有向通讯拓扑下多航天器系统分布式协同控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天任务的复杂化,航天器的功能越来越多,若将所有功能全部集成到单一的航天器上,则不可避免地给航天任务的完成带来一定的风险。近年来,随着多智能体系统协同控制研究热潮的兴起,基于一致性的分布式协同控制在多航天器编队飞行中引起了广泛的研究。以图论为工具,由图的节点代表航天器,节点间的有向路径代表航天器间的信息传递关系,为多航天器系统协同控制的研究带来了极大的方便。本文在总结现有研究成果的基础上,基于一致性算法,在有向通讯拓扑下,对多航天器系统的分布式协同控制问题进行了深入研究,主要包括以下内容:
     在有向通讯拓扑下分别针对领航航天器(期望姿态的表现形式)状态全局可知和局部可知两种情况,研究了多航天器系统协同跟踪问题。当领航航天器状态全局可知时,考虑由修正罗德里格参数(MRP)描述的跟随航天器误差动力学方程,针对跟随航天器存在模型不确定性以及受到外部干扰的情形提出了基于非回归项的分布式自适应协同姿态跟踪控制律,使得各跟随航天器达到姿态协同并跟踪具有时变角速度的领航航天器。当领航航天器状态局部可知时,即在仅有部分跟踪航天器可获取领航航天器状态的限制下,分别针对领航航天器静止、跟随航天器保持相对指向以及领航航天器具有时变角速度三种情形提出了分布式姿态协同控制算法。当领航航天器静止时,设计分布式协同控制算法,只要航天器间的有向通讯拓扑图具有有向生成树,根据Lyapunov稳定性原理及输入到状态稳定性理论证明了闭环系统的渐近稳定性,并将上述算法扩展到各跟随航天器保持相对指向的问题中。当领航航天器具有时变角速度时,为每个跟随航天器设计两个滑模估计器,在有限时间内各跟随航天器均可估计得到领航航天器的时变状态,进一步提出了不依赖于航天器惯量的分布式自适应协同跟踪控制律。
     为了提高系统对干扰的鲁棒性并改善系统的收敛性能,开展了多航天器系统有限时间协同控制的研究。当不存在领航航天器时,借助反馈线性化的思想,提出了基于模型的分布式有限时间一致性算法,将二阶非线性系统降阶为一阶系统,进而证明一阶系统的有限时间稳定性。在仅有部分跟随航天器可获取领航航天器状态的情形下,设计包含邻居跟随航天器信息的快速终端滑模面,提出了不依赖于模型的分布式有限时间姿态调节控制律。构造Lyapunov函数,根据扩展有限时间Lyapunov稳定性定理证明了跟随航天器系统全局有限时间稳定。为削弱不连续控制带来的抖振,设计改进的边界层函数,克服了常规边界层内状态渐近稳定的缺陷,并证明系统的状态轨迹收敛到期望值的小邻域内。当领航航天器具有常值角速度时,设计连续的有限时间估计器,考虑到航天器转动惯量的不确定性及存在外部干扰的情形,提出了分布式有限时间自适应跟踪控制律。进一步指出,如果领航航天器的角加速度是有界的,那么对于跟踪时变角速度的领航航天器,所提出的控制律也是有效的。
     基于一致性理论,考虑控制输入耦合的六自由度航天器运动模型,在有向通讯拓扑下对多航天器系统相对轨道及姿态的耦合协同控制问题进行了研究。在仅有部分跟随航天器可获取领航航天器信息的情形下,针对各跟随航天器存在未建模动态以及外部环境干扰等问题,提出了一种基于切比雪夫神经网络(CNN)的自适应L2增益控制律,使得各跟随航天器在轨道交会的同时姿态保持一致。针对跟踪航天器间相对速度和角速度难以测量的特点,设计了无需相对速度及角速度信息的分布式耦合自适应控制律,保证各跟随航天器保持特定的队形且具有期望的相对指向。当领航航天器为动态时,给出三个滑模估计器对领航航天器状态进行估计,设计仅需期望状态的CNN自适应更新算法,利用双曲正切函数的性质,提出了考虑控制输入饱和的分布式自适应协同控制律。
     本文中,针对每个航天器所提出的控制算法都是仅依赖于其自身及相邻航天器的信息,因此所有的控制算法是都是分布式的。
As the increasing complexity of the space missions, the spacecraft need to becomemore and more powerful. It brings certain risks inevitably to the completion of the spacemission if all features are all integrated into one single spacecraft. Recently, distributedcoordinated control has gained much attention for multiple spacecraft formation flying.Using graph theory, the node represents the spacecraft, and the directed path betweentwo nodes represents the information transmission relationships among the spacecraft,which brings greater convenience to study the distributed coordinated control for multiplespacecraft system. The dissertation surveys the recent results on multi-agent systemsand spacecraft formation flying, and give a deep study on the distributed coordinatedcontrol for multiple spacecraft systems under a directed communication topology. Themain contents and contributions of this dissertation can be summarized as follows:
     The coordinated tracking problem for spacecraft formation flying under a generaldirected graph is investigated. Two cases have been studied, namely, all the followerspacecraft can obtain the information of the leader spacecraft and only a subset of thefollower spacecraft has access to the leader spacecraft. In the first case, for the errordynamic equations of spacecraft described by the Modified Rodriguez Parameters (M-RP), a nonregressor-based adaptive cooperative tracking control algorithm is proposedfor multiple spacecraft formation flying dealing with modeling uncertainties and externaldisturbances. As a result, all follower spacecraft in the formation converge to the desiredattitude cooperatively and track the time-varying leader spacecraft. In the second case,under the constraint that only a subset of follower spacecraft has access to the leaderspacecraft, a distributed coordinated algorithm is proposed to guarantee that all the fol-lower spacecraft could track the stationary and/or dynamic leader spacecraft. For the casewhere the leader spacecraft has a constant attitude, a distributed controller is developedand it is then extended to achieve relative attitude maintenance. According to Lyapunovstability theory and the input-to-state stability theory, the resulting closed-loop systemsare asymptotically stable as long as the directed communication graph characterizing theinteraction among the followers and the leader contains a directed spanning tree. More-over, for the case where the leader spacecraft has a varying attitude, two sliding-modeestimators are presented for each follower to obtain the estimates of the leader’s attitude and angular velocity using only local information in finite time. Then, an adaptive attitudecoordinated tracking control law is synthesized in the presence of model uncertainties.
     To improve the robustness of the system and obtain fast convergence performance,we design finite-time attitude coordinated control for multiple spacecraft systems. Forthe leaderless consensus problem, a model-dependent distributed finite-time consensusalgorithm is proposed using feedback linearization theory. On the sliding mode manifold,the finite-time consensus problem for multi-spacecraft systems with second-order non-linear dynamics becomes to the problem for first-order dynamics. For the leader space-craft coordinated tracking problem, a model-independent distributed finite-time attitudecoordination control algorithm for multiple spacecraft formation under a direct commu-nication topology is proposed using fast terminal sliding mode in the case that the leaderspacecraft reference state may only be available to a part of the following spacecraft. Byconstructing Lyapunov function, multiple spacecraft system is proved with global finite-time convergence based on the extended finite time Lyapunov theory and the proposecontrol algorithm can guarantee that the attitudes and angular velocities converge to thedesired values. In order to reduce the chatting of the discontinuous control, the modifiedboundary layer approach was adopted because of the asymptotic stability in the normalboundary layer. The modified control algorithm can guarantee that the attitudes and an-gular velocities converge to a neighborhood of the desired states in finite time. Whenthe leader spacecraft has a constant angular velocity, we propose a distributed continu-ous finite-time estimator and a distributed finite-time adaptive tracking control algorithmto deal with modeling uncertainties and external disturbances. Furthermore, the proposedalgorithm can track the leader spacecraft with a time-varying angular velocity if the leaderspacecraft’s angular acceleration is bounded.
     Based on the consensus theory, the coupled cooperative control for relative orbitsand attitudes of a multiple spacecraft system is investigated under a directed communi-cation topology. Considering the nonlinear equations for the relative obits of near-earthspacecraft and the attitude motion equations in terms of the MRP, six degrees of free-dom (6DOF) motion equations with coupled control input, unknown nonlinearities, andexternal disturbance are built. In the case where the leader spacecraft state may only beavailable to only a subset of follower spacecraft, we proposes an adaptive L2gain con-trol algorithm based on Chebyshev Neural networks. It is shown that a fleet of followersrendezvous at a fixed point and point toward the same direction. Due to the fact that the relative velocities and relative angular velocities among the follower spacecraft as difcultto be measured, we propose a distributed coupled adaptive control algorithm without us-ing neighbor’s velocities and angular velocities such that all follower spacecraft maintaina desired formation and relative attitudes. In the case that the leader spacecraft are dy-namic, a distributed coupled coordinated tracking control algorithm and an adaptive lawusing only the leader spacecraft state combined with a distributed sliding mode estimatoris proposed subject to input saturation constraints.
     In this dissertation, the proposed algorithms for each follower spacecraft is onlydependent on its own information and the information of its neighbor spacecraft. Thus,the proposed algorithms are distributed.
引文
[1]林来兴.分布式空间系统和航天器编队飞行辨析——兼谈航天器知识编队和精确编队飞行应用实例[J].航天器工程,2008,17(4):24–29.
    [2]张育林,曾国强,王兆魁等.分布式卫星系统理论及应用[M].北京:科学出版社,2008.
    [3]王兆魁.分布式卫星动力学建模与控制研究[D].长沙:国防科技大学,2006:4–8.
    [4] Stephens G, Vane D, Boain R, et al. The CloudSat Mission and the A-Train[J].Bulletin of the American Meteorological Society,2002,83(12):1771-1790.
    [5] Mazanek D, Kumar R, Seywald H. GRACE Mission Design: Impact of Uncertain-ties in Disturbance Environment and Satellite Force Models[C]//AAS/AIAA SpaceFlight Mechanics Meeting. Clearwater, Florida: AAS,2002.
    [6] Gill E, D’Amico S, Montenbruck O. Autonomous Formation Flying for the PRIS-MA Mission[J]. AIAA Journal of Spacecraft and Rockets,2007,44(3):671-681.
    [7] Moreira A, Krieger G, Hajnsek I, et al. TanDEM-X: a TerraSAR-X Add-on Satel-lite for Single-pass SAR Interferometry[C]//Proceedings of IEEE International onGeoscience and Remote Sensing Symposium. Genmany: IEEE,2004,2:1000-1003.
    [8] Krieger G, Moreira A, Fiedler H, et al. TanDEM-X: a Satellite Formation for High-resolution SAR Interferometry[J]. IEEE Transactions on Geoscience and RemoteSensing,2007,45(11):3317-3341.
    [9] Lindensmith C. Terrestrial Planet Finder: Technology Development Plans andProgress[C]//Proceedings of Aerospace Conference. New York, USA: IEEE,2004,6:4684-4689.
    [10] Lawson P, Dooley J. Technology Plan for the Terrestrial Planet Finder Interferome-ter[J]. Jet Propulsion Laboratory, National Aeronautics and Space Administration,2005,5(5):20-45.
    [11] Escoubet C, Russell C, Schmidt R. The Cluster and Phoenix Missions[J]. SpaceScience Reviews,1997,79:7-9.
    [12] Racca G, McNamara P. The LISA Pathfinder Mission Tracing Einstein’s Geodesicsin Space[J]. Space Science Reviews,2010,151(1-3):159-181.
    [13] Brown O, Eremenko P. Application of Value-centric Design to Space Architec-tures: the case of Fractionated Spacecraft[C]//Proceedings of AIAA Space Confer-ence and Exposition. San Diego, CA: AIAA,2008.
    [14] Lafleur J, Saleh J. Exploring the F6Fractionated Spacecraft Trade Space with GT-FAST[C]//Proceeding of Space Conference&Exposition. Pasadena, California:AIAA,2009:1–22.
    [15] Tsitsiklis J N, Bertsekas D P, Athans M. Distributed Asynchronous Deterministicand Stochastic Gradient Optimization Algorithms[J]. IEEE Transactions on Auto-matic Control,1986,31(9):803–812.
    [16] Jadbabaie A, Lin J, Morse A S. Coordination of Groups of Mobile Autonomous A-gents Using Nearest Neighbor Rules[J]. IEEE Transactions on Automatic Control,2003,48(6):988–1001.
    [17] Olfati-Saber R, Murray R M. Consensus Problems in Networks of Agents withSwitching Topology and Time-delays[J]. IEEE Transactions on Automatic Control,2004,49(9):1520–1533.
    [18] Fax J A, Murray R M. Information Flow and Cooperative Control of Vehicle For-mations[J]. IEEE Transactions on Automatic Control,2004,49(9):1465–1476.
    [19] Ren W, Beard R. Consensus Seeking in Multiagent Systems under DynamicallyChanging Interaction Topologies[J]. IEEE Transactions on Automatic Control,2005,50(5):655–661.
    [20] Moreau L. Stability of Multi-agent Systems with Time-dependent CommunicationLinks[J]. IEEE Transactions on Automatic Control,2005,50(2):169–182.
    [21] Lin J, Morse A S, Anderson B D O. The Multi-Agent Rendezvous Prob-lem[C]//Proceedings of the IEEE Conference on Decision and Control. Maui,Hawaii: IEEE,2003:1508–1513.
    [22] Lin J, Morse A S, Anderson B D O. The Multi-Agent Rendezvous Problem-The Asynchronous Case[C]//Proceedings of the IEEE Conference on Decision andControl. Paradise Island, Bahamas: IEEE,2004:1926–1931.
    [23] Martinez S, Cortes J, Bullo F. On Robust Rendezvous for Mobile AutonomousAgents[C]//IFAC World Congress. Prague, Czech Republic: IEEE,2005.
    [24] Ren W. Multi-vehicle Consensus with a Time-varying Reference State[J]. Systems&Control Letters,2007,56(7–8):474–483.
    [25] Ren W. On Consensus Algorithms for Double-integrator Dynamics[J]. IEEETransactions on Automatic Control,2008,53(6):1503–1509.
    [26]王莉.基于群集智能体的复杂动态网络协同控制研究[D].天津:南开大学,2009.
    [27] Ren W, Beard R W. Distributed Consensus in Multi-vehicle Cooperative Con-trol[M]. London: Springer-Verilag,2008.
    [28] Ren W. Consensus Tracking Under Directed Interaction Topologies: Algorithmsand Experiments[J]. IEEE Transactions on Control Systems Technology,2010,18(1):230–237.
    [29] Ren W, Cao Y. Distributed Coordination of Multi-agent Networks[M]. London:Springer-Verilag,2011.
    [30] Corte′s J. Finite-time Convergent Gradient Flows with Applications to NetworkConsensus[J]. Automatica,2006,42(11):1993–2000.
    [31]肖锋.多智能体网络系统的一致性[D].北京:北京大学,2008.
    [32] Khoo S, Xie L, Man Z. Robust Finite-Time Consensus Tracking Algorithmfor Multirobot Systems[J]. IEEE/ASME Transactions on Mechatronics,2009,14(2):219–318.
    [33] Xiao F, Wang L, Chen J, et al. Finite-time Formation Control for Multi-agentSystems[J]. Automatica,2009,45(11):2605–2611.
    [34] Wang L, Xiao F. Finite-time Consensus Problems for Networks of Dynamic A-gents[J]. IEEE Transactions on Automatic Control,2010,55(4):950–955.
    [35]佘莹莹.多智能体系统一致性若干问题研究[D].武汉:华中科技大学,2010:76–96.
    [36] Li S, Du H, Lin X. Finite-time Consensus Algorithm for Multi-agent Systems withDouble-integrator Dynamics[J]. Automatica,2011,47(8):1706–1712.
    [37] Lawton J R, Beard R W, Young B. A Decentralized Approach To Formation Ma-neuvers[J]. IEEE Transactions on Robotics and Automation,2003,19(6):933–941.
    [38] Marshall J A, Broucke M E, Francis B A. Formations of Vehicles in Cyclic Pur-suit[J]. IEEE Transactions on Automatic Control,2004,49(11):1963–1974.
    [39] Laferriere G, A.Williams, Caughman J, et al. Decentralized Control of VehicleFormations[J]. Systems&Control Letters,2005,54(9):899–910.
    [40] Lin Z, Francis B, Maggiore M. Necessary and Sufcient Graphical Conditionsfor Formation Control of Unicycles[J]. IEEE Transactions on Automatic Control,2005,50(1):121–127.
    [41] Cao Y, Ren W, Meng Z. Decentralized Sliding Mode Estimators and Their Ap-plications in Finite-time Decentralized Formation Tracking[C]//Proceedings of theAmerican Control Conference. Baltimore, MD, USA: IEEE,2010:4610–4615.
    [42] Cao Y, Ren W. Distributed Coordinated Tracking with Reduced Interaction via aVariable Structure Approach[J]. IEEE Transactions on Automatic Control,2012,57(1):33–48.
    [43] Ji M, Ferrari-Trecate G, Egerstedt M, et al. Containment Control in Mobile Net-works[J]. IEEE Transactions on Automatic Control,2008,53(5):1972–1975.
    [44] Cao Y, Ren W. Containment Control with Multiple Stationary or Dynamic LeadersUnder a Directed Interaction Graph[C]//Proceedings of the IEEE Conference onDecision and Control. Shanghai, China: IEEE,2009:3014–3019.
    [45] Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Leader-follower CooperativeAttitude Control of Multiple Rigid Bodies[J]. Systems&Control Letters,2009,58(6):429–435.
    [46] Mei J, Ren W, Ma G. Distributed Containment Control for Lagrangian Network-s with Parametric Uncertainties Under a Directed Graph[J]. Automatica,2012,48(4):653–659.
    [47] Meng Z, Lin Z, Ren W. Leader–follower Swarm Tracking for Networked LagrangeSystems[J]. Systems&Control Letters,2012,61(1):117–126.
    [48] Liu H, Xie G, Wang L. Containment of Linear Multi-agent Systems Under GeneralInteraction Topologies[J]. Systems&Control Letters,2012,61(4):528–534.
    [49] Lou Y, Hong Y. Target Containment Control of Multi-agent Systems with RandomSwitching Interconnection Topologies[J]. Automatica,2012,48(5):879–885.
    [50] Lawton J R, Beard R W. Synchronized Multiple Spacecraft Rotations[J]. Auto-matica,2002,38(8):1359–1364.
    [51] Ren W, Beard R W. Decentralized Scheme for Spacecraft Formation Flying via theVirtual Structure Approach[J]. Journal of Guidance, Control, and Dynamics,2004,27(1):73–82.
    [52] Jin E, Jiang X, Sun Z. Robust Decentralized Attitude Coordination Control ofSpacecraft Formation[J]. Systems&Control Letters,2008,57(7):567–577.
    [53] Ren W. Distributed Attitude Consensus among Multiple Networked Space-craft[C]//Proceedings of the American Control Conference. Minneapolis, MN:IEEE,2006:1760–1765.
    [54]靳尔东.姿态协同控制研究[D].哈尔滨:哈尔滨工业大学,2009:149–163.
    [55]孟子阳.基于一致性算法的多航天器姿态协同控制研究[D].北京:清华大学,2010.
    [56] Olfati-Saber R, Fax J A, Murray R M. Consensus and Cooperation in NetworkedMulti-Agent Systems[J]. Proceedings of the IEEE,2007,95(1):215–233.
    [57] Ren W, Beard R W, Atkins E M. Information Consensus in Multivehicle Coopera-tive Control[J]. IEEE Control Systems Magazine,2007,27(2):71–82.
    [58]闵海波,刘源,王仕成等.多个体协调控制问题综述[J].自动化学报,2012,38(10):1557–1570.
    [59] Olfati-Saber R. Flocking for Multi-Agent Dynamic Systems: Algorithms and The-ory[J]. IEEE Transactions on Automatic Control,2006,51(3):401–420.
    [60] Hong Y, Hu J, Gao L. Tracking control for multi-agent consensus with an activeleader and variable topology[J]. Automatica,2006,42(7):1177–1182.
    [61] Hong Y, Chen G, Bushnell L. Distributed observers design for leader-followingcontrol of multi-agent networks[J]. Automatica,2008,44(3):846–850.
    [62] Yu W, Chen G, Cao M, et al. Second-Order Consensus for Multiagent System-s With Directed Topologies and Nonlinear Dynamics[J]. IEEE Transactions onSystems, Man, and Cybernetics-Part B: Cybernetics,2010,40(3):881–891.
    [63] Abdessameud A, Tayebi A. On Consensus Algorithms for Double-integrator Dy-namics without Velocity Measurements and with Input Constraints[J]. Systems&Control Letters,2010,59(12):812–821.
    [64] Spong M W, Chopra N. Synchronization of Networked Lagrangian System-s[C]//Lagrangian and Hamiltonian Methods for Nonlinear Control. New York:Springer-Verlag,2007:47–59.
    [65] Cheng L, guang Hou Z, Tan M. Decentralized Adaptive Leader-follower Con-trol of Multimanipulator System with Uncertain Dynamics[C]//Proceedings of The34th Annual Conference of IEEE on Industrial Electronics. Orlando, FL: IEEE,2008:1608–1613.
    [66] Ren W. Distributed Leaderless Consensus Algorithms for Networked Euler-Lagrange Systems[J]. International Journal of Control,2009,82(11):2137–2149.
    [67] Chung S J, Slotine J J E. Cooperatice Robot Control and Concurrent Synchroniza-tion of Lagrangian Systems[J]. IEEE Transactions on Robotics,2009,25(3):686–700.
    [68] Chen G, Lewis F L. Distributed Adaptive Tracking Control for Synchronizationof Unknown Networked Lagrangian Systems[J]. IEEE Transactions on Systems,Man, and Cybernetics-Part B: Cybernetics,2011,41(3):805–816.
    [69]梅杰.多Lagrange系统的分布式协调控制[D].哈尔滨:哈尔滨工业大学,2011.
    [70] Nuno E, Ortega R, Basanez L, et al. Synchronization of Networks of Nonidenti-cal Euler-Lagrange Systems with Uncertain Parameters and Communication De-lays[J]. IEEE Transactions on Automatic Control,2011,56(4):935–941.
    [71] Cheng L, Hou Z, Tan M. Decentralized Adaptive Consensus Control forMulti-manipulator System with Uncertain Dynamics[C]//Proceedings of IEEE In-ternational Conference on Systems, Man, and Cybernetics. Singapore: IEEE,2008:2712–2717.
    [72] Mei J, Ren W, Ma G. Distributed Coordinated Tracking with a Dynamic Leaderfor Multiple Euler-Lagrange Systems[J]. IEEE Transactions on Automatic Control,2011,56(6):1415–1421.
    [73] Mei J, Ren W, Ma G. Containment Control for Multiple Euler-Lagrange Sys-tems with Parametric Uncertainties in Directed Networks[C]//Proceedings of theAmerican Control Conference. San Francisco, CA: IEEE,2011:2186–2191.
    [74] Mesbahi M, Hadaegh F Y. Formation Flying Control of Multiple Spacecraft viaGraphs, Matrix Inequalities, and Switching[J]. Journal of Guidance, Control, andDynamics,2001,24(2):369–377.
    [75]彭科.带领导者的多智能体系统中的一致性问题研究[D].上海:上海交通大学,2009:15–30.
    [76] Ren W. Distributed Attitude Alignment in Spacecraft Formation Flying[J]. Interna-tional Journal of Adaptive Control and Signal Processing,2007,21(2–3):95–113.
    [77] VanDyke M C, Hall C D. Decentralized Coordinated Attitude Control Within aFormation of Spacecraft[J]. Journal of Guidance, Control, and Dynamics,2006,29(5):1101–1109.
    [78] Abdessameud A, Tayebi A. Attitude Synchronization of a Group of SpacecraftWithout Velocity Measurements[J]. IEEE Transactions on Automatic Control,2009,54(11):2642–2648.
    [79]张保群,宋申民,陈兴林.编队飞行分布式鲁棒饱和姿态协同控制[J].航空学报,2011,32(9):1644–1655.
    [80]周稼康,胡庆雷,马广富等.带时变通信时间延迟的卫星编队姿态协同自适应L2增益控制[J].航空学报,2011,32(2):321–329.
    [81]陈志明,王惠南,刘海颖.基于信息一致性的分布式卫星姿态同步研究[J].宇航学报,2010(10):2283–2288.
    [82] Chung S J, Ahsun U, Slotine J J E. Application of Synchronization to FormationFlying Spacecraft: Lagrangian Approach[J]. Journal of Guidance, Control, andDynamics,2009,32(2):512–526.
    [83] Bai H, Arcak M, Wen J T. Rigid Body Attitude Coordination Without InertialFrame Information[J]. Automatica,2008,44(12):3170–3175.
    [84] Meng Z, Ren W, You Z. Decentralized Cooperative Attitude Tracking Using Modi-fied Rodriguez Parameters Based on Relative Attitude Information[J]. InternationalJournal of Control,2010,83(12):2427–2439.
    [85] Cong B, Liu X, Chen Z. Distributed Attitude Synchronization of Formation Flyingvia Consensus-based Virtual Structure[J]. Acta Astronautica,2011,68:1973–1986.
    [86] Liang H, Wang J, Sun Z. Robust Decentralized Coordinated Attitude Control ofFormation Spacecraft[J]. Acta Astronautica,2011,69(5-6):280–288.
    [87] Ren W. Distributed Cooperative Attitude Synchronization and Tracking for Mul-tiple Rigid Bodies[J]. IEEE Transactions on Control Systems Technology,2010,18(2):383–392.
    [88] Li Z, Duan Z. Distributed Adaptive Attitude Synchronization of Multiple Space-crafts[J]. Science China Technological Sciences,2011,54(8):1992–1998.
    [89] Wu B, Wang D, Poh E K. Decentralized Robust Adaptive Control for Attitude Syn-chronization Under Directed Communication Topology[J]. Journal of Guidance,Control, and Dynamics,2011,34(4):1276–1282.
    [90] Riberos J. New Decentralized Algorithms for Spacecraft Formation Control Basedon a Cyclic Approach[D]. Massachusetts: Massachusetts Institute of Technology,2010.
    [91] Arcak M. Passivity As a Design Tool for Group Coordination[J]. IEEE Transac-tions on Automatic Control,2007,52(8):1380–1390.
    [92] Xiao L, Boyd S. Fast Linear Iterations for Distributed Averaging[J]. Systems andControl Letters,2004,53(1):65–78.
    [93] Olfati-Saber R. Distributed Kalman Filter with Embedded Consensus Filter-s[C]//Proceedings of the IEEE Conference on Decision and Control and EuropeanControl Conference. Seville, Spain: IEEE,2005:8179–8184.
    [94] Bhat S, Bernstein D. Finite-time Stability of Homogeneous System-s[C]//Proceedings of the American Control Conference. Albuquerque, NM: IEEE,1997:2513–2514.
    [95] Bhat S P, Bernstein D S. Continuous Finite-Time Stabilization of the Translationaland Rotational Double Integrators[J]. IEEE Transactions on Automatic Control,1998,43(5):678–682.
    [96] Feng Y, Yu X, Man Z. Non-singular Terminal Sliding Mode Control of RigidManipulators[J]. Automatica,2002,38(12):2159–2167.
    [97] Yu S, Yu X, Shirinzadeh B, et al. Continuous Finite-time Control for RoboticManipulators with Terminal Sliding Mode[J]. Automatica,2005,41(11):1957–1964.
    [98] Hui Q, Haddad W M, Bhat S P. Finite-Time Semistability and Consensus for Non-linear Dynamical Networks[J]. IEEE Transactions on Automatic Control,2008,53(8):1887–1900.
    [99] Hong Y, Jiang Z, Feng G. Finite-Time Input-to-State Stability and Applications toFinite-Time Control[C]//Proceedings of the17th World Congress The InternationalFederation of Automatic Control. Seoul, Korea: IFAC,2008:2466–2471.
    [100] Wang X, Hong Y. Finite-Time Consensus for Multi-Agent Networks with Second-Order Agent Dynamics[C]//Proceedings of the17th World Congress The Interna-tional Federation of Automatic Control. Seoul, Korea: IFAC,2008:15185–15190.
    [101] Jiang F, Wang L. Finite-time Information Consensus for Multi-agent Systemswith Fixed and Switching Topologies[J]. Physica D: Nonlinear Phenomena,2009,238(16):1550–1560.
    [102] Du H, Li S. Finite-Time Attitude Stabilization for a Spacecraft Using Homoge-neous Method[J]. Journal of Guidance, Control, and Dynamics,2012,35(3):740–748.
    [103] Li J, Ren W, Xu S. Distributed Containment Control with Multiple Dynamic Lead-ers for Double-Integrator Dynamics Using Only Position Measurements[J]. IEEETransactions on Automatic Control,2012,57(6):1553–1559.
    [104]佘莹莹,方华京.基于一类连续非线性函数的多智能体系统有限时间一致性[J].控制与决策,2011,26(7):1101–1104.
    [105] Meng Z, Ren W, You Z. Distributed Finite-time Attitude Containment Control forMultiple Rigid Bodies[J]. Automatica,2010,46(12):2092–2099.
    [106]高岱,吕建婷,王本利.航天器有限时间输出反馈姿态控制[J].航空学报,2012,32(11):2074–2081.
    [107] Cheng L, Hou Z, Tan M, et al. Neural-Network-Based Adaptive Leader-FollowingControl for Multiagent Systems with Uncertainties[J]. IEEE Transactions on Neu-ral Networks,2010,21(8):1351–1358.
    [108] Du H, Li S, Qian C. Finite-time Attitude Tracking Control of Spacecraft with Ap-plication to Attitude Synchronization[J]. IEEE Transactions on Automatic Control,2011,56(11):2711–2717.
    [109] Schaub H, Junkins J L. Analytical Mechanics of Aerospace Systems[M]. USA:American Institute of Aeronautics and Astronautics,2003.
    [110] de Queiroz M S, Kapila V, Yan Q. Adaptive Nonlinear Control of Multiple Space-craft Formation Flying[J]. Journal of Guidance, Control, and Dynamics,2000,23(3):385–390.
    [111] Kristiansen R, Loria A, Chaillet A, et al. Adaptive Output Feedback Control ofSpacecraft Relative Translation[C]//Proceedings of the IEEE Conference on Deci-sion and Control. San Diego, CA: IEEE,2006:6010–6015.
    [112] Grotli E I, Gravdahl J T. Passivity Based Controller-observer Schemes for RelativeTraslation of a Formation of Spacecraft[C]//Proceedings of the American ControlConference. New York, USA: IEEE,2007:4684–4689.
    [113] Lim H C, Bang H. Adaptive Control for Satellite Formation Flying under ThrustMisalignment[J]. Acta Astronautica,2009,65(1-2):112–122.
    [114] Inalhan G, Tillerson M, How J P. Relative Dynamics and Control of SpacecraftFormations in Eccentric Orbits[J]. Journal of Guidance, Control, and Dynamics,2002,25(1):48–59.
    [115] Carter T E. New form for the optimal rendezvous equations near a Keplerian or-bit[J]. Journal of Guidance, Control, and Dynamics,1990,13(1):183–186.
    [116] Wang P K C, Hadaegh F Y. Coordination and Control of Multiple Microspace-craft Moving in Formation[J]. The Journal of the Astronautical Sciences,1996,44(3):315–355.
    [117] Wang P K C, Hadaegh F Y, Lau K. Synchronized Formation Rotation and AttitudeControl of Multiple Free-Flying Spacecraft[J]. Journal of Guidance, Control andDynamics,1999,22(1):28–35.
    [118]卢伟,耿云海,陈雪芹等.在轨服务航天器对目标的相对位置和姿态耦合控制[J].航空学报,2011,32(5):857–865.
    [119]吴云华.编队卫星相对轨道与姿态耦合控制方法研究[D].哈尔滨:哈尔滨工业大学,2009:8–14,118–129.
    [120] Sun H, Li S, Fei S. A Composite Control Scheme for6DOF Spacecraft FormationControl[J]. Acta Astronautica,2011,69(7):595–611.
    [121] Kristiansen R. Dynamic Synchronization of Spacecraft[D]. Trondheim: Norwe-gian University of Science and Technology,2008.
    [122] Grotli E I. Robust Stability and Control of Spacecraft Formations[D]. Trondheim:Norwegian University of Science and Technology,2010.
    [123] Krogstad T R. Attitude Synchronization in Spacecraft Formations: Theoreticaland Experimental Results[D]. Trondheim: Norwegian University of Science andTechnology,2010.
    [124] Beard R W, Lawton J R, Hadaegh F Y. A Coordination Architecture for SpacecraftFormation Control[J]. IEEE Transactions on Control Systems Technology,2001,9(6):777–790.
    [125] Ahn C, Kim Y. Point Targeting of Multisatellites via a Virtual Structure FormationFlight Scheme[J]. Journal of Guidance, Control, and Dynamics,2009,32(4):1330–1344.
    [126]毕鹏,罗建军,张博.一种基于一致性理论的航天器编队飞行协同控制方法[J].宇航学报,2010(1):70–74.
    [127]周稼康,胡庆雷,马广富等.基于一致性算法的卫星编队姿轨耦合的协同控制[J].系统工程与电子技术,2011,33(4):825–832.
    [128] Ren W. Formation Keeping and Attitude Alignment for Multiple Spacecraftthrough Local Interactions[J]. Journal of Guidance, Control, and Dynamics,2007,30(2):633–638.
    [129]张博,罗建军,袁建平.多航天器编队在轨自主协同控制研究[J].宇航学报,2010,31(1):130–136.
    [130] Tsiotras P. Further Passivity Results For The Attitude Control Problem[J]. IEEETransactions on Automatic Control,1998,43(11):1597–1600.
    [131] Slotine J J E, Benedetto M D D. Hamiltonian Adaptive Control of Spacecraft[J].IEEE Transactions on Automatic Control,1990,35(7):848–852.
    [132] Subbarao K, Welsh S. Nonlinear Control of Motion Synchronization for Satel-lite Proximity Operations[J]. Journal of Guidance, Control, and Dynamics,2008,31(5):1284–1294.
    [133] Spong M W, Hutchinson S, Vidyasagar M. Robot Modeling and Control[M]. NewYork: John Wiley&Sons, Inc.,2006.
    [134] Biggs N. Algebraic Graph Theory[M]. Cambridge, UK: Cambridge UniversityPress,1993.
    [135] Patra J C, Kot A C. Nonlinear Dynamic System Identification Using ChebyshevFunctional Link Artificial Neural Networks[J]. IEEE Transactions on Systems,Man, and Cybernetics-Part B: Cybernetics,2002,32(4):505–511.
    [136] Slotine J J E, Li W. Applied Nonlinear Control[M]. Englewood Clifs, New Jersey:Prentice Hall,1991.
    [137] Ioannou P A. Robust Adaptive Control[M]. Englewood Clifs, New Jersey: Pren-tice Hall,1996.
    [138] Khalil H K. Nonlinear Systems[M].3rd. Upper Saddle River, NJ: Prentice Hall,2002.
    [139]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003.
    [140] Tang Y. Terminal Sliding Mode Control for Rigid Robots[J]. Automatica,1998,34(1):51–56.
    [141] Zhu Z, Xia Y, Fu M. Attitude Stabilization of Rigid Spacecraft with Finite-timeConvergence[J]. International Journal of Robust and Nonlinear Control,2011,21(6):686–702.
    [142] Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge, UK: Cambridge Uni-versity Press,1985.
    [143] Horn R A, Johnson C R. Topics in Matrix Analysis[M]. Cambridge, UK: Cam-bridge University Press,1991.
    [144] Hardy G, Littlewood J, Polya G. Inequalities[M]. Cambridge, UK: CambridgeUniversity Press,1952.
    [145] Cai W, Liao X, Song Y. Indirect Robust Adaptive Fault-tolerant Control for Atti-tude Tracking of Spacecraft[J]. Journal of Guidance, Control, and Dynamics,2008,31(5):1456–1463.
    [146] Desoer C A, Vidyasagar M. Feedback Systems: Input-Output Properties[M]. NewYork: Academic Press Inc.,1975.
    [147] Schaub H, Junkins J L. Stereographic Orientation Parameters for Attitude Dynam-ics: a Generalization of the Rodrigues Parameters[J]. Journal of the AstronauticalSciences,1996,44(1):1–19.
    [148] Cao Y, Ren W, Meng Z. Decentralized Finite-Time Sliding Mode Estimators andtheir Applications in Decentralized Finite-Time Formation Tracking[J]. Systems&Control Letters,2010,59(9):522–529.
    [149] A.Jasim, T.C.Vincent, S.B.Dennis. Adaptive Asymptotic Tracking of SpacecraftAttitude Motion with Inertia Matrix Identification[J]. Journal of Guidance, Control,and Dynamics,1998,21(5):684–691.
    [150] Jin E, Sun Z. Robust Controllers Design with Finite time Convergence for Rigid S-pacecraft Attitude Tracking Control[J]. Aerospace Science and Technology,2008,12(4):324–330.
    [151] Li S, Ding S, Li Q. Global Set Stabilization of the Spacecraft Attitude Using Finite-time Control Technique[J]. International Journal of Control,2009,82(5):822–836.
    [152] Zou A, Kumar K D, Hou Z, et al. Finite-Time Attitude Tracking Control forSpacecraft Using Terminal Sliding Mode and Chebyshev Neural Network[J].IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2011,41(4):950–963.
    [153] Hong Y, Xu Y, Huang J. Finite-time Control for Robot Manipulators[J]. Systems&Control Letters,2002,46(4):243–253.
    [154] Xiao F, Wang L, Jia Y. Fast Information Sharing in Networks of AutonomousAgents[C]//Proceedings of the American Control Conference. Seattle, WA: IEEE,2008:4388–4393.
    [155] Meng Z, Lin Z. Distributed Finite-time Cooperative Tracking of Networked La-grange Systems via Local Interactions[C]//Proceedings of the American ControlConference. Fairmont Queen Elizabeth, Montre′al, Canada: IEEE,2012:4951–4956.
    [156] Wang J, Liang H, Sun Z, et al. Finite-Time Attitude Stabilization for a SpacecraftUsing Homogeneous Method[J]. Journal of Guidance, Control, and Dynamics,2012,35(3):950–962.
    [157] Polycarpou M M. Stable Adaptive Neural Control Scheme for Nonlinear System-s[J]. IEEE Transactions on Automatic Control,1996,41(3):447–451.
    [158] Bae J, Kim Y, Park C. Spacecraft Formation Flying Control Using Sliding Mod-e and Neural Networks Controller[C]//AIAA Guidance Navigation, and ControlConference. Chicago, lllinois: AIAA,2009.
    [159] Zou A, Kumar K D, Hou Z. Quaternion-based Adaptive Output Feedback AttitudeControl of Spacecraft Using Chebyshev Neural Networks[J]. IEEE Transactionson Neural Networks,2010,21(9):1457–1471.
    [160] Curti F, Romano M, Bevilacqua R. Lyapunov-Based Thrusters’Selection for S-pacecraft Control: Analysis and Experimenta tion[J]. Journal of Guidance, Con-trol, and Dynamics,2010,33(4):1143–1160.
    [161] Lewis F L, Abdallah C T, Dawson D M. Control of Robot Manipulators[M]. NewYork: Macmillan,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700