若干地形下内波传播及内潮生成问题的理论解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋中的湍混合包括机械混合和对流混合,混合的强弱是控制大洋环流的重要因素,其中机械混合的强弱取决于外界机械能的供给,风和潮汐是重要的机械能之源。内波是外界提供的机械能与混合之间联系的桥梁之一,一方面风和潮汐通过激发内波,将能量向深海和大洋内区传递,另一方面,内波的不稳定和破碎直接将机械能串级到小尺度湍流混合中去。开展倾斜地形上内波的传播以及内潮的产生等方面的研究对海洋混合过程的参数化以及混合对大洋环流的影响等方面的研究具有重要的科学意义。本文在二维线性理论框架下研究了内波在若干地形上的传播特征以及这些地形上内潮的产生。
     针对海洋中的一些地形,如陆架陆坡地形、海山地形、海沟地形,提出了一组坐标变换,该变换可以将这些海底地形变换成平底,从而使得在这些特征地形上内波的传播和内潮的产生问题得到很大的简化。
     利用提出的变换讨论了内波在线性斜坡地形、凸地形和凹地形上的传播特征,分析了入射波能通量在不同模态上的重新分布。变换的使用使得内波在给定地形上的反射波可以解析的表示出来,从而摆脱了只能使用射线追踪方法研究内波在倾斜地形上的反射问题的束缚。研究发现:1、内波在线性斜坡地形上传播时,入射波能通量在模态间的重新分布特征不仅与入射波的模态有关,还与入射波波射线的斜率与地形斜率的比值有关;无论亚临界线性斜坡地形还是超临界线性斜坡地形,其传到陆架区的能通量和反射回深海的能通量(仅对超临界线性斜坡地形)总是集中在某个或某两个模态附近;对于超临界线性斜坡地形,随着入射波波射线斜率向地形斜率的逐渐逼近,向高模态散射的能通量越来越大,向低模态散射的能通量越来越小。2、内波在凸地形上传播时,能通量在模态上的分布范围比较宽,但是同样在低模态和高模态上存在明显的峰值。3、内波在凹地形上传播时,能通量在模态上的分布范围也比较宽,但与凸地形和超临界线性斜坡地形相比,能通量在高模态上的分布没有明显的峰值。4、从总的能通量来讲,内波在凸地形和凹地形上传播时,向高模态散射的能通量与向低模态散射的能通
    
    若十地形下内波传播及内潮生成问题的理论解
    量近似相等,这意味着二者在向高模态散射能通量方面具有同等效率。5、凸地
    形上临界点附近的反射,反射波的波射线能够延伸到深海和陆架,凹地形上临界
    点附近的反射,反射波的波射线很快遇到地形发生二次反射,一般来讲二次反射
    后回到深海的波动其速度剪切并不很强,但是在进行二次反射之前的区域,速度
    剪切仍然很强,因而内波在凹地形上的反射依然能够在地形附近区域,产生强的
    速度剪切区,诱发混合。
     利用提出的坐标变换研究了若干亚临界地形上(如陆架陆坡地形、海山地形)
    内潮的产生。由于非线性边界条件的使用,前人处理有限地形上内潮的产生问题
    只能求助于射线理论,本文提出的坐标变换将若干海底地形变换成平底,从而使
    得利用特征值方法研究这些地形上的内潮生成问题成为可能。所用的求解方法为
    将解和强迫项在变换平面内进行付里叶级数展开,得到一维的波动方程,通过设
    行波解的方法求解该一维波动方程,所有模态解的叠加即为内潮生成问题的解。
    坐标变换将倾斜地形变换到了平底,同时也改变了强迫源强度的分布特征,使得
    变换之后强迫源强度的分布与原始分布有很大的不同。在亚临界地形上,随着地
    形的斜率向临界斜率逼近,对应强迫源的强度也逐渐变大,趋于无穷,因而从临
    界点出发的波射线上内潮的能量最大,剪切最强,容易诱发混合。数值模拟和外
    海实验发现内潮多从地形的波折处产生,这从本文得到的坐标变换之后的强迫源
    的强度分布中可以得到解释。亚临界陆架陆坡地形和海山地形上内潮生成问题的
    解也显示内潮的能量束从地形斜率最大的区域出发。
The ocean circulation is controlled by diapycnal mixing which consists of mechanical mixing and convective mixing. The intensity of mechanical mixing depends on the amount of mechanical energy offered by external processes, among which wind stress and tidal generation force are major sources. Internal waves are a kind of bridge relating the diapycnal mechanical mixing to external sources of mechanical energy: first, internal waves are driven by wind stress and barotropic tide so that large amount of mechanical energy are transported to abyssal ocean with propagation of internal waves; second, the mechanical energy can directly be cascaded to mixing through instability and breaking of internal waves. So it is important and essential to further investigate the generation of internal tides and the propagation of internal waves over bottom topographies.
    A sets of transforms are introduced in this dissertation, by using of which some kinds of topographies, such as continental slope and ridge, can be converted into flat bottom. The processing simplifies the generation of internal tides and reflection of internal waves over those kinds of topographies.
    Propagation of internal waves over linear slope, convex slope and concave slope are discussed by using of the transforms introduced in this dissertation. The transforms let the reflected waves from those topographies can be expressed in analytical forms. It is found that: (1) for linear slope, redistribution of incoming energy flux in modenumber space depends on both the modenumber of incident waves and the ratio of the slope of incident wave ray to slope of topography; both the transmitted and reflected energy flux(only for supercritical linear slope) focus near one or two modenumbers; for supercritical linear slope, the energy flux scattering to higher modenumbers becomes larger and the energy flux to lower modenumbers becomes smaller as the slope of incident wave ray comes near to slope of topography; (2) for convex slope, energy flux is redistributed in wide-range modenumbers and also show peaks on lower-modenubers and higher-modenumbers; (3) for concave slope, energy flux is also redistributed in wide-range modenumbers, but does not show peaks on higher-modenumbers as supercritical linear slope and convex slope do; (4) the total energy flux scattering to higher modenumbers is approximately equal to
    
    
    
    the total energy flux to lower modenumbers for internal waves propagating over both convex slope and concave slope, which means the concave slope is the same efficient to convex slope in scattering energy flux to higher modenumbers; (5) for convex slope, the wave ray reflected from near-critical topography can extend to deep ocean and shallow shelf, while for concave slope, the wave ray reflected from near-critical topography can only extend to limited distance, then meet the topography and be reflected again; generally the shear of the internal waves reflected twice from concave slope is not enhanced while the enhanced shear does also appear before second reflection takes place, the enhanced shear can bring about intense mixing, so internal waves reflected from concave slope can also produce marked mixing near critical slope.
    Internal tides generated over some kinds of topographies (such as continental slope and shelf, ridge topography) are investigated by using of the transforms introduced in this dissertation. Due to nonlinear bottom boundary condition, the generation of internal tides over finite topography can only be deal with by using of ray-tracing method beforetime. The transforms introduced in this dissertation make it possible use eigenvalue method to investigate the generation of internal tides over finite topographies. One dimensional equation can be obtained through extending the stream function and forcing term into fourier series, and this equation can be solved by assuming the traveling-wave solution. Besides converting the topographies to flat bottom, the transforms also change the distribution of forcing. For subcritical topography, the inten
引文
[1] Alford, M. H., Internal swell generation: the spatial distribution of energy flux from the wind to mixed layer near-inertial motions, J. P. O., 2001,31, 2359-2368.
    [2] Apel, J. R., 1998, Are strongly sheared baroclinic currents sources for internal solitons? Paper presented at IOS/WHOI/ONR Internal Solitary Wave Workshop; 1998, Oct 27-29, Sydney, British Columbia.
    [3] Baines, P. G, The reflexion of intemal/inertial waves from bumpy surfaces, J. F. M., 1971a, 46,273-291.
    [4] Baines, P. G, The reflexion of intemal/inertial waves from bumpy surfaces, Part 2: Split reflexion and diffraction, J. F. M., 1971b,46,113-131.
    [5] Baines, P. G, The generation of internal tides by flat-bump topography, Deep-Sea Res. 1973, 20, 179-205.
    [6] Baines, P. G. On internal tide generation models, Deep-Sea Res. 1982,29, 307-338.
    [7] Balmforth, N. J., G. R. Ierley, and W. R. Young, Tidal conversion by nearly critical topography, J. P. O. 2002, 32(10) , 2900-2914.
    [8] Bell, T. H., Lee waves in stratified flows with simple harmonic time dependence, J. F. M., 1975a, 67,705-722.
    [9] Bell, T. H., Topographically generated internal waves in the open ocean, J. G. R., 1975b, 80, 320-327.
    [10] Benielli D. and J. Sommeria, Excitation of internal waves and stratified turbulence by parametric instability, Dyn. Atmos. Oceans, 1996,23, 335-343.
    [11] Benielli D. and J. Sommeria, Excitation and breaking of internal waves by parametric instability, J. F. M., 1998, 374,117-144.
    [12] Cacchione,D. and C. Wunsch, Experimental study of internal waves over a slope, J. F. M., 1974,66,223-239.
    [13] Cox, C. S. and H. Standstrom, Coupling of surface and internal waves in water of variable depth. J. O. S. J., 20th Anniversary Volume, 1962,499-513.
    [14] Craig, P. D., Solutions for internal tide generation over coastal topography, J. M. R., 1987, 45, 83-105.
    [15] Cummins, P. E., J. Y. Cherniawski and M. G. G. Foreman, North Pacific internal tides from the Aleutian Ridge: Altimeter observations and modeling, J. M. R., 2001, 59,167-191.
    [16] Davis R. E. and A. Acrivos, The stability of oscillatory internal waves, J. F. M., 1967, 30, 723-736.
    [17] Egbert, G. D. and R. D. Ray, Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 2000,405, 775-778.
    [18] Egbert, G. D. and R. D. Ray, Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter data, J.G. R., 2001,106,22475-22502.
    [19] Eriksen C. C., Observations of internal wave reflection off sloping bottoms, J. G. R., 1982, 87. 525-538.
    [20] Eriksen C. C., Internal wave reflection and mixing at Fieberling Guyot, J. G. R., 1998, 103, 2977-2994.
    [21] Eriksen, C. C., Observations of low-latitude, near-inertial gravity waves forced by westerly wind bursts, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 173-180.
    
    
    [22] Garrett C. and Munk W. Internal waves in the ocean, Annu. Rev, Fluid Mech., 1979, 11, 339-369.
    [23] Garrett C. and L. St. Laurent, The role of internal tides in mixing the deep ocean, J. P. O., 2002, 32(10) , 2882-2899.
    [24] Gilbert D. and C. Garrett, Implication for ocean mixing of internal wave scattering off irregular topography, 1989, 19, 1716-1729.
    [25] Gregg M. C., D. W. Winkel, J. A. MacKinnon and R. C. Lien, Mixing over shelves and slopes, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 35-42.
    [26] Hasselmann K., A criterion for nonlinear wave stability, J. F. M., 1967a, 30, 737-739.
    [27] Hasselmann K., Nonlinear interactions treated by the method of theoretical physics(with application to the generation of waves by the wind), Ptoc. R. Soc. Lond. Ser. A., 1967b, 299,77-100.
    [28] Hibiya, T., Generation mechanism of infernal waves by tidal flow over a sill, J. G. R., 1986, 91,7697-7708.
    [29] Hibiya, T. M. Nagasawa, M. and Niwa, Y., Model predicted distribution of internal wave energy for diapycnal mixing processes in the deep waters of the north Pacific, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 205-214.
    [30] Holloway, P. E., E. Pelinovsky and T. Talipova, Modelling internal tide generation and evolution into internal solitary waves on the Australian North West Shelf, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 43-50.
    [31] Holloway, P. E. and M. A. Merrifield, Internal tide generation by seamount, ridge and islands. J. G. R., 1999, 104, 25937-25951.
    [32] Huang Rui Xin, On the balance of energy in the oceanic general circulation. Scientia Atmospherica Sinica, 1998, 22, 562-574.
    [33] Huang Rui Xin, Mixing and Energetics of the Oceanic thermohaline circulation, J. P. O., 1999, 29, 727-746.
    [34] Huang Rui Xin. and Jin Xiangze, Deep circulation in the South Atlantic induced by bottom-intensified mixing over the mid-ocean ridge, J. P. O., 2002, 32(7) , 2131-2150.
    [35] Huang Rui Xin and Wei Wang, Gravitational potential energy sinks/sources in the oceans. 2002, Submitted for publication in J. P. O.
    [36] Ivey, G. N., and R. I. Nokes. Mixing driven by the breaking of internal waves against sloping boundaries, J. F. M., 1989, 204,479-500.
    [37] Jeffreys, H., On fluid motions produced by differences of temperature and humidity. Quarterly Journal of the Royal Meterorological Society 51, 1925, 347-356.
    [38] Kunze, E. and J. M. Toole, Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount, J. P. O., 1997, 27,2663-2693.
    [39] Ledwell J. R, E. T. Montgomery, K. L. Polzin, L. C. ST. Laurent, R. W. Schmitt and J. M. Toole, Evidence for enhanced mixing over rough topography in the abyssal ocean, Nature, 2000,403, 179-182.
    [40] Legg, S. and C. Wunsch, Mixing generated by internal waves interacting with rough topography, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 137-140.
    [41] Legg, S. and A. Adcroft, Internal wave breaking at concave and convex continental slopes, 2002, submitted to J. P. O.
    [42] Lelong, M. P., T. J. Dunkerton and D. S. Darr, Near-inertial wave generation on an unsteady
    
    ocean current, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 197-204.
    [43] Li, M., Energetics of internal tides radiated from deep-ocean topographic features, 2001, submitted to J. P. O.
    [44] Lien, R. C. and M. C. Gregg, Observations of turbulence in a tidal beam and across a coastal ridge, J. G. R., 2001, 106, 4575-4592.
    [45] Lighthill, J, Waves in Fluids, 1978, Cambridge University Press.
    [46] Llewellyn Smith, S. G. and W. R. Yong, Conversion of the barotropic tide. J. P. O., 2002, 32(5) , 1554-1566.
    [47] Lueck R. and R. Reid, On the production and dissipation of mechanical energy in the ocean, J. G. R., 1984, 89,3439-3445.
    [48] Lueck, R. G. and T. D. Mudge, Topographically induced mixing around a shallow seamount, Science, 1997, 276, 1831-1833.
    [49] McEwan A. D., Degeneration of resonantly excited standing internal gravity waves, J. F. M., 1971,50,431-448.
    [50] McEwan A. D. and R. A. Plumb, Off-resonant amplification of finite internal wave packets, Dyn. Atm. Oceans, 1977, 2, 83-105.
    [51] Merrifield, M. A. and P. E. Holloway, Internal tide generation at open ocean topographies, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 51-56.
    [52] Merrifield, M. A., P. E. Holloway and T. M. Shaun Johnston, The generation of internal tides at the Hawaii Ridge, G. R. L., 2001, 28, 559-562.
    [53] Mied R. P., The occurrence of parametric instabilities in finite-amplitude internal gravity waves, J. F. M., 1976, 78, 763-784.
    [54] Muller, On the diffusion of momentum and mass by internal gravity waves, J. F. M., 1976, 77,789-823.
    [55] Muller P. and N. Xu, Scattering of oceanic internal gravity waves off random bottom topography, J. P. O., 1992, 22, 474-488.
    [56] Muller P. and M. Briscoe, Diapycnal mixing and internal waves, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 289-294.
    [57] Muller P. and Liu Xianbing, Scattering of internal waves at finite topography in two dimensions. Part 1: Theory and Case Studies, J. P. O., 2000a, 30, 532-549.
    [58] Muller P. and Liu Xianbing, Scattering of internal waves at finite topography in two dimensions. Part 2:Spectral calculations and boundary mixing, J. P. O., 2000b, 30, 550-563.
    [59] Munk, W. and C. Wunsch, Abyssal recipes 2. energetics of tidal and wind mixing. Deep-Sea Research I. 1998,45, 1977-2010.
    [60] Nakamura, T., et al., Vertical mixing induced by tidally generated internal waves in the Kuril Straits, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 103-116.
    [61] Olbers, D. J., Models of the oceanic internal wave field, Rev. Geophys., 1983, 21, 1567-1606.
    [62] Orlanski I., On the breaking of standing internal gravity waves, J. F. M., 1972, 54, 577-598.
    [63] Osborn, T. R., Estimates of the local rate of diffusion from dissipation measurements, J. P. O., 1980, 10, 83-59.
    [64] Phillips, O. M., On the dynamics of unsteady gravity waves of finite amplitude. Part 1, J. F. M. 1960,9, 193-217.
    [65] Phillips, O. M., The dynamics of the upper ocean, 1966, Cambridge, UK, Cambridge Univ. Press
    
    
    [66] Pollard R. T., On the generation by winds of inertial waves in the ocean, Deep-Sea Res. 1970, 17,795-812.
    [67] Polzin, K. L., J. M. Toole, J. R. Ledwell, R. W. Schmitt, Spatial variability of turbulent mixing in the abyssal ocean, Science, 1997,274, 93-96.
    [68] Rattray, M. Jr., On the coastal generation of internal tides, Tellus, 1960, 22, 54-62.
    [69] Rubenstein, D., Scattering of inertial waves by rough bathymetry. J. P. O., 1988, 18, 5-18.
    [70] Sandstrom, J.W., Dynamische Versuche mit Meerwasser. Annals in Hydrodynamic Marine Meteorology, 1908, p.6.
    [71] Samelson, R. M., Large-scale circulation with locally enhanced vertical mixing, J. P. O., 1998, 28,712-726.
    [72] Sjoberg. B. and A. Stigebrandt, Computions of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean, Deep-Sea Res., 1992, 39, 269-291.
    [73] Slinn D. N. and J. J. Riley, 1998, Turbulent dynamics of a critically reflecting internal gravity waves. Theorec. Comp. Fluid Dyn. 1998, 11, 281-303.
    [74] Slinn D. N., Along-slope current generation by obliquely incident internal waves, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 140-148.
    [75] Stigebrandt, A., Some aspects of tidal interaction with fjord constriction, Estuarine and Coastal Marine Science, 1980, 11, 151-166.
    [76] St. Laurent, L. C., J. M. Toole and R. W. Schmilt, Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin, J. P. O. 2001, 31, 3476-3495.
    [77] St. Larent. L. C. and C. Garrett, The role of internal tides in mixing the deep ocean, J. P. O. 2002, 32, 2882-2899.
    [78] Stommel, H. and A. Arons, On the abyssal circulation of the world ocean. 1. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 1960, 6, 140-154.
    [79] Thorpe S. A., On standing internal gravity waves of finite amplitude. J. F. M., 1968, 32, 489-528.
    [80] Wang D. and Peter Muller, Internal wave generation in the Equatorial undercurrent, Dynamics of Oceanic Internal Gravity Wavs II, 1999, 181-188.
    [81] Watanabe M. and T. Hibiya, Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer, 2002, submitted to G. R. L.
    [82] Webster F., Observations of inertial-period motions in the deep-sea, Rev. Geophys., 1968, 6, 473-490.
    [83] Wunsch, C., On the propagation of internal waves up a slope, Deep-Sea Research, 1968, 15, 251-258.
    [84] Wunsch, C., Internal tides in the ocean, Rev. Geophys., 1975, 13, 167-182.
    [85] Wunsch, C. and R. Ferrari, Vertical mixing, energy, and the general circulation of the oceans, 2003, in preparation for Annual Review of Fluid Dynamics.
    [86] 杜岩,南海混合层和温跃层的季节动力过程,青岛海洋大学博士论文,2002.
    [87] 徐德伦、李心铭译,Phillips著,上层海洋动力学,科学出版社,北京,1983.
    [88] 杨殿荣,海洋学,高等教育出版社,北京,1986.
    [89] 叶安乐、李凤岐编著,物理海洋学,青岛海洋大学出版社,青岛,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700