射频磁控反应溅射低温制备高C轴择优取向的氮化铝薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤锌矿结构氮化铝(AlN)薄膜作为一种重要的Ⅲ族氮化物半导体材料,具有许多优异的物理化学性能,使得AlN薄膜成为碳化硅基和蓝宝石基光电和声电器件领域的理想材料,广泛应用在声表面波器件、体声波器件、场发射显示和发光二极管领域。AlN薄膜的应用一般要求其具有高C轴取向或外延单晶结构。然而,高C轴取向和外延单晶AlN薄膜需要采用金属有机物气相沉积、分子束外延、氢化物气相外延等方法在高温下制备,其缺点是沉积温度高、毒性气体的排放、制膜设备昂贵,尤其是高温沉积还会给衬底和薄膜带来热损伤,这严重限制了AlN薄膜在微电子学领域的广泛应用。射频磁控反应溅射是沉积薄膜材料的一种重要方法,和其它制备技术相比,该技术具有简单、低温、价廉的优点。因此,研究磁控溅射低温制备高C轴取向AlN薄膜具有非常重要的意义。本文首次采用射频磁控反应溅射法在6H-SiC单晶衬底上成功制备了高度C轴取向及外延AlN薄膜,研究了工艺参数对AlN薄膜的形貌、组成、晶体结构以及光学性能的影响规律;采用更加廉价但晶格失配度较大的蓝宝石代替6H-SiC,同样实现了高度C轴取向的AlN薄膜生长,此外,探索了6H-SiC和蓝宝石衬底上AlN薄膜在300℃低温和室温条件下的生长。
     采用射频磁控反应溅射技术在6H-SiC和蓝宝石基体上制备了高C轴取向的AlN薄膜,采用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)和二维X射线衍射(2D-XRD)等多种表征手段,研究了反应气压、氮气浓度、射频功率等工艺参数对6H-SiC基体上的AlN薄膜的表面形貌、化学组成以及晶体结构的影响规律,获得了在6H-SiC单晶上生长高C轴取向AlN薄膜的最佳生长条件。
     发现所制备的AlN薄膜Al/N原子比可达1.09:1,薄膜中Al、N元素含量可达96%。薄膜晶粒尺寸随反应气压和氮气浓度的增加而减小,射频功率在250W表现出最优值,衬底温度增加到500℃后趋于稳定。表面粗糙度随反应气压、氮气浓度和射频功率的增加而降低。随氮气浓度和射频功率的增加,薄膜中Al原子浓度下降而N原子浓度升高, Al/N原子比减小。较低的反应气压有利于AlN薄膜的C轴取向生长,增加反应气压,薄膜的C轴取向生长变弱,当气压增加到1.0Pa时,生长的AlN薄膜呈非晶状态;随着氮气浓度由20%增加到60%,AlN薄膜由AlN(10-10)择优取向生长逐渐过渡到高C轴择优取向;射频功率增加到250W时,AlN薄膜的C轴取向达到最高,但射频功率太大,会诱导其它晶面的生长。
     采用射频磁控反应溅射技术,以更加廉价的蓝宝石取代昂贵的6H-SiC单晶作为薄膜生长基体,制备了高度C轴取向的AlN薄膜,克服了蓝宝石单晶衬底与AlN薄膜之间存在的较大晶格失配和热失配所引起的生长问题,并研究了生长温度对其形貌和结构的作用。发现在蓝宝石上生长高度C轴取向的AlN薄膜的温度窗口较窄,较高或较低的衬底温度都不利于高C轴取向的生长;另外,薄膜的表面粗糙度随衬底温度的升高而升高,较高的衬底温度可以降低薄膜中的O原子含量。
     首次探索了射频磁控反应溅射法在低温和室温条件下高C轴取向AlN薄膜的生长。在6H-SiC衬底上室温条件下制备了高C轴取向的AlN薄膜,并在衬底温度为300℃时成功获得了外延AlN薄膜。室温下在蓝宝石衬底上生长的AlN薄膜以C轴取向生长为主,同时出现少量其它晶面的微弱生长。
     采用椭偏仪研究了制备的AlN薄膜的折射率和消光系数,发现制备的AlN薄膜的折射率n都在1.83-2.15之间,AlN薄膜的折射率与其C轴取向性密切相关,薄膜的C轴择优取向性越好,其折射率越高,反之亦然。薄膜的消光系数受沉积条件的影响不明显,在波长大于300nm时其消光系数k值为零,薄膜在该波段内具有高透光性;而在波长低于300nm时k值迅速增大,在该波长光线范围内,薄膜表现出很强的吸收。
As an important kind of Ⅲ-nitride semiconductor material, wurtzite aluminum nitride (AlN) has many outstanding properties. These properties make AlN a promising material for many applications including SiC-based and Sapphire-based optoelectronic and acoustic-electronic devices, such as surface acoustic wave and bulk acoustic wave devices, field-emission display, light-emitting diodes. Here it should be noted that the highly C-axis oriented films or single crystal AlN layer are needed to be grown for above-mentioned applications. However, the highly C-axis oriented films or single crystal AlN layers were prepared by metal organic chemical vapor deposition, molecular beam epitaxy and hydride vapor phase epitaxy techniques. There are many disadvantages such as high deposition temperature, toxic exhaust emission and expensive equipment, especially, high deposition-temperature has the disadvantage of the degradation of the substrate and AlN thin films during deposition due to thermal damage, which limits the wide applications of AlN layers in the field of microelectronics. Compared with these techniques above-mentioned, RF reactive magnetron sputtering method has some advantages of simple, low temperature and low price. Hence, low-temperature deposition of AlN thin films has become increasingly important and valuable. RF reactive magnetron sputtering is regard as an important method for the fabrication of thin films at low temperature. Therefore, the research on the preparation of high C-axis orientation aluminum nitride thin film by magnetron sputtering at low temperature has very important significance. In this thesis, high C-axis orientated and epitaxial AlN thin films were prepaed successfully by RF reactive magnetron sputtering on6H-SiC substrate. The surface micropholaogy, composition, crystal structure and optical properties were studied at different parameters. Further more, a lower cost and more lattice mismatch between sapphire and AlN film was used as the substrate instead of6H-SiC substrate. The same high C-axis orientated AlN thin films were achived. Finally, the low temperature growth of the AlN films was developed on both6H-SiC and sapphire substrates at the temperature of300℃and room temperature.
     AlN films with the high C-axis orientation were deposited on the6H-SiC substrate. The effects of the pressure, N2concentration and RF power on the surface microphology, composition and crystal structure were studied by scaning electrical microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and two dimensions x-ray diffraction (2D-XRD), etc. The best growth conditions of the AlN films with the high C-axis orientation were achived.
     The Al/N atom ratio of the prepared AlN films is up to1.09:1, and the Al, N atoms comcentration is close to96%. The size of crystal grain decreases with increasing the sputtering pressure and N2concentration, and have no obvious change when the substrate temperature higher than500℃. The surface roughness decreases with the increase of sputtering pressure, N2concentration and RF power. With the increase of N2comcentration and the RF power, the Al atom concentration decreases and N atom comcentation increases, thus the Al/N atom ratio decreases. The lower sputtering pressures is in favor of the growth of C-axis oriented AlN films, the C-axis oriention became weaker when increasing the sputtering preasure, and the films are amorphous state at the preassure of1.0Pa. The oriention of the film changed from AlN (10-10) to C-axis when increasing the N2concentration from20%to60%. The deposited AlN films present highest C-axis oriented when increasing the RF power to250W. If the RF power is too high, the growth of other crystal plane can be induced.
     With RF magnetron reaction sputtering technique, the high C-axis oriented AlN films were successful deposited on sapphire substrate which is a lower cost compared with6H-SiC substrate. The problem of serious lattice mismatch and thermal mismatch betwween the sapphire substrate and AlN film were solved, and the influence of growth temperature on the surface morphology and structure of the film were studied. It was suggested that the window of grown temperature is narrow for depositing high C-axis oriented AlN film. Both too high and too low substrate temperature are unfavorable to the growth of high C-axis oriented AlN film. In addition, the surface roughness increases with the increase of substrate temperature, and the oxygen atom concentration decreasesd a little at a higher substrate temperature.
     The growth of high C-axis oriented AlN films at low temperature and room temperature by RF magnetron reaction sputtering was fistly explored. The high C-axis oriented AlN films were deposited on6H-SiC at room temperature, and the AlN film with epitaxial structure were successful deposited on6H-SiC at the substrate temperature of300℃. The deposited AlN film presents C-axis oriented structure with some weak growth of other crystal plane when growing on sapphire substrate at room temperature.
     The optic performance of the deposited films was measured by spectroscopic ellipsometry. The result shows that the refractive index of the deposited AlN films is closely related to the crystalline structure of the AlN film, and the refractive index (n) between1.83and2.07. The better the C-axis orientated of the deposited films, the larger the value of refractive index, vice versa. The extinction coefficient of deposited AlN films is not affected by deposition conditions. The k value (extinction coefficient) is zero when the wavelength of the light greater than300 nm, so the deposited AlN films have a high light transmittance. When the wavelength less than300nm, k value increases rapidly, the deposited AlN films present a strong absorption.
引文
[1] Weimer A W, Cochran G A, Eisman G A, et al. Rapid process formanufacturing aluminum nitride powder [J]. Journal of the American CeramicSociety,1994,77:3-18.
    [2] Wu C, Yang Q, Huang C, et al. Facile solvent-free synthesis of pure-phasedAlN nanowhiskers at a low temperature [J]. Journal of Solid State Chemistry,2004,177:3522-3528.
    [3] Kuang J C, Zhang C R, Zhou X G, et al. Synthesis of high thermal conductivitynano-sale aluminum nitride by a new carbothermal reduction methhod fromcombustion preeursor[J]. Journal of Crystal Growth,2003,256(3-4):288-291.
    [4] Tummala R R. Ceramic and glass-ceramic packaging in the1990s [J]. Journalof the American Ceramic Society,1991,74(5):895-908.
    [5] Strite, Morkoc H. GaN, AIN, and InN: A review [J]. Journal of VacuumScience&Technology B,1992,10(4):1237-1266.
    [6] Taniyasu Y, Kasu M, Makimoto T. Field emission properties of heavily Si-doped AlN in triode-type display structure [J]. Applied Physics Letters,2004,84:2115-2117.
    [7] Ponce F, Bour D. Nitride-based semiconductors for blue and green lightemitting Devices [J]. Nature,1997,386:351-359.
    [8] Hirayama H. Quaternary InAlGaN-based high-efficiency ultraviolet lightemitting diodes [J]. Journal of Applied Physics,2005,97,1101-1105.
    [9] Dow A B A, Popov C, Schmid U, et al. Super-High-Frequency SAWTransducer Utilizing AlN/Ultrananocrystalline Diamond Architectures [J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2013,60(8):1581-1586.
    [10] Legrani O, Elmazria O, Zhgoon S, et al. Packageless AlN/ZnO/Si Structure forSAW Devices Applications [J]. IEEE Sensors Journal,2013,13(2):487-491.
    [11] Aubert T, Elmazria O, Assouar B, et al. Investigations on AlN/SapphirePiezoelectric Bilayer Structure for High-Temperature SAW Applications [J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2012,59(5):999-1005.
    [12] Rodriguez-Madrid J G, Iriarte G F, Pedros J, et al. Super-High-FrequencySAW Resonators on AlN/Diamond [J]. IEEE Electron Device Leters,2012,33(4):495-497.
    [13] Dow A B A, Kherani N P, Ahmed A, et al. Nanocrystalline Diamond/AlNStructures for High Efficient SAW Nano-Resonators [C].21st IEEEInternational Symposium on Applications of Ferroelectrics held jointly with11th European Conference on the Applications of Polar Dielectrics and4thConference on Piezoresponse Force Microscopy and Nanoscale Phenomena inPolar Materials, Univ Aveiro, Aveiro, PORTUGAL,2012: JUL09-13.
    [14] Iriarte G F, Rodriguez J G, Ro R, et al. Fabrication of high frequency SAWresonators using AlN/Diamond/Si technology [C]. IEEE InternationalUltrasonics Symposium (IUS): Orlando, FL,2011: OCT18-21.
    [15] Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: review ofmaterials, properties and applications[J]. Journal of Applied Physics,2006,100,109901.
    [16] Garcia-Gancedo L, Zhu Z, Iborra E, et al. AlN-based BAW resonators withCNT electrodes for gravimetric biosensing [J]. Sensors and Actuators B-Chemical,2011,160(1):1386-1393.
    [17] Allah M A, Thalhammer R, Kaitila J, et al. Solidly mounted BAW resonatorswith layer-transferred AlN using sacrificial Si surfaces [J]. Solid-StateElectronics,2010,54(9):1041-1046.
    [18] Altamura D, Pomarico A, Epifani G, et al. Fabrication of BAW ResonatorsBased on Piezoelectric AlN and Reflector-on-Membrane Structure [J].FERROELECTRICS,2009,389:32-40.
    [19] Yanagitani T, Kiuch M, et al. Pure-shear mode BAW resonator consisting of(11(2) over-bar0) textured AlN films [C]. IEEE Ultrasonics Symposium:Beijing, Peoples R China,2008: NOV02-05.
    [20] Capilla J, Olivares J, Clement M, et al. Ta2O5/SiO2insulating acoustic mirrorsfor AlN-based X-band BAW resonators [C]. IEEE International UltrasonicsSymposium (IUS), Orlando, FL,2011: OCT1704-1708.
    [21] Himwas C, Songmuang R, Dang L S, et al. Thermal stability of the deepultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots [J].Applied Physics Letters,2012,101(24):241914.
    [22] Lu H, Yu T, Yuan G, et al. Valence subband coupling effect on polarization ofspontaneous emissions from Al-rich AlGaN/AlN Quantum Wells [J]. OpticsExpress,2012,20(25):27384-27392.
    [23] Kong X, Wei K, Liu G G, et al. Improvement of breakdown characteristics ofan AlGaN/GaN HEMT with a U-type gate foot for millimeter-wave powerapplication [J]. Chinese Physics B,2012,21(12):128501.
    [24] Duda L C, Stagarescu C B, Downes J, et al. Density of states, hybridization,and band-gap evolution in AlxGa1-xN alloys [J]. Physics Review B,1998,58(4):1928-1933.
    [25] Wang X L, Zhao D G, Li X Y, et al. The effects of LT AlN buffer thickness onthe properties of high Al composition AlGaN epilayers [J]. Journal of CrystalGrowth,2006,60(29):3693-3696.
    [26] Zhang J P, Wang H M, Sun W H, et al. High-quality AlGaN layers over pulsedatomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes [J]. Journal of Electron Material,2003,32(5):364-370.
    [27] Dong J J. Comments on 'The influence of the1st AlN and the2nd GaN layersonproperties of AlGaN/2nd AlN/2nd GaN/1st AlN/1st GaN structure [J].Applied Physics A-Materials Science&Processing,2013,113(2):339-339.
    [28] Koehler A D, Nepal N, Anderson T, et al. Atomic Layer Epitaxy AlN forEnhanced AlGaN/GaN HEMT Passivation [J]. IEEE Electron Device Letters,2013,34(9):1115-1117.
    [29] Ide K, Matsubara Y, Iwaya M, et al. Microstructure analysis of AlGaN on AlNunderlying layers with different threading dislocation tensities [J]. JapaneseJournal of Applied Physics,2013,52(8): UNSP08JE22.
    [30] Wang D H, Hao Y, Xu S R, et al. Reducing dislocations of thick AlGaNepilayer by combining low-temperature AlN nucleation layer on c-planesapphire substrates [J]. Journal of Alloys and Compounds,2013,555:311-314.
    [31] Wu Y, Hanlon A, Kaeding J F, et al. Effect of nitridation on polarity,microstructure, andmorphology of AlN films [J]. Applied Physics Letter,2004,84(6):912-914.
    [32] Kanji Y, Suguru H, Tadashi A. Epitaxial growth of AlN films on Si substratesby ECR plasma assisted MOCVD under controlled plasma conditions inafterglow region [J]. Applied Surface Science,2000,159-160:462-467.
    [33] Tomohiko S, Keiichiro A, Yukinori N, et al. AlN epitaxial growth on off-angleR-plane sapphire substrates by MOCVD [J]. Journal of Crystal Growth,2001,229:63-68.
    [34] Zuo S, Wang J, Chen X L, et al. Growth of AlN single crystals on6H-SiC(0001) substrates with AlN MOCVD buffer layer [J] Crystal Research andTechnology,2012,47(2):139-144.
    [35] Kakanakova-Georgieva A, Nilsson D, Janzen E. High-quality AlN layersgrown by hot-wall MOCVD at reduced temperatures [J]. Journal of CrystalGrowth,2012,338(1):52-56.
    [36] Li S L, Wang H, Zhang J, et al. The effects of growth temperature of the pulseatomic layer epitaxy AlN films grown on sapphire by MOCVD [C].4thInternational Photonics and Optoelectronics Meetings (POEM)-OptoelectronicDevices and Integration/10th International Conference on Photonics andImaging in Biology and Medicine (PIBM): Wuhan, Peoples Republic of China,2011: OCT18-21.
    [37] Auner G W, Jin F. Microstructure of low temperature grown AlN thin films onSi(111)[J]. Journal of Applied Physics,1999,85(11):7879-7883.
    [38] Schenk H P D, Kaiser U, Kipshidze G D, et al. Growth of atomically smoothAlN films with a5:4coincidence inteRFace on Si(111) by MBE [J]. MaterialScience and Engineering B,1999,59:84-87.
    [39] Gerthsen D, Neubauer B, Dieker Ch, et al. Molecular beam epitaxy (MBE)growth and structural properties of GaN and AlN on3C-SiC(001) substrates[J]. Journal of Crystal Growth,1999,200:353-361.
    [40] Nechaev D V, Aseev P A, Jmerik V N, et al. Control of threading dislocationdensity at the initial growth stage of AlN on c-sapphire in plasma-assistedMBE [J]. Journal of Crystal Growth,2013,378:307-309.
    [41] Ohachi T, Yamamoto Y, Ariyada O, et al. Activity modulation MEE growth of2H-AlN on Si(111) using double buffer layer grown by PA-MBE [J]. PhysicaStatus Solidi C-Current Topics in Solid State Physics,2013,10(3):429-432.
    [42] Malin T V, Zhuravlev K S, Mansurov V G, et al. The Optimal Conditions ofObtaining AlN-Layers on Sapphire with MBE Method [C].10th InternationalConference and Seminar on Micro/Nanotechnologies and Electron Devices,Novosibirsk, RUSSIA,2009: JUL01-06.
    [43] Tersuya O, Mitsuo O, Yap Y K, et al. Growth of AlN thin films on(100)siliconby pluser laser deposition in nitrogen plasma ambient [J]. Diamond andRelated Materials,1997,6:1015-1018.
    [44] Yang H, Wang W, Liu Z, et al. Epitaxial growth of2inch diameterhomogeneous AlN single-crystalline films by pulsed laser deposition [J].Journal of Physics D-Applied Physics,2013,46(10):105101-105104.
    [45] Cappelli E, Trucchi D M, Orlando S, et al. Influence of process conditions onchemical composition and electronic properties of AlN thin films prepared byARF reactive pulsed laser deposition [C]. Symposium F on Group III Nitridesand their Heterostructures for Electronics and Photonics/ICAM IUMRS SpringMeeting of the European-Materials-Research-Society (E-MRS): Nice,FRANCE,2011: MAY09-13.
    [46] Wang Z P, Morimoto A, Kawae T, et al. Growth of preferentially-oriented AlNfilms on amorphous substrate by pulsed laser deposition [J]. Physics Letters A,2011,375(33):3007-3011.
    [47] Szekeres A, Fogarassy Z, Petrik P, et al. Structural characterization of AlNfilms synthesized by pulsed laser deposition [J]. Applied Surface Science,2011,257(12):5370-5374.
    [48] Sumitani K, Ohtani R, Yoshida T, et al. Influences of repetition rate of laserpulses on growth of crystalline AlN films on sapphire (0001) substrates bypulsed laser deposition [C].20th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides: Athens, GREECE,2009: SEP06-10.
    [49] Gong H, Jiang X. C-axis oriented AlN films prepared on diamond filmsubstrate by electron cyclotron plasma-enhanced chemical vapor deposition [J].Journal of Crystal Growth,2002,235(1-4):333-339.
    [50] Meng G Y, Liu X, Xie S, Peng D K.(0001)-oriented growth of AlN films onSi(111) by microwave plasma CVD with AlBr3-NH3-N2system [J]. Journal ofCrystal Growth,1996,163:232-237.
    [51] Olszyna A, Siwiec J, Dwilinski R, et al. Photoluminescence properties ofnanocrystalline AlN layers grown by pulse plasma assisted CVD [J]. MaterialsScience Engineering B,1997,50:170-173.
    [52] YimW M, Paff R J.Therlmal expansion of AIN, sapphire, and silicon [J].Journal of Applied Physics,1974,45(3):1456-1457.
    [53] Perry P B, Rutz R F. The optical absorption edge of single-crystal AlNprepared by a close-spaced vapor process [J]. Applied Physics Letter,1978,33(4):319-321.
    [54] Slack G A, Menelly T F. AIN single crystals [J]. Journal of CrystalGrowth,1977,42:560-563.
    [55] Koblmueller G, Averbeck R, Geelhaar L, et al. Growth diagram andmorphologies of AIN thin films grown by molecular beam epitaxy [J],Journal of Applied Physics,2003,93(12):9591-596.
    [56] Tang X, Yuan Y, Wongchotigul K, Spencer M G. Dispersion properties ofaluminum nitride as measured by an optica1waveguide technique [J].Applied Physics Letter,1997,70(24):3206-3208.
    [57] Levinshtein M, Rumyantsev S, Shur M.先进半导体材料性能与数据手册脚
    [M].北京:化学工业出版社,2003,42-44.
    [58] Yang C M, Uehara K, Kim S K, et al. Highly c-axis-oriented AlN film usingMOCVD for5GHz-band FBAR filter [C]. Proceedings of the IEEEUltrasonics Symposium: Honolulu, HI,2003: OCT05-08.
    [59] Kaneko S, Tanaka M, Masu K, et al. Epitaxial growth of AlN film by low-pressure MOCVD in gas-beam-flow reactor [J]. Journal of Crystal Growth,1991,115(1-4):643-647.
    [60] Bak S J, Mun D H, Jung K C, et al. Effect of Al pre-deposition on AlN bufferlayer and GaN film grown on Si (111) substrate by MOCVD [J]. ElectronicMaterials Letters,2013,9(3):367-370.
    [61] Wu C M, Zhang B P, Shang J Z, et al. High-reflectivity AlN/GaN distributedBragg reflectors grown on sapphire substrates by MOCVD [J]. SemiconductorScience and Technology,2011,26(5):055013.
    [62] Corekci S, Ozturk M K, Bengi A, et al. Characterization of an AlN buffer layerand a thick-GaN layer grown on sapphire substrate by MOCVD [J]. Journal ofMaterials Science,2011,46(6):1606-1612.
    [63] Sun Y Q, Wu Z H, Yin J, et al. The effects of growth temperature of AlNbuffer layers on a-plane GaN grown on r-plane sapphire by MOCVD [C].3rdInternational Photonics and OptoElectronics Meetings, Wuhan, PeoplesRepublic of China,2010: NOV02-05.
    [64] Yang C M, Kim S K. AlN Epitaxial Film Growth Using MOCVD For a GHz-band FBAR [C].14th International Symposium on the Physics ofSemiconductors and Applications: Jeju Isl, SOUTH KOREA,2008:AUG26-29.
    [65] Zollner S, Konkar A, Greqory R B, et al. Dielectric function of AlN grown onSi (111) by MBE [J]. Materials Research Society SymposiumProceedings,1999,572:231-236.
    [66] Kakuda M, Morikawa S, Kuboya S, et al. RF-MBE growth of cubicAlNonMgO (001) substrates via2-step c-GaN buffer layer [J]. Journal of CrystalGrowth,2013,378:307-309.
    [67] Yusoff M Z M, Mahyuddin A, Hassan Z, et al. Plasma-assisted MBE growth ofAlN/GaN/AlN heterostructures on Si (111) substrate [J]. Superlattice andMicrostructure,2013,60:500-507.
    [68] As D J, Mietze C. MBE growth and applications of cubic AlN/GaN quantumwells [J]. Physica Status Solidi A-Application and Materials Science,2013,210(3):474-479.
    [69] Yusoff M Z M, Mahyuddin A, Hassan Z. The Investigation ofAl0.29Ga0.71N/GaN/AlN and AlN/GaN/AlN Thin Films Grown on Si (111)by RF Plasma-assisted MBE [C].2nd ASEAN-APCTP Workshop on AdvancedMaterials Science and Nanotechnology (AMSN): MALAYSIA,2010: DEC21-23.
    [70] Kaya K, Kanno Y, Takahashi H, et al. Synthesis of AlN thin films on sapphiresubstrates by chemical vapor deposition of AlCl3-NH3systerm and surfaceacuustic wave properties [J]. Japanese Journal of Applied Physics, Part1:Regular Papers&Short Notes&Review Papers,1996,35(5A):2782-2787.
    [71] Kaya K, Takahashi H, Shibata Y, et al. Synthesis and surface acoustic waveproperties of AlN thin films fabricated on (001) and (110) sapphire subst ratesusing chemical vapor deposition of AlCl3-NH3system [J]. Japanese Journal ofApplied Physics, Part1: Regular Papers&Short Notes&Review Papers,1997,36(5A):2837-2842.
    [72] Zhang W, Someno Y, Sasaki M, et al. Low temperature epitaxial growth of AlNfilms on sapphire by electron cyclotron resonance plasma assisted chemicalvapor deposition [J]. Journal of Crystal Growth,1993,130(1-2):308-312.
    [73] Werbowy A, Olszyna A, Zdunek k, et al. Peculiarities of thin film depositionby means of reactive impulse plasma assisted chemical vapor deposition(RIPACVD) method [J]. Thin Solid Films,2004,459(1-2):160-164.
    [74] Li X, Tansley T L, Chin V W, et al. Dielectric properties of AlN films preparedby laser induced chemical vapor deposition [J].Thin Solid Films,1994,250(1-2):263-267.
    [75] Jacquot A, Lenoir B, Dauscher A, et al. Optical and thermal characterization ofAlN thin f ilms deposit ed by pulsed laser deposition [J]. Applied SurfaceScience,2002,186(1-4):507-512.
    [76] Cibert C, Dutheil P, Champeaux C, et al. Piezoelectric characteristic ofnanocrystalline AlN films obtained by pulsed laser deposition at roomtemperature [J]. Applied Physics Letters,2010,97(25):251906-251909.
    [77] Szekeres A, Vlaikova E, Cziraki A, et al. Ellipsometric characterization of AlNfilms synthesized by Pulsed-Laser-Deposition [C]. Conference on16ISCMP:Varna, BULGARIA,2010: AUG29-SEP03.
    [78] Li S L, Wang R Z, Zhao W, et al. Effects of Process Parameters on FieldEmission Characteristics of AlN Thin Films Prepared by Pulsed LaserDeposition [C].7th National Conference on Functional Materials andApplications: Hunan, Peoples Republic of China,2010: OCT1548-1552.
    [79] Bakalova S, Szekeres A, Huhn G, et al. Surface morphology of AlN filmssynthesized by pulsed laser deposition [C].12th Joint Vacuum Conference(JVC-12): Balatonalmadi, HUNGARY,2008: SEP22-26.
    [80] Gurumurugan K, Chen. Hong, Harp G R, et al. Growth and characterization ofamorphous AlN thin films by reactive magnetron sputtering at low temperature[J]. Materials Research Society Symposium Proceedings,1999,535:213-218.
    [81]封国根,顾华英,邵光杰编译[M].铝合金的离子渗氮.国外金属热处理,2000,21(3):22-26.
    [82]刘海涛,杨郦,张树安等.无机材料合成[M].北京:化学工业出2003,272-275.
    [83]王力衡,黄运添,郑海涛.薄膜技术.北京:清华大学出版社,1991,25,29,32-34.
    [84]唐伟忠.薄膜材料制备原理、技术及应用.第二版,北京:冶金工业出版社,2003,77,151.
    [85]汪洪海,郑启光,魏学勤.等离子体辅助反应式脉冲激光熔蚀制备AlN薄膜的低温生长[J].功能材料,1999,30(2):204-206.
    [86] Zigmund P. Theory of sputtering and sputtering yield of amorphous andpolycrystalline targets [J]. Physical Review,1969,184(2):383-416.
    [87] Ishitani T, Shinizu R. Computer simulation of knock-on effect under ionbombardment [J]. Physies Letters A,2002,46(7):487-488.
    [88] Ohring M. Materials seience of thin films [M]. Singa Pore: Elsevie (Singa Pore)Pte Ltd,2006,222-226.
    [89]佟洪波.磁控溅射制备AlN薄膜及其发光性能研究[D].沈阳:东北大学机械工程与自动化学院博士学位论文,2007:6-9.
    [90]许小红,武海顺.压电薄膜的制备、结构与应用[M].北京:科学出版社,2002:48-49.
    [91]朱圣龙,王福会,吴维强.反应溅射动力学理论及其应用[M].北京:中国科学技术出版社,1999:13-19.
    [92] Ohring M. Materials seience of thin films [M]. Sinagpore: Elsevier (SingaPore)PteLtd,2006,216-222.
    [93] Kelly P J, Henderson P S, Amell R D, Roehes G A, Carter D. Reactive pulsedmagnetron sputtering process for alumina films [J]. Journal of Vacuum Science&Technology A,2000,18(6):2890-2896.
    [94] Brauer G, Szczyrbowski J, Tesehner G. Mid frequency s puttering-a novel toolfor large area coating [J]. Surface&Coatings Technology,1997,94-95:658-662.
    [95] Sproul W D. High ratereactive DC magnetron sputtering of oxide and nitridesuperlattice coatings [J], Vacuum,1998,51(4):641-646.
    [96] Kouznetsov V, Macak K, Schneider J M, et al. A novel pulsed magnetronsputter technique utilizing very high target power densities [J]. Surface&Coatings Technology,1999,122(2-3):290-293.
    [97] Jonsson L B, Nyberg T, Katardjiev I, et al. Frequcy reponse in pulsed DCreactive sputtering process [J]. Thin Solid Films,2000,365(l):43-48.
    [98] Kelly P J, Amell R D. Magnetron sputtering: a review of recent developmentsand applications [J], Vacuum,2000,56(3):159-172.
    [99] Cheng H E, Lin T C, Chen W C. Preparation of [002] orienied AlN thin filmsby mid frequency reactive sputtering technique [J]. Thin solid Films,2003,425(l-2):85-89.
    [100] Zhang B S, Wu M, Shen X M, et al. Influence of high-temperature AlN bufferthickness on the properties of GaN grown on Si (111)[J]. Journal of CrystalGrowth,2003,258(1-2):34-40.
    [101] Lu Y, Liu X L, Wang X H, et al. Influence of the growth temperature of thehigh-temperature AlN buffer on the properties of GaN grown on Si(111)substrate [J]. Journal of Crystal Growth,2004,263(1-4):4-11.
    [102] Zamir S, Meyler B, Zolotoyabko E, et al. The effect of AlN buffer layer onGaN grown on (111)-oriented Si substrates by MOCVD [J]. Journal ofCrystal Growth,2000,218(2-4):181-190.
    [103] Krishnan B, Akira B, Motoaki I, et al. Influence of High Temperature in theGrowth of Low Dislocation Content AlN Bridge Layers on Patterned6H-SiCSubstrates by Metal organic Vapor Phase Epitaxy [J]. Japanese Journal ofApplied Physics,2007,46(6):307-310.
    [104] Vispute R D, Narayan J, Budai J D. High quality optoelectronic gradeepitaxial AlN films on a-Al2O3, Si and6H-SiC by pulsed laser deposition [J].Thin Solid Films,1997,299:94-103.
    [105] Lobanova A V, Mazaeva K M,Talalaevb R A, et al. Effect of V/III ratio inAlNand AlGaN MOVPE [J]. Journal of Crystal Growth,2006,287(2):601-604.
    [106] Meng W, Sell J, Eesley G, et al. Measurement of intrinsic stresses duringgrowth of aluminum nitride thin films by reactive sputter deposition [J].Journal of Applied Physics,1993,74:2411-2414.
    [107] Shuskus A, Reeder T, Paradis E. RF-Sputtered aluminum nitride films onsapphire [J]. Applied Physics Letters,1974,24:155-156.
    [108] Engelmark F, Iriarte G, Katardjiev I, et al. Structural and electroacousticstudies of AlN thin films during low temperature radio frequency sputterdeposition [J]. Journal of Vacuum Science&Technology A: Vacuum,Surfaces, and Films,2001,19:2664-2669.
    [109] Tungasmita S, Birch J, Persson P O, et al. Enhanced quality of epitaxial AlNthin films on6H-SiC by ultra-high-vacuum ion-assisted reactive dcmagnetron sputter deposition [J]. Applied Physics Letters,2000,76:170-172.
    [110] Benjamin M C, Wang C, Davis R F, Nemanich R J. Observation of a negativeelectron-affinity for hetero epitaxial AlN on alpha6h-SiC(001)[J]. AppliedPhysics Letters,1994,64:3288-3290.
    [111] Zhao Q, Xu J, Xu X Y, et al. Field emission from AlN nanoneedle arrays[J].Appl Phys Lett,2004,85:5331-5333.
    [112]邵乐喜,刘小平,谢二庆.热退火对射频反应溅射AlN薄膜场电子发射的影响[J].无机材料学报,2001(16):1015-1018.
    [113] Saleh R, Nickel N H, Maydell K V. Laser crystallization of compensatedhydrogenated amorphous silicon thin films [J]. Journal of Narometer CrystalSolids,2006,352:1003.
    [114]缪向水,胡用时,林更琪. AlN和AlSiN薄膜的制备工艺及其光学特性[J].华中理工大学学报,1995(23):187-188.
    [115]廖克俊,王万录,宽带隙半导体AlN薄膜的制备及应用[J].半导体技术,2001,26(1):21-23.
    [116]刘彦松,王连卫,黄继颇等.利用ZnO缓冲层制备AlN薄膜[J].压电与声光,2000(225):322-325.
    [117]刘吉延,斯永敏. AlN压电薄膜研究进展[J].材料导报,2003(17):210-213.
    [118] Blampain E, Elmazria O, Aubert T, et al. AlN/Sapphire: Promising Structurefor High Temperature and High Frequency SAW Devices [J]. IEEE SensorsJournal,2013,13(12):4607-4612.
    [119] Mueller A, Konstantinidis G, Neculoiu D, et al. AlN SAW structures for GHzapplications [C]. Asis Pacific Microwave Conference (APMC2008): HongKong, Peoples Republic China,2008: DEC16-20.
    [120] Bruckner G, Bardong J, Fachberger R, et al. Investigations of SAW delaylines on c-plane AlN/sapphire at elevated temperatures [C].2010IEEEInternational Frequency Control Symposium: New Port Beach, CA,2010:JUN01-04.
    [121] Trang H, Patrice R, Marie-Helene V, et al. Effect of Mo layer on performanceof AlN/Si SAW filter[C]. IEEE International Frequency Control Symposium:Honolulu, HI,2008: MAY19-21.
    [122] Benetti M. Growth and characterization of piezoelectric AlN thin films fordiamond based surface acoustic wave devices [J]. Thin Solid Films,2006,497:304-308.
    [123] Mortet V, Elmazria O, Nesladek M, et al. Study of aluminium nitrid-freestanding diamond surface acoustic waves filters [J]. Diamond RelatedMaterrials,2003,12:723-727.
    [124] Adam T, Kolodzey J, Swann C P, et al. The electrical properties of MIScapacitors with AlN gate dielectrics [J].Applied Surf ace Science,2001,175-176:428-435.
    [125] Fan Z Y, Rong G, Browning J, et al. High temperature growth of AlN byplasm-enhanced molecular beam epitaxy [J]. Materials Science andEngineering,1999, B67:80-88.
    [126] Song Z R, Yu Y H, et al. Simulation and characterization on properties of AlNfilms for SOI application [J]. Thin Solid Films,2004,459:41-47
    [127] Men C L. Fabrieation of SOI strueture with AIN film as buried insulator byIon-Cut Process [J]. Applied Surface Science,2002,199(l-4):287-292.
    [128]黄继颇,王连卫,高剑侠.超高真空电子束蒸发合成晶态AlN薄膜的研究[J].功能材料与器件学报,1998(4):278-280.
    [129] Rao R, Sun G C. Microwave annealing enhances Al-induced lateralcrystallization of amorphous silicon thin films [J]. Journal of Crystal Growth,2004,273:68-75
    [130] Won D, Redwing J M. Effect of AlN buffer layers on the surface morphologyand structural properties of N-polar GaN films grown on vicinal C-face SiCsubstrates [J]. Journal of Crystal Growth,2013,377:51-58.
    [131] Xiong H, Dai J N, Hui X, et al. Effects of the AlN buffer layer thickness onthe properties of ZnO films grown on c-sapphire substrate by pulsed laserdeposition [J]. Journal of Alloys and Compounds,2013,554:104-109.
    [132] Zuo S, Wang J, Chen X, et al. Growth of AlN single crystals on6H-SiC(0001) substrates with AlN MOCVD buffer layer [J]. Crystal Research andTechnology,2012,47(2):139-144.
    [133] Yushamdan Y, Mohd Z M Y, Mahmood A, et al. The Investigation of PorousAlxGa1-xN Layers on Si (111) Substrate with GaN/AlN as Buffer Layer [C].International Conference for Nanomaterials Synthesis and Characterization:Selangor, MALAYSIA,2011: JUL04-05.
    [134] Kim J O, Hong S K, Kim H, et al. Correlations of a High-temperature AlNBuffer Layer and Al-Preseeding with the Structural and the Optical Propertiesof GaN on a Si(111) Substrate [C].30th International Conference on thePhysics of Semiconductors (ICPS-2010): Seoul, NORTH KOREA,2010: JUL25-30.
    [135] Edwards N, Bremser M, Davis R, et al. Trends in residual stress forGaN/AlN/6H–SiC heterostructures [J]. Applied Physics Letters,1998,73:2808-2810.
    [136] Paskova T, Birch J, Tungasmita S, et al. Thick hydride vapour phase epitaxialGaN layers grown on sapphire with different buffers [J]. Physica StatusSolidi (a),1999,176:415-419.
    [137] Akasaki I, Amano H, Koide Y, et al. Effects of AlN buffer layer oncrystallographic structure and on electrical and optical properties of GaNand Ga1-xAlxN (0    [138] Wu C L, Shen C H, et al. The effects of AlN buffer on the properties of InNepitaxial films g rown on Si(111)[J]. Journal of Crystal Growth,2006,288:247-253.
    [139] Gustavo Sánchez, Abdallah B, Tristant P, et al. Microstructure andmechanical properties of AlN films obtained by plasma enhanced chemicalvapor deposition [J]. Journal of Materials Science,2009,44:6125-6134.
    [140] Gaurav S, Alika K. Dependence of N2pressure on the crystal structure andsurface quality of AlN thin films deposited via pulsed laser depositiontechnique at room temperature [J]. Applied Surface Science,2008,255:2057-2062.
    [141] Zheng R, Wu H. Development of bulk AlN single-crystal growth technology[J]. Journal of Shenzhen University Science and Engineering,2010,27(4):433-439.
    [142] Schowalter L J, Slack G A, Whitlock J B, et al. Fabrication of native, single-crystal AlN substrates [J]. Physica Status Solidi C,2003(4):1-3.
    [143] Kehagias T, Lahourcade L, Lotsari A, et al. InteRFacial structure of semipolarAlN grown on m-plane sapphire by MBE [J]. Physica Status Solidi B,2010,247(7):1637-1640.
    [144] Lai M J, Chang L Be, Yuan T T, et al. Improvement of crystal quality of AlNgrown on sapphire substrate by MOCVD [J]. Crystal Research andTechnology,2010,45(7):703-706.
    [145] Volkova A, Ivantsov V, Leung L. Hydride vapor phase epitaxy of highstructural peRFection thick AlN layers on off-axis6H-SiC [J]. Journal of Crystal Growth,2010,314(1):1133-118.
    [146] Edgar J H, Liu L, Liu B, et al. Bulk AlN crystal growth: self-seeding andseeding on6H-SiC substrates [J]. Journal of Crystal Growth,2002,246(3-4):187-193.
    [147] Gu Z, Du L, Edgar J H, et al. Sublimation growth of aluminum nitridecrystals [J]. Journal of Crystal Growth,2006,297(1):105-110.
    [148] Garrett G A, Shen H, Wraback M, et al. Excitation Wavelength Dependenceof Time-Resolved Photoluminescence in Deep-UV MQW LEDs on Bulk AlN
    [C]. Lasers and Electro-Optics (CLEO) and Quantum Electronics and LaserScience Conference (QELS), San Jose,2010.
    [149] Grandusky J R, Gibb S R, Mendrick M C, et al. Properties of mid-ultravioletlight emitting diodes fabricated from pseudomorphic layers on bulkaluminum nitride substrates [J]. Applied Physics Express,2010,3(7):1-3.
    [150] Grandusky J R, Mendrick M C, Gibb S R, et al. Development of reliable mWlevel powers in pseumorphic ultraviolet light emitting diodes on bulkaluminum nitride substrates [C]. Lasers and Electro-Optics (CLEO) andQuantum Electronics and Laser Science Conference (QELS), Baltimore,Maryland,2011: MAY01-06.
    [151] Helava H, Chemekova T, Avdeev O, et al. AlN substrates and epitaxy results[J]. Physica Status Solide C,2010,7(7-8):2115-2117.
    [152] Lu P, Collazo R, Dalmau R F, Durkaya G, et al. Seeded growth of AlN bulkcrystals in m-and c-orientation [J]. Journal of Crystal Growth,2009,312(1):58-63.
    [153] Bickermann M, Epelbaum B M, Filip O, et al. UV transparent single-crystalline bulk AlN substrates [J]. Physica Status Solidi C,2010,7(1):21-24.
    [154] Filip O, Epelbaum BM, Bickermann M, et al. Effects of growth direction andpolarity on bulk aluminum nitride crystal properties [J]. Journal of CrystalGrowth,2011,318(1):427-431.
    [155] Herro Z G, Zhuang D, Schlesser R, et al. Growth of AlN single crystallineboules [J]. Journal of Crystal Growth,2010,312(8):2519-2521.
    [156] Dalmau R, Moody B, Schlesser R. Growth and Characterization of AlN andAlGaN Epitaxial Films on AlN Single Crystal Substrates [J]. Journal of theElectrochemical Society,2011,158(5):530-535.
    [157] Rudolf P R, Landes B G. Two-dimensional X-ray powder diffraction andscattering of microcrystalline and polymeric material [J]. Spectroscopy,1994,9:22-33.
    [158] Sulyanov S N, Popov A N, Kheiker D M. Using a two-dimensional detectorfor X-ray Powder diffractometry [J]. Applied Crystal,1994,27(6):934-942.
    [159] Subramanian B, Swaminathan V, Jayachandran M. Micro-structural andoptical properties of reactive magnetron sputtered Aluminum Nitride (AlN)nanostructured films [J] Current Applied Physics,2011,11(1):43-49.
    [160] Rosenberger L, Baird R, McCullen E, et al. XPS analysis of aluminum nitridefilms deposited by plasma source molecular beam epitaxy [J].Surface andInterface Analysis,2008,40:1254-1261.
    [161] Pantojas V M, Otano W, Caraballo J N. Statistical analysis of the effect ofdeposition paramaters on the preferred orientation of sputtered AlN films [J].Thin Solid Films,2005,492:118-123.
    [162] Xu X H, Wu H S, Zhang C J, et al. Morphological properties of AlNpiezoelectric thin films deposited by DC reactive magnetron sputtering[J].Thin Solid Films,2001,388:62-67.
    [163] Xu C K, Meng X L. Acoustic Surface Wave Apparatus and Its Application[M]. Beijing: Science Press,1984:99-101.
    [164] Edgard J H. Properties of Group Ⅲ-Nitrides. London: Inspec Short Run Press,1994:22-34.
    [165] Duquenne C, Djouadi M A, Tessier P Y, et al. Epitaxial growth of aluminumnitride on AlGaN by reactive sputtering at low temperature [J]. AppliedPhysics Letters,2008,93(5):1-3.
    [166] Ivanov I, Hultman L, Jarrendahl K, et al. Growth of epitaxial AlN (0001) onSi (111) by reactive magnetron sputter deposition [J]. Journal of AppliedPhysics,1995,78(9):5721-5726.
    [167] Vispute R D, Narayan J, Budai J D, et al. High quality optoelectronicgrade epitaxial AlN films on alpha-Al2O3, Si and6H-SiC by pulsed laserdeposition [J]. Thin Solid Films,1997,299(1-2):94-103
    [168] Kohei U, Atsushi K, Jitsuo Ohta, et al. Growth temperature dependence ofstructural properties of AlN films on ZnO (000-1) substrates [J]. AppliedPhysics Letters,2007,90(14):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700