, beyond which the mechanicalproperties remain insensitive to the increase in H-coverage. The above research outcomesprovide insights for the potential application of graphene allotropes in the areas ofsuperconducting, electronics, energy, and photoelectrics.
     In summary, the outcomes of this thesis enrich and advance the continuum theory onthe mechanics of inclusions and interfaces. The interdisciplinary researches of the thesisadvance the framework of traditional continuum mechanics and promote the developmentof Solid Mechanics in the challenging research topics of Nano-Bio science.
引文
[1] Allan FB, Sadasivan S. A finite element model of electromigration induced void nucleation,growth and evolution in interconnects. Model Simul Mater Sci Eng.2007;15(8):923.
    [2] Bhate DN, Bower AF, Kumar A. A phase field model for failure in interconnect lines due tocoupled diffusion mechanisms. J Mech Phys Solids.2002;50(10):2057-2083.
    [3] Xia L, Bower AF, Suo Z, Shih CF. A finite element analysis of the motion and evolution ofvoids due to strain and electromigration induced surface diffusion. J Mech Phys Solids.1997;45(9):1473-1493.
    [4] Genut M, Li Z, Bauer CL, Mahajan S, Tang PF, Milnes AG. Characterization of the early stagesof electromigration at grain boundary triple junctions. Appl Phys Lett.1991;58(21):2354-2356.
    [5] Besser PR, Madden MC, Flinn PA. In situ scanning electron microscopy observation of thedynamic behavior of electromigration voids in passivated aluminum lines. J Appl Phys.1992;72(8):3792-3797.
    [6] Shingubara S, Nakasaki Y, Kaneko H. Electromigration in a single crystalline submicron widthaluminum interconnection. Appl Phys Lett.1991;58(1):42-44.
    [7] Arzt E, Kraft O, Nix WD, Sanchez JJE. Electromigration failure by shape change of voids inbamboo lines. J Appl Phys.1994;76(3):1563-1571.
    [8] Kraft O, Bader S, Sanchez JE, Arzt E. Observation and modelling of electromigration-inducedvoid growth in AI-based interconnects. MRS Online Proceedings Library.1993;308:207.
    [9] Decuzzi P. Electro-stress migration induced instability at heterogenous interfaces. Thin SolidFilms.2003;437(1-2):188-196.
    [10] Hayashi M, Nakano S, Wada T. Dependence of copper interconnect electromigrationphenomenon on barrier metal materials. Microelectron Reliab.2003;43(9-11):1545-1550.
    [11] Meyer DE. Effects of hydrogen incorporation in some deposited metallic thin films. Journal ofVacuum Science and Technology.1980;17(1):322-326.
    [12] Ono H, Nakano T, Ohta T. Diffusion barrier effects of transition metals for Cu/M/Simultilayers (M=Cr, Ti, Nb, Mo, Ta, W). Appl Phys Lett.1994;64(12):1511-1513.
    [13] Ho PS. Motion of inclusion induced by a direct current and a temperature gradient. J ApplPhys.1970;41(1):64-68.
    [14] Biersack J, Diez W. Motion of markers and bubbles in solids by self-diffusion in a temperaturegradient. physica status solidi (b).1968;27(1):139-144.
    [15] Zhang YW, Bower AF. Three-dimensional analysis of shape transitions instrained-heteroepitaxial islands. Appl Phys Lett.2001;78(18):2706-2708.
    [16] Cowern NEB. Diffusion in a single crystal within a stressed environment. Phys Rev Lett.2007;99(15):155903.
    [17] Wei Y, Zhigang S. Global view of microstructural evolution: Energetics, kinetics anddynamical systems. Acta Mechanica Sinica.1996;12(2):144-157.
    [18] Li Z, Dong Y, Li S, Xu L, Sun J. Electromigration-induced Coble creep in polycrystallinematerials. Appl Phys Lett.2007;91(19):191902-191903.
    [19] Gill SPA. Pore migration under high temperature and stress gradients. Int J Heat MassTransfer.2009;52(5–6):1123-1131.
    [20] Dong X, Li Z. An analytical solution for motion of an elliptical void under gradient stress field.Appl Phys Lett.2009;94(7):071909-071903.
    [21] Cho J, Gungor MR, Maroudas D. Theoretical analysis of current-driven interactions betweenvoids in metallic thin films. J Appl Phys.2007;101(2):023518-023512.
    [22] Fridline D, Bower A. Numerical simulations of stress induced void evolution and growth ininterconnects. J Appl Phys.2002;91(4):2380-2390.
    [23] Cho J, Gungor MR, Maroudas D. Electromigration-driven motion of morphologically stablevoids in metallic thin films: Universal scaling of migration speed with void size. Appl PhysLett.2004;85(12):2214-2216.
    [24] Cho J, Gungor MR, Maroudas D. Current-driven interactions between voids in metallicinterconnect lines and their effects on line electrical resistance. Appl Phys Lett.2006;88(22):221905-221903.
    [25] Zhu M-L, Xuan F-Z, Chen J. Influence of microstructure and microdefects on long-termfatigue behavior of a Cr–Mo–V steel. Materials Science and Engineering: A.2012;546(0):90-96.
    [26] Krug J, Dobbs HT. Current-induced faceting of crystal surfaces. Phys Rev Lett.1994;73(Copyright (C)2010The American Physical Society):1947.
    [27] Schimschak M, Krug J. Surface electromigration as a moving boundary value problem. PhysRev Lett.1997;78(Copyright (C)2010The American Physical Society):278.
    [28] Li Z, Chen N. Electromigration-driven motion of an elliptical inclusion. Appl Phys Lett.2008;93(5):051908-051903.
    [29] Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and relatedproblems. Proceedings of the Royal Society of London Series A Mathematical and PhysicalSciences.1957;241(1226):376-396.
    [30] Gao H. Stress analysis of holes in anisotropic elastic solids: Conformal mapping and boundaryperturbation. The Quarterly Journal of Mechanics and Applied Mathematics.1992;45(2):149-168.
    [31] Dong Y, Li Z, Sun J. A model to explain extensive superplasticity in polycrystalline materials.J Mater Sci.2007;42(18):7977-7980.
    [32] Sofronis P, McMeeking RM. The effect of interface diffusion and slip on the creep resistanceof particulate composite materials. Mech Mater.1994;18(1):55-68.
    [33] Needleman A, Rice JR. Plastic creep flow effects in the diffusive cavitation of grainboundaries. Acta Metallurgica.1980;28(10):1315-1332.
    [34] Gao H, Zhang L, Nix WD, Thompson CV, Arzt E. Crack-like grain-boundary diffusionwedges in thin metal films. Acta Mater.1999;47(10):2865-2878.
    [35] Wang H, Li Z. Analytical solution for shape evolution of a coherent precipitate in triaxiallystressed solid. J Mater Res.2004;19(10):3068-3075.
    [36] Li R, Chudnovsky A. Energy analysis of crack interaction with an elastic inclusion. Int J Fract.1993;63(3):247-261.
    [37] Li Z, Chen Q. Crack-inclusion interaction for mode I crack analyzed by Eshelby equivalentinclusion method. Int J Fract.2002;118(1):29-40.
    [38] Dundurs J, Mura T. Interaction between an edge dislocation and a circular inclusion. J MechPhys Solids.1964;12(3):177-189.
    [39] Dundurs J, Gangadharan AC. Edge dislocation near an inclusion with a slipping interface. JMech Phys Solids.1969;17(6):459-471.
    [40] Stagni L, Lizzio R. Shape effects in the interaction between an edge dislocation and anelliptical inhomogeneity. Applied Physics A: Materials Science1983;30(4):217-221.
    [41] Santare MH, Keer LM. Interaction between an edge dislocation and a rigid elliptical inclusion.J Appl Mech.1986;53(2):382-385.
    [42] Yen WJ, Hwu C, Liang YK. Dislocation inside, outside, or on the interface of an anisotropicelliptical inclusion. J Appl Mech.1995;62(2):306-311.
    [43] Chou YT. Screw dislocations in and near lamellar inclusions. physica status solidi (b).1966;17(2):509-516.
    [44] Takahashi A, Ghoniem NM. A computational method for dislocation-precipitate interaction. JMech Phys Solids.2008;56(4):1534-1553.
    [45] Lopez-Pamies O, Ponte Casta eda P. Homogenization-based constitutive models for porouselastomers and implications for macroscopic instabilities: I--Analysis. J Mech Phys Solids.2007;55(8):1677-1701.
    [46] Michel JC, Lopez-Pamies O, Ponte Casta eda P, Triantafyllidis N. Microscopic andmacroscopic instabilities in finitely strained porous elastomers. J Mech Phys Solids.2007;55(5):900-938.
    [47] Cottrell GA. Void migration, coalescence and swelling in fusion materials. Fusion Eng Des.2003;66-68:253-257.
    [48] Demetriou MD, Johnson WL, Samwer K. Coarse-grained description of localized inelasticdeformation in amorphous metals. Appl Phys Lett.2009;94(19):191905.
    [49] Jiang WH, Liu FX, Liaw PK, Choo H. Shear strain in a shear band of a bulk-metallic glass incompression. Appl Phys Lett.2007;90(18):181903-181903-181903.
    [50] Medyanik SN, Liu WK, Li S. On criteria for dynamic adiabatic shear band propagation. JMech Phys Solids.2007;55(7):1439-1461.
    [51] Quadir MZ, Ferry M, Al-Buhamad O, Munroe PR. Shear banding and recrystallization texturedevelopment in a multilayered Al alloy sheet produced by accumulative roll bonding. ActaMater.2009;57(1):29-40.
    [52] Withers PJ, Stobbs WM, Pedersen OB. The application of the eshelby method of internalstress determination to short fibre metal matrix composites. Acta Metallurgica.1989;37(11):3061-3084.
    [53] Li Z, Yang L. The near-tip stress intensity factor for a crack partially penetrating an inclusion.J Appl Mech.2004;71(4):465-469.
    [54] Mura T. Micromechanics of Defects in Solids: M. Nijhoff;1987.
    [55] Alquier D, Bongiorno C, Roccaforte F, Raineri V. Interaction between dislocations andHe-implantation-induced voids in GaN epitaxial layers. Appl Phys Lett.2005;86(21):211911-211911-211913.
    [56] Lubarda VA, Markenscoff X. Variable core model and the Peierls stress for the mixed(screw-edge) dislocation. Appl Phys Lett.2006;89(15).
    [57] Zhu P, Yang L, Li Z, Sun J. The shielding effects of the crack-tip plastic zone. Int J Fract.2010;161(2):131-139.
    [58] Moschovidis ZA, Mura T. Two-ellipsoidal inhomogeneities by the equivalent inclusionmethod. J Appl Mech.1975;42(4):847-852.
    [59] Taya M, Tsu-Wei C. On two kinds of ellipsoidal inhomogeneities in an infinite elastic body:An application to a hybrid composite. Int J Solids Struct.1981;17(6):553-563.
    [60] Johnson WC, Earmme YY, Lee JK. Approximation of the strain field associated with aninhomogeneous precipitate-Part1: Theory. J Appl Mech.1980;47(4):775-780.
    [61] Li Z, Yang L, Li S, Sun J. The stress intensity factors for a short crack partially penetrating aninclusion of arbitrary shape. Int J Fract.2007;148(3):243-250.
    [62] Ippolito M, Mattoni A, Colombo L, Cleri F. Fracture toughness of nanostructured siliconcarbide. Appl Phys Lett.2005;87(14):141912-141912-141913.
    [63] Ippolito M, Mattoni A, Colombo L, Pugno N. Role of lattice discreteness on brittle fracture:Atomistic simulations versus analytical models. Phys Rev B.2006;73(10):104111.
    [64] Duan J, Li Z. Tensile stresses in an inclusion ahead of the crack tip. Int J Fract.2002;115(4):75-80.
    [65] Saha N, Banerjee AN. Stress relaxation behaviour of unidirectional polyethylene-glass fibresPMMA composite laminates. Polymer.1996;37(20):4633-4638.
    [66] Chawla KK. Composite Materials: Science and Engineering: Springer;1998.
    [67] Clyne TW, Withers PJ. An Introduction to Metal Matrix Composites: Cambridge UniversityPress;1995.
    [68] Suresh S, Mortensen A, Needleman A. Fundamentals of metal-matrix composites:Butterworth-Heinemann;1993.
    [69] Kim KT, McMeeking RM. Power law creep with interface slip and diffusion in a compositematerial. Mechanics of Materials.1995;20(2):153-164.
    [70] Nimmagadda PBR, Sofronis P. Creep strength of fiber and particulate composite materials:The effect of interface slip and diffusion. Mechanics of Materials.1996;23(1):1-19.
    [71] Mori T, Huang JH, Taya M. Stress relaxation by plastic flow, interfacial sliding and diffusionin an inclusion bearing material. Acta Mater.1997;45(2):429-438.
    [72] Funn JV, Dutta I. Creep behavior of interfaces in fiber reinforced metal–matrix composites.Acta Mater.1998;47(1):149-164.
    [73] Berton JR, Durney DW, Wheeler J, Ford JM. Diffusion-creep modelling of fibrouspressure-shadows. Tectonophysics.2006;425(1-4):191-205.
    [74] Roy S, Singh S. Analytical modeling of orthotropic diffusivities in a fiber reinforcedcomposite with discontinuities using homogenization. Composites Science and Technology.2009;69(11-12):1962-1967.
    [75] Smits A, Van Hemelrijck D, Philippidis TP, Cardon A. Design of a cruciform specimen forbiaxial testing of fibre reinforced composite laminates. Compos Sci Technol.2006;66(7–8):964-975.
    [76] Arnold WS, Robb MD, Marshall IH. Failure envelopes for notched CSM laminates underbiaxial loading. Composites.1995;26(11):739-747.
    [77] Chun HJ, Daniel IM. Transverse creep behavior of a unidirectional metal matrix composite.Mech Mater.1997;25(1):37-46.
    [78] Park YH, Holmes JW. Finite element modelling of creep deformation in fibre-reinforcedceramic composites. Journal of Materials Science.1992;27(23):6341-6351.
    [79] Bao G, Hutchinson J, McMeeking R. Particle reinforcement of ductile matrices against plasticflow and creep. Acta Metallurgica et Materialia.1991;39(8):1871-1882.
    [80] Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation inmetal-ceramic composites. Acta Metallurgica.1989;37(11):3029-3050.
    [81] Li Y, Li Z, Wang X, Sun J. Analytical solution for motion of an elliptical inclusion in gradientstress field. J Mech Phys Solids.2010;58(7):1001-1010.
    [82] Coble RL. A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. JAppl Phys.1963;34(6):1679-1682.
    [83] Wei Y, Bower AF, Gao H. Recoverable creep deformation and transient local stressconcentration due to heterogeneous grain-boundary diffusion and sliding in polycrystallinesolids. J Mech Phys Solids.2008;56(4):1460-1483.
    [84] Ford JM, Wheeler J, Movchan AB. Computer simulation of grain-boundary diffusion creep.Acta Mater.2002;50(15):3941-3955.
    [85] Onaka S, Huang JH, Wakashima K, Mori T. Kinetics of stress relaxation caused by thecombination of interfacial sliding and diffusion: two-dimensional analysis. Acta Materialia.1998;46(11):3821-3828.
    [86] R sler J, Bao G, Evans AG. The effects of diffusional relaxation on the creep strength ofcomposites. Acta Metallurgica et Materialia.1991;39(11):2733-2738.
    [87] Ohno N, Miyake T. Stress relaxation in broken fibers in unidirectional composites: modelingand application to creep rupture analysis. Int J Plasticity.1999;15(2):167-189.
    [88] Brostow W, Kubát J, Kubát M. Stress relaxation: Experiment, theory, and computer simulation.Mech Compos Mater.1996;31(5):432-445.
    [89] Dong X, Zhu P, Li Z, Sun J, Boyd JD. Electromigration-induced stress in a confined bamboointerconnect with randomly distributed grain sizes. Microelectron Reliab.2010;50(3):391-397.
    [90] Chason E, Sheldon BW, Freund LB, Floro JA, Hearne SJ. Origin of compressive residualstress in polycrystalline thin films. Phys Rev Lett.2002;88(15):156103.
    [91] Yi Liu ZH, Ren Wang. On the applicability of eshelby's equivalent inclusion method innonlinear continumm mechanics. Acta Mech Sinica.1997;13(4):506-512.
    [92] Shin W, Seo W-S, Koumoto K. Grain-boundary grooves and surface diffusion inpolycrystalline alumina measured by atomic force microscope. J Eur Ceram Soc.1998;18(6):595-600.
    [93] Bouville M, Chi D, Srolovitz DJ. Grain-boundary grooving and agglomeration of alloy thinfilms with a slow-diffusing species. Phys Rev Lett.2007;98(8):085503.
    [94] Chen N, Li Z, Wang H, Sun J. Grain boundary void growth in bamboo interconnect underthermal residual stress field. J Appl Phys.2007;101(3):033535-033536.
    [95] Génin FY. The initial stages of the formation of holes and hillocks in thin films under equalbiaxial stress. Acta Metall Mater.1995;43(12):4289-4300.
    [96] Srolovitz D, Goldiner M. The thermodynamics and kinetics of film agglomeration. JOM.1995;47(3):31-36.
    [97] Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, et al. Structure and mechanicalproperties of Cu-X (X=Nb,Cr,Ni) nanolayered composites. Scr Mater.1998;39(4–5):555-560.
    [98] Nix W. Mechanical properties of thin films. Metall Trans A.1989;20(11):2217-2245.
    [99] Huang R, Gan D, Ho PS. Isothermal stress relaxation in electroplated Cu films. II. Kineticmodeling. J Appl Phys.2005;97(10):103532-103539.
    [100] Lee H-J, Zhang P, Bravman JC. Stress relaxation in free-standing aluminum beams. ThinSolid Films.2005;476(1):118-124.
    [101] Kalkman AJ, Verbruggen AH, Janssen GCAM. Young's modulus measurements and grainboundary sliding in free-standing thin metal films. Appl Phys Lett.2001;78(18):2673-2675.
    [102] Kalkman AJ, Verbruggen AH, Janssen GCAM, Radelaar S. Transient creep in free-standingthin polycrystalline aluminum films. J Appl Phys.2002;92(9):4968-4975.
    [103] Samuel BA, Haque MA. Room temperature relaxation of freestanding nanocrystalline goldfilms. J Micromech Microeng.2006;16(5):929.
    [104] Zhou Q, Itoh G, Yamashita T. Creep mechanism of aluminum alloy thin foils. Thin SolidFilms.2000;375(1–2):104-108.
    [105] Huang H, Spaepen F. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cumultilayers. Acta Mater.2000;48(12):3261-3269.
    [106] Emery RD, Povirk GL. Tensile behavior of free-standing gold films. Part I. Coarse-grainedfilms. Acta Mater.2003;51(7):2067-2078.
    [107] Thouless MD. Effect of surface diffusion on the creep of thin films and sintered arrays ofparticles. Acta Metall Mater.1993;41(4):1057-1064.
    [108] Génin FY, Mullins WW, Wynblatt P. The effect of stress on grain boundary grooving. ActaMetall Mater.1993;41(12):3541-3547.
    [109] Thouless MD. Stress evolution during electromigration in a bamboo structure. Scr Mater.1996;34(12):1825-1831.
    [110] Josell D, Weihs TP, Gao H. Diffusional creep: stresses and strain rates in thin films andmultilayers. MRS Bulletin.2002;27(01):39-44.
    [111] Mullins WW. Theory of Thermal Grooving. J Appl Phys.1957;28(3):333-339.
    [112] Hyun S, Brown WL, Vinci RP. Thickness and temperature dependence of stress relaxation innanoscale aluminum films. Appl Phys Lett.2003;83(21):4411-4413.
    [113] Chiu T-C, Lin K-L. The growth of Sn whiskers with dislocation inclusion uponelectromigration through a Cu/Sn3.5Ag/Au solder joint. Scripta Mater.2009;60(12):1121-1124.
    [114] Wei CC, Liu PC, Chen C, Tu KN. Electromigration-induced Pb and Sn whisker growth inSnPb solder stripes. J Mater Res.2008;23(07):2017-2022.
    [115] Ouyang F-Y, Chen K, Tu KN, Lai Y-S. Effect of current crowding on whisker growth at theanode in flip chip solder joints. Appl Phys Lett.2007;91(23):231919-231913.
    [116] Bower, Craft. Analysis of failure mechanisms in the interconnect lines of microelectroniccircuits. Fatigue Fract Eng M.1998;21(5):611-630.
    [117] Kraft O, Arzt E. Electromigration mechanisms in conductor lines: Void shape changes andslit-like failure. Acta Mater.1997;45(4):1599-1611.
    [118] Schimschak M, Krug J. Electromigration-induced breakup of two-dimensional voids. PhysRev Lett.1998;80(Copyright (C)2010The American Physical Society):1674.
    [119] Tu KN. Recent advances on electromigration in very-large-scale-integration of interconnects.J Appl Phys.2003;94(9):5451-5473.
    [120] Gungor MR, Maroudas D. Theoretical analysis of electromigration-induced failure ofmetallic thin films due to transgranular void propagation. J Appl Phys.1999;85(4):2233-2246.
    [121] Mahadevan M, Bradley RM. Simulations and theory of electromigration-induced slitformation in unpassivated single-crystal metal lines. Phys Rev B.1999;59(Copyright (C)2010The American Physical Society):11037.
    [122] Hau-Riege CS. An introduction to Cu electromigration. Microelectron Reliab.2004;44(2):195-205.
    [123] Ouyang FY, Tu KN, Kao CL, Lai YS. Effect of electromigration in the anodic Al interconnecton melting of flip chip solder joints. Appl Phys Lett.2007;90(21).
    [124] Bhate DN, Kumar A, Bower AF. Diffuse interface model for electromigration and stressvoiding. J Appl Phys.2000;87(4):1712-1721.
    [125] Kalnin JR, Kotomin EA, Maier J. Calculations of the effective diffusion coefficient forinhomogeneous media. J Phys Chem Solids.2002;63(3):449-456.
    [126] Wang Y, Li J. Phase field modeling of defects and deformation. Acta Mater.2010;58(4):1212-1235.
    [127] Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen CS, Myers CR. Fracture in mode Iusing a conserved phase-field model. Phys Rev E.2002;65(Copyright (C)2010TheAmerican Physical Society):036117.
    [128] Henry H, Levine H. Dynamic instabilities of fracture under biaxial strain using a phase fieldmodel. Phys Rev Lett.2004;93(Copyright (C)2010The American Physical Society):105504.
    [129] Karma A, Kessler DA, Levine H. Phase-field model of mode III dynamic fracture. Phys RevLett.2001;87(Copyright (C)2010The American Physical Society):045501.
    [130] Karma A, Lobkovsky AE. Unsteady crack motion and branching in a phase-field model ofbrittle fracture. Phys Rev Lett.2004;92(Copyright (C)2010The American PhysicalSociety):245510.
    [131] Kassner K, Misbah C, Müller J, Kappey J, Kohlert P. Phase-field modeling of stress-inducedinstabilities. Phys Rev E.2001;63(Copyright (C)2010The American PhysicalSociety):036117.
    [132] Mahadevan M, Bradley RM. Phase field model of surface electromigration in single crystalmetal thin films. Physica D: Nonlinear Phenomena.1999;126(3-4):201-213.
    [133] Marconi VI, Jagla EA. Diffuse interface approach to brittle fracture. Phys Rev E.2005;71(Copyright (C)2010The American Physical Society):036110.
    [134] Spatschek R, Hartmann M, Brener E, Müller-Krumbhaar H, Kassner K. Phase field modelingof fast crack propagation. Phys Rev Lett.2006;96(Copyright (C)2010The AmericanPhysical Society):015502.
    [135] Gurtin ME. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on amicroforce balance. Phy D.1996;92(3–4):178-192.
    [136] Blowey JF, Elliott CM. The Cahn–Hilliard gradient theory for phase separation withnon-smooth free energy Part I: Mathematical analysis. European J Appl Math.1991;2(03):233-280.
    [137] Pilipenko D, Spatschek R, Brener EA, Müller-Krumbhaar H. Crack propagation as a freeboundary problem. Phys Rev Lett.2007;98(Copyright (C)2010The American PhysicalSociety):015503.
    [138] Aranson IS, Kalatsky VA, Vinokur VM. Continuum field description of crack propagation.Phys Rev Lett.2000;85(Copyright (C)2010The American Physical Society):118.
    [139] Wang H, Li Z. Diffusive shrinkage of a void within a grian of a stressed polycrystal. J MechPhys Solids.2003;51(5):961-976.
    [140] Wang H, Li Z. Stability and shrinkage of a cavity in stressed grain. J Appl Phys.2004;95(11):6025-6031.
    [141] Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response issize-dependent. Nat Nanotechnol.2008;3(3):145-150.
    [142] Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understandingbiophysicochemical interactions at the nano-bio interface. Nat Mater.2009;8(7):543-557.
    [143] Groneberg DA, Giersig M, Welte T, Pison U. Nanoparticle-based diagnosis and therapy. CurrDrug Targets.2006;7(6):643-648.
    [144] Thurn K, Brown E, Wu A, Vogt S, Lai B, Maser J, et al. Nanoparticles for applications incellular imaging. Nanoscale Res Lett.2007;2(9):430-441.
    [145] Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting ofnanoparticles by multivalent attachment of small molecules. Nat Biotechnol.2005;23(11):1418-1423.
    [146] Yang K, Ma Y. Computer simulation of the translocation of nanoparticles with differentshapes across a lipid bilayer. Nat Nanotechnol.2010;5(8):579-583.
    [147] Zhang K, Fang H, Chen Z, Taylor J-SA, Wooley KL. Shape effects of nanoparticlesconjugated with cell-penetrating peptides (HIV tat PTD) on CHO cell uptake. BioconjugateChem.2008;19(9):1880-1887.
    [148] Hulteen JC, Patrissi CJ, Miner DL, Crosthwait ER, Oberhauser EB, Martin CR. Changes inthe shape and optical properties of gold nanoparticles contained within alumina membranesdue to low-temperature annealing. Proc Natl Acad Sci USA.1997;101(39):7727-7731.
    [149] Cao X, Ma J, Shi X, Ren Z. Effect of TiO2nanoparticle size on the performance of PVDFmembrane. Appl Surf Sci.2006;253(4):2003-2010.
    [150] Yu D, Lin W, Yang M. Surface modification of poly(l-lactic acid) membrane vialayer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer.Bioconjugate Chem.2007;18(5):1521-1529.
    [151] Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad SciUSA.2005;102(27):9469-9474.
    [152] Shi X, Kong Y, Gao H. Coarse grained molecular dynamics and theoretical studies of carbonnanotubes entering cell membrane. Acta Mech Sin.2008;24(2):161-169.
    [153] Shi W, Wang J, Fan X, Gao H. Size and shape effects on diffusion and absorption of colloidalparticles near a partially absorbing sphere: Implications for uptake of nanoparticles in animalcells. Phys Rev E.2008;78(6):061914.
    [154] Yuan H, Huang C, Li J, Lykotrafitis G, Zhang S. One-particle-thick, solvent-free,coarse-grained model for biological and biomimetic fluid membranes. Phys Rev E.2010;82(1):011905.
    [155] Yuan H, Li J, Bao G, Zhang S. Variable nanoparticle-cell adhesion strength regulates cellularuptake. Phys Rev Lett.2010;105(13):138101.
    [156] Yi X, Shi X, Gao H. Cellular uptake of elastic nanoparticles. Phys Rev Lett.2011;107(9):098101.
    [157] Shi X, Von dem Bussche A, Hurt RH, Kane AB, Gao H. Cell entry of one-dimensionalnanomaterials occurs by tip recognition and rotation. Nat Nanotechnol.2011;6(11):714-719.
    [158] Lohse SE, Dahl JA, Hutchison JE. Direct synthesis of large water-soluble functionalized goldnanoparticles using bunte salts as ligand precursors. Langmuir.2010;26(10):7504-7511.
    [159] Eastoe J, Hollamby MJ, Hudson L. Recent advances in nanoparticle synthesis with reversedmicelles. Adv Colloid Interface Sci.2006;128-130:5-15.
    [160] Sanvicens N, Marco MP. Multifunctional nanoparticles-properties and prospects for their usein human medicine. Trends Biotechnol.2008;26(8):425-433.
    [161] Thiry M, Boldt K, Nikolic MS, Schulz F, Ijeh M, Panicker A, et al. Fluorescence propertiesof hydrophilic semiconductor nanoparticles with tridentate polyethylene oxide ligands. ACSNano.2011;5(6):4965-4973.
    [162] Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, et al. Surface functionalization ofgold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellulartracking and delivery. Int J Nanomed.2006;1(1):51-57.
    [163] Chen W, Zuckerman NB, Lewis JW, Konopelski JP, Chen S. Pyrene-functionalizedruthenium nanoparticles: Novel fluorescence characteristics from intraparticle extendedconjugation. J Phys Chem C.2009;113(39):16988-16995.
    [164] Cho EC, Xie J, Wurm PA, Xia Y. Understanding the role of surface charges in cellularadsorption versus internalization by selectively removing gold nanoparticles on the cellsurface with a I2/KI etchant. Nano Lett.2009;9(3):1080-1084.
    [165] Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to theclathrin-mediated endocytic pathway. Biochem Biophys Res Commun.2007;353(1):26-32.
    [166] Villanueva A. The influence of surface functionalization on the enhanced internalization ofmagnetic nanoparticles in cancer cells. Nanotechnology.2009;20(11):115103.
    [167] Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Variables influencing interactionsof untargeted quantum dot nanoparticles with skin cells and identification of biochemicalmodulators. Nano Lett.2007;7(5):1344-1348.
    [168] kerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting invivo. Proc Natl Acad Sci USA.2002;99(20):12617-12621.
    [169] Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small.2010;6(1):12-21.
    [170] Yu MK, Kim D, Lee I-H, So J-S, Jeong YY, Jon S. Image-guided prostate cancer therapyusing aptamer-functionalized thermally cross-linked superparamagnetic iron oxidenanoparticles. Small.2011;7(15):2241-2249.
    [171] Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: Design, synthesis, andbiomedical applications. Acc Chem Res.2009;42(8):1097-1107.
    [172] Wang S, Dormidontova EE. Nanoparticle design optimization for enhanced targeting: Montecarlo simulations. Biomacromolecules.2010;11(7):1785-1795.
    [173] Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, et al. Surface-structure-regulatedcell-membrane penetration by monolayer-protected nanoparticles. Nat Mater.2008;7(7):588-595.
    [174] Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, et al. An in vitrostudy of the potential of carbon nanotubes and nanofibres to induce inflammatory mediatorsand frustrated phagocytosis. Carbon.2007;45(9):1743-1756.
    [175] Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. Biopersistence and potentialadverse health impacts of fibrous nanomaterials: what have we learned from asbestos? WileyInterdiscip Rev-Nanomed Nanobiotechnol.2009;1(5):511-529.
    [176] Hoogerbrugge PJ, Koelman JMVA. Simulating microscopic hydrodynamic phenomena withdissipative particle dynamics. Europhys Lett.1992;19(3):155.
    [177] Groot RD, Rabone KL. Mesoscopic simulation of cell membrane damage, mophologychange and rupture by nonionic surfactants. Biophys J.2001;81(2):725-736.
    [178] Kirkwood JG. Statistical Mechanics of Fluid Mixtures. J Chem Phys.1935;3(5):300-313.
    [179] Leroy F, dos Santos DJVA, Müller-Plathe F. Interfacial excess free energies of solid–liquidinterfaces by molecular dynamics simulation and thermodynamic integration. MacromolRapid Commun.2009;30(9-10):864-870.
    [180] Ding H, Tian W, Ma Y. Designing nanoparticle translocation through membranes bycomputer simulations. ACS Nano.2012.
    [181] Grafmüller A, Shillcock J, Lipowsky R. The fusion of membranes and vesicles: Pathway andenergy barriers from dissipative particle dynamics. Biophys J.2009;96(7):2658-2675.
    [182] Fedosov DA, Pan W, Caswell B, Gompper G, Karniadakis GE. Predicting human bloodviscosity in silico. Proc Natl Acad Sci USA.2011;108(29):11772-11777.
    [183] Dutt M, Kuksenok O, Little SR, Balazs AC. Forming transmembrane channels usingend-functionalized nanotubes. Nanoscale.2011;3(1):240-250.
    [184] Dutt M, Kuksenok O, Nayhouse MJ, Little SR, Balazs AC. Modeling the self-assembly oflipids and nanotubes in solution: Forming vesicles and bicelles with transmembranenanotube channels. ACS Nano.2011;5(6):4769-4782.
    [185] Ding H, Ma Y. Interactions between Janus particles and membranes. Nanoscale.2012;4(4).
    [186] Ziebarth J, Wang Y. Coarse-grained molecular dynamics simulations of DNA condensationby block copolymer and formation of core corona structures. J Phys Chem B.2010;114(19):6225-6232.
    [187] Li Z, Li Y, Wang Y, Sun Z, An L. Transport of star-branched polymers in nanoscale pipechannels simulated with dissipative particle dynamics simulation. Macromolecules.2010;43(13):5896-5903.
    [188] Liu Y, Zhao Y, Liu H, Liu Y, Lu Z. Spontaneous fusion between the vesicles formed byA2n(B2)n type comb-like block copolymers with a semiflexible hydrophobic backbone. JPhys Chem B.2009;113(46):15256-15262.
    [189] Shillcock JC, Lipowsky R. Tension-induced fusion of bilayer membranes and vesicles. NatMater.2005;4(3):225-228.
    [190] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys.1995;117(1):1-19.
    [191] Groot RD, Madden TJ. Dynamic simulation of diblock copolymer microphase separation. JChem Phys.1998;108(20):8713-8724.
    [192] Nielsen SO, Ensing B, Ortiz V, Moore PB, Klein ML. Lipid bilayer perturbations around atransmembrane nanotube: A coarse grain molecular dynamics study. Biophys J.2005;88(6):3822-3828.
    [193] Li X, Liu Y, Wang L, Deng M, Liang H. Fusion and fission pathways of vesicles fromamphiphilic triblock copolymers: a dissipative particle dynamics simulation study. PhysChem Chem Phys.2009;11(20):4051-4059.
    [194] Dorairaj S, Allen TW. On the thermodynamic stability of a charged arginine side chain in atransmembrane helix. Proc Natl Acad Sci USA.2007;104(12):4943-4948.
    [195] Singh C, Ghorai PK, Horsch MA, Jackson AM, Larson RG, Stellacci F, et al.Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. Phys Rev Lett.2007;99(22):226106.
    [196] Jackson AM, Myerson JW, Stellacci F. Spontaneous assembly of subnanometre-ordereddomains in the ligand shell of monolayer-protected nanoparticles. Nat Mater.2004;3(5):330-336.
    [197] Gu Y, Sun W, Wang G, Fang N. Single particle orientation and rotation tracking disclosesdistinctive rotational dynamics of drug delivery vectors on live cell membranes. J Am ChemSoc.2011;133(15):5720-5723.
    [198] Yang K, Ma Y-Q. Wrapping and internalization of nanoparticles by lipid bilayers: A computersimulation study. Aust J Chem.2011;64(7):894-899.
    [199] Fiedler SL, Violi A. Simulation of nanoparticle permeation through a lipid membrane.Biophys J.2010;99(1):144-152.
    [200] Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. ZNaturforsch.1973;28(11):693-703.
    [201] Deuling HJ, Helfrich W. The curvature elasticity of fluid membranes: A catalogue of vesicleshapes. J Phys France.1976;37(11):1335-1345.
    [202] Bruinsma R, Goulian M, Pincus P. Self-assembly of membrane junctions. Biophys J.1994;67(2):746-750.
    [203] Abramowitz M, Stegun IA. Handbook of mathematical functions. New York: Dover;1970.1064pp p.
    [204] Zhang Y, Tan Y-W, Stormer HL, Kim P. Experimental observation of the quantum Hall effectand Berry's phase in graphene. Nature.2005;438(7065):201-204.
    [205] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strengthof monolayer graphene. Science.2008;321(5887):385-388.
    [206] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermalconductivity of single-layer graphene. Nano Lett.2008;8(3):902-907.
    [207] Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-basedbiosensors. Biosens Bioelectron.2011;26(12):4637-4648.
    [208] Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of humanosteoblasts and mesenchymal stromal cells. Carbon.2010;48(15):4323–4329.
    [209] Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, et al. Graphene for controlledand accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano.2011;5(6):4670-4678.
    [210] Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale.2011;3(3):1252-1257.
    [211] Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier forcontrolled loading and targeted delivery of mixed anticancer drugs. Small.2010;6(4):537-544.
    [212] Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomed.2011;6(2):317-324.
    [213] Yang SH, Lee T, Seo E, Ko EH, Choi IS, Kim B-S. Interfacing living yeast cells withgraphene oxide nanosheaths. Macromol Biosci.2012;12(1):61-66.
    [214] Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, et al. Three-dimensionalself-assembly of graphene oxide platelets into mechanically flexible macroporous carbonfilms. Angew Chem Int Ed.2010;49(52):10084-10088.
    [215] Qin Z, Buehler M. Bioinspired design of functionalised graphene. Mol Simul.2012;38(8-9):695-703.
    [216] Sun X, Liu Z, Welsher K, Robinson J, Goodwin A, Zaric S, et al. Nano-graphene oxide forcellular imaging and drug delivery. Nano Res.2008;1(3):203-212.
    [217] Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, et al. Cytotoxicity effects of grapheneand single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12cells. ACSNano.2010;4(6):3181-3186.
    [218] Shih C-J, Vijayaraghavan A, Krishnan R, Sharma R, Han J-H, Ham M-H, et al. Bi-andtrilayer graphene solutions. Nat Nanotechnol.2011;6(7):439-445.
    [219] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, et al. Graphene-based materials: synthesis,characterization, properties, and applications. Small.2011;7(14):1876-1902.
    [220] Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-familynanomaterials: An interdisciplinary review. Chem Res Toxicol.2011;25(1):15-34.
    [221] Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K. Graphene-based nanoplatelets:A new risk to the respiratory system as a consequence of their unusual aerodynamicproperties. ACS Nano.2012;6(1):736-746.
    [222] Kuhlbusch T, Asbach C, Fissan H, Gohler D, Stintz M. Nanoparticle exposure atnanotechnology workplaces: A review. Part Fibre Toxicol.2011;8(1):22.
    [223] Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, et al. Multi-functionalized grapheneoxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J MaterChem.2011;21(10):3448-3454.
    [224] Mu Q, Su G, Li L, Gilbertson BO, Yu LH, Zhang Q, et al. Size-dependent cell uptake ofprotein-coated graphene oxide nanosheets. ACS Appl Mater Interfaces.2012;4(4):2259-2266.
    [225] Titov AV, Král P, Pearson R. Sandwiched graphene membrane superstructures. ACS Nano.2010;4(1):229-234.
    [226] Guo R, Mao J, Yan L-T. Computer simulation of cell entry of graphene nanosheet.Biomaterials.2013;34(17):4296-4301.
    [227] Cheung W, Pontoriero F, Taratula O, Chen AM, He H. DNA and carbon nanotubes asmedicine. Adv Drug Deliv Rev.2010;62(6):633-649.
    [228] Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. Biopersistence and potentialadverse health impacts of fibrous nanomaterials: what have we learned from asbestos? WileyInterdiscip Rev Nanomed Nanobiotechnol.2009;1(5):511-529.
    [229] Bao G, Bao XR. Shedding light on the dynamics of endocytosis and viral budding. Proc NatlAcad Sci USA.2005;102(29):9997-9998.
    [230] Gibson MC, Perrimon N. Apicobasal polarization: epithelial form and function. Curr OpinCell Biol.2003;15(6):747-752.
    [231] Xie L, Wang H, Jin C, Wang X, Jiao L, Suenaga K, et al. Graphene nanoribbons fromunzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electricalproperties. J Am Chem Soc.2011;133(27):10394-10397.
    [232] Girit, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, et al. Graphene at the edge:Stability and dynamics. Science.2009;323(5922):1705-1708.
    [233] Huang JY, Ding F, Yakobson BI, Lu P, Qi L, Li J. In situ observation of graphene sublimationand multi-layer edge reconstructions. Proc Natl Acad Sci USA.2009;106. Epub10108.
    [234] Tian J, Cao H, Wu W, Yu Q, Chen YP. Direct imaging of graphene edges: Atomic structureand electronic scattering. Nano Lett.2011;11(9):3663-3668.
    [235] Warner JH, Schaf fel F, Rum meli MH, Bu chner B. Examining the edges of multi-layergraphene sheets. Chem Mat.2009;21(12):2418-2421.
    [236] Song B, Schneider GgF, Xu Q, Pandraud Gg, Dekker C, Zandbergen H. Atomic-scaleelectron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett.2011;11(6):2247-2250.
    [237] Liu Z, Suenaga K, Harris PJF, Iijima S. Open and closed edges of graphene layers. Phys RevLett.2009;102(1):015501.
    [238] Zhang J, Xiao J, Meng X, Monroe C, Huang Y, Zuo J. Free folding of suspended graphenesheets by random mechanical stimulation. Phys Rev Lett.2010;104(16):166805.
    [239] Cui Y, Kim SN, Jones SE, Wissler LL, Naik RR, McAlpine MC. Chemical functionalizationof graphene enabled by phage displayed peptides. Nano Lett.2010;10(11):4559-4565.
    [240] Hasan SA, Rigueur JL, Harl RR, Krejci AJ, Gonzalo-Juan I, Rogers BR, et al. Transferablegraphene oxide films with tunable microstructures. ACS Nano.2010;4(12):7367-7372.
    [241] Hsieh C-T, Chen W-Y. Water/oil repellency and work of adhesion of liquid droplets ongraphene oxide and graphene surfaces. Surf Coat Technol.2011;205(19):4554-4561.
    [242] Creighton MA, Rangel-Mendez JR, Huang J, Kane AB, Hurt RH. Graphene inducedadsorptive and optical artifacts during in vitro toxicology assays. Small.2012:In press.
    [243] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable moleculardynamics with NAMD. J Comput Chem.2005;26(16):1781-1802.
    [244] Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graphics.1996;14(1):33-38.
    [245] Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, et al.Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types.J Phys Chem B.2010;114(23):7830-7843.
    [246] Boal D. Mechanics of the Cell: Cambridge University Press;2001.
    [247] Delorme-Axford E, Coyne CB. The actin cytoskeleton as a barrier to virus infection ofpolarized epithelial cells. Viruses.2011;3(12):2462-2477.
    [248] Sch fer C, Borm B, Born S, M hl C, Eibl E-M, Hoffmann B. One step ahead: Role offilopodia in adhesion formation during cell migration of keratinocytes. Exp Cell Res.2009;315(7):1212-1224.
    [249] Duch MC, Budinger GRS, Liang YT, Soberanes S, Urich D, Chiarella SE, et al. Minimizingoxidation and stable nanoscale dispersion improves the biocompatibility of graphene in thelung. Nano Lett.2011;11(12):5201-5207.
    [250] Sasidharan A, Panchakarla LS, Sadanandan AR, Ashokan A, Chandran P, Girish CM, et al.Hemocompatibility and macrophage response of pristine and functionalized graphene. Small.2012;8(8):1251-1263.
    [251] Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern thatinitiates innate immune responses. Nat Rev Immunol.2004;4(6):469-478. Epub2004/06/03.
    [252] McEvoy L, Williamson P, Schlegel RA. Membrane phospholipid asymmetry as a determinantof erythrocyte recognition by macrophages. Proc Natl Acad Sci USA.1986;83(10):3311-3315. Epub1986/05/01.
    [253] Moyano DF, Goldsmith M, Solfiell DJ, Landesman-Milo D, Miranda OR, Peer D, et al.Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc.2012;134(9):3965-3967.
    [254] Li Y, Li X, Li Z, Gao H. Surface-structure-regulated penetration of nanoparticles across cellmembrane. Nanoscale.2012.
    [255] Venturoli M, Smit B, Sperotto MM. Simulation studies of protein-induced bilayerdeformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers withembedded proteins. Biophys J.2005;88(3):1778-1798.
    [256] Frank IW, Tanenbaum DM, van der Zande AM, McEuen PL. Mechanical properties ofsuspended graphene sheets J Vac Sci Technol B.2007;25:2558-2561.
    [257] Cranford S, Buehler MJ. Twisted and coiled ultralong multilayer graphene ribbons. ModellSimul Mater Sci Eng.2011;19(5):054003.
    [258] Cranford S, Sen D, Buehler MJ. Meso-origami: Folding multilayer graphene sheets. ApplPhys Lett.2009;95(12):123121-123123.
    [259] Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. ChemicalCommunications.2010;46(19):3256-3258.
    [260] Chalifoux WA, Tykwinski RR. Synthesis of polyynes to model the sp-carbon allotropecarbyne. Nat Chem.2010;2(11):967-971.
    [261] Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, et al. Control ofgraphene's properties by reversible hydrogenation: Evidence for graphane. Science.2009;323(5914):610-613.
    [262] Baughman RH, Eckhardt H, Kertesz M. Structure-property predictions for new planar formsof carbon: Layered phases containing sp[sup2] and sp atoms. The Journal of ChemicalPhysics.1987;87(11):6687-6699.
    [263] Peng Q, Ji W, De S. Mechanical properties of graphyne monolayers: a first-principles study.Phys Chem Chem Phys.2012;14(38):13385-13391.
    [264] Cranford SW, Buehler MJ. Mechanical properties of graphyne. Carbon.2011;49(13):4111-4121.
    [265] M HM. Synthesis and properties of annulenic subunits of graphyne and graphdiynenanoarchitectures. Pure Appl Chem.2008;80(3):519-532.
    [266] Topsakal M, Cahangirov S, Ciraci S. The response of mechanical and electronic properties ofgraphane to the elastic strain. Appl Phys Lett.2010;96(9):091912-091913.
    [267] Mirnezhad M, Ansari R, Rouhi H. Effects of hydrogen adsorption on mechanical propertiesof chiral single-walled zinc oxide nanotubes. J Appl Phys.2012;111(1):014308-014311.
    [268] Pan LD, Zhang LZ, Song BQ, Du SX, Gao HJ. Graphyne-and graphdiyne-basednanoribbons: Density functional theory calculations of electronic structures. Appl Phys Lett.2011;98(17):173102-173103.
    [269] Sofo JO, Chaudhari AS, Barber GD. Graphane: A two-dimensional hydrocarbon. Phys Rev B.2007;75(15):153401.
    [270] Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P. Ferromagnetism in semihydrogenatedgraphene sheet. Nano Lett.2009;9(11):3867-3870.
    [271] Kim JY, Lee J-H, Grossman JC. Thermal transport in functionalized graphene. ACS Nano.2012;6(10):9050-9057.
    [272] Chien S-K, Yang Y-T, Chen Co-K. Influence of hydrogen functionalization on thermalconductivity of graphene: Nonequilibrium molecular dynamics simulations. Appl Phys Lett.2011;98(3):033107-033103.
    [273] Tan J, He X, Zhao M. First-principles study of hydrogenated graphyne and its family: Stableconfigurations and electronic structures. Diamond Relat Mater.2012;29(0):42-47.
    [274] Chen L, Cooper AC, Pez GP, Cheng H. Mechanistic study on hydrogen spillover ontographitic carbon materials. J Phys Chem C.2007;111(51):18995-19000.
    [275] Zhang X, Nie Y, Zheng W, Kuo JL, Sun CQ. Discriminative generation and hydrogenmodulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies. Carbon.2011;49(11):3615-3621.
    [276] Li W, Zhao M, Zhao X, Xia Y, Mu Y. Hydrogen saturation stabilizes vacancy-inducedferromagnetic ordering in graphene. Phys Chem Chem Phys.2010;12(41):13699-13706.
    [277] Balog R, J rgensen B, Wells J, L gsgaard E, Hofmann P, Besenbacher F, et al. Atomichydrogen adsorbate structures on graphene. J Am Chem Soc.2009;131(25):8744-8745.
    [278] Flores MZS, Autreto PAS, Legoas SB, Galvao DS. Graphene to graphane: a theoretical study.Nanotechnology.2009;20(46):465704.
    [279] Zheng Q, Geng Y, Wang S, Li Z, Kim J-K. Effects of functional groups on the mechanicaland wrinkling properties of graphene sheets. Carbon.2010;48(15):4315-4322.
    [280] Qing-Xiang P, Yong-Wei Z, Vivek BS. Mechanical properties of methyl functionalizedgraphene: a molecular dynamics study. Nanotechnology.2010;21(11):115709.
    [281] Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, et al. Reversibleelectromechanical characteristics of carbon nanotubes under local-probe manipulation.Nature.2000;405(6788):769-772.
    [282] Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breakingmechanism of multiwalled carbon nanotubes under tensile load. Science.2000;287(5453):637-640.
    [283] Jawad N, Xue J, Biswarup P, Jijun Z, Tae Won K, Rajeev A. Semiconducting allotrope ofgraphene. Nanotechnology.2012;23(38):385704.
    [284] Pei QX, Zhang YW, Shenoy VB. A molecular dynamics study of the mechanical properties ofhydrogen functionalized graphene. Carbon.2010;48(3):898-904.
    [285] Zhang Y-Y, Pei Q-X, Wang C-M, Cheng Y, Zhang Y-W. A molecular dynamics investigationon mechanical properties of hydrogenated graphynes. J Appl Phys.2013;114(7):073504-073507.
    [286] Enyashin AN, Ivanovskii AL. Graphene allotropes. physica status solidi (b).2011;248(8):1879-1883.
    [287] Hwang HJ, Kwon Y, Lee H. Thermodynamically stable calcium-decorated graphyne as ahydrogen storage medium. The Journal of Physical Chemistry C.2012;116(38):20220-20224.
    [288] Hwang HJ, Koo J, Park M, Park N, Kwon Y, Lee H. Multilayer graphynes for lithium ionbattery anode. The Journal of Physical Chemistry C.2013;117(14):6919-6923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700