移动自组织网络的拓扑控制及网络性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动自组织网络(Mobile Ad Hoc Network, MANET)可以快速低成本地组网,其运转不依赖于任何基础设施,具有自组织自愈性等优点。它最初为临时场合提供应急通信,伴随着技术的不断成熟,它将发挥越来越大的作用。
     动态变化的拓扑结构是移动自组织网络的一个重要特点,而网络拓扑对网络性能有着极大的影响。所以本文着重研究拓扑控制方法以优化网络性能,内容包括如下:
     1)节点的能量是移动自组织网络的一个重要资源,决定着网络的寿命。而网络中数据传输的能耗取决于传输的路径。因此,本文提出最小能耗路径的拓扑控制算法。该算法仅利用本地信息保证网络的连通性,并保留网络中任意两个节点间的最小能耗路径,以提高数据传输的能耗效率;
     2)网络容量是无线网络的一个重要因素。本文推导出网络容量的一个闭合表达式,得出网络拓扑与网络容量的关系,并提出一种网络容量优化的拓扑控制算法。该算法引入协作通信以提高无线信道的容量和可靠性,并选择合适的传输方式和中继节点以降低网络的干扰,以达到优化网络容量的目的。该算法能适应动态随机的无线信道和动态变化的网络拓扑;
     3)路由效率在很大程度上受拓扑稳定性的影响。拓扑的动态变化频繁地触发了重路由操作,造成了网络广播风暴,降低了路由效率。而拓扑的动态性在认知移动自组织网络中更加明显。为此,本文提出基于预测的认知拓扑控制算法,通过对链路生存时间的预测,为路由协议提供认知能力,提高认知移动自组织网络的路由效率;
     4)不恰当的安全协议配置会消耗大量的网络资源,尤其在协作通信移动自组织网络中这个问题显得更加突出。安全协议与拓扑控制的联合设计可以从全网的角度综合配置网络资源,优化网络性能。本文在分析和改进一种认证协议的基础上,提出一种拓扑控制和认证协议的联合优化算法,以在不降低原认证协议安全性能的前提下,提高协作通信网络的吞吐量。
The self-organizing Mobile Ad Hoc Networks (MANETs) can be deployed fleetly sinceno infrastructure is required for the network construction. Initially, MANETs are designed toprovide emergency communications for temporary scenarios. As the technology advancing,MANETs will find more and more applications in the future.
     The dynamic changing topology, which is one of the most perceptible characteristics ofMANETs, has a significant impact on the network performance. To this end, this dissertationfocuses on designing topology control mechanisms to optimize the network performance. Thecontribution of this dissertation includes:
     1) As an important resource, the energy of nodes determines the network lifetime. Sincethe energy consumption of data transmissions is affected by the transmission paths, wepropose a minimum energy path based topology control algorithm. The algorithm pre-serves both network connectivity and the minimum energy paths between any pair ofnodes with only local neighborhood information, and improves the energy efficiency forend-to-end data transmissions.
     2) Network capacity is the second main issue to be addressed here since it is the key re-source of wireless networks. This dissertation derives a closed-form equation for the net-work capacity in MANETs, and further studies the relation between network topologyand network capacity. Based on the analytical result, we propose a network capacity-optimized topology control algorithm. The algorithm introduces cooperative communi-cations to improve the capacity and reliability of wireless channels, and configure the linkconnections by selecting the appropriate transmission method and relay node to moder-ate the network interference. Furthermore, it can be applied to MANETs directly, whichrequires topology reconfigurations frequently due to the unreliable wireless channels andnode mobility.
     3) Network topology determines the efficiency of routing protocols to a large extent sincerouting is based on the network topology. The frequent re-routing operations caused bydynamic topology will not only introduce broadcast storms to the network, but also de-graderoutingefficiency. SincethisproblemwillbemoresevereinCognitiveRadio(CR)- MANETs,thisdissertationproposesaprediction-basedtopologycontrolalgorithm,whichcan construct a reliable network topology by predicting the link available time. It enablesrouting protocols to have cognitive ability for the dynamic the environment to improvethe performance of CR-MANETs.
     4) An inappropriate configuration of security protocols may consume a large amount ofnetwork resources, particularly in MANETs using cooperative communications. A jointdesign of security protocols and topology control can allocate the network resources ina network-wide perspective and optimize the entire network performance. This disserta-tionanalysesthethroughputofanauthenticationprotocolandenhancestheauthenticationprotocol for MANETs using cooperative communications. Then a topology control basedapproach is proposed to jointly optimize the authentication protocol and network perfor-mance without compromising communication security.
引文
[1] Letaief K B. The Next Wireless Revolution[A]. In: invited key-note speech of speech, IEEE Int. Conf.Communication Systems (ICCS)[C]. Guangzhou, China, 2008.
    [2]甄岩,李祥珍.移动自组织网络发展与应用展望[J].数字通信, 2010, 5(9): 31–33.
    [3] Kahn R. The organization of computer resources into a packet radio network[J]. IEEE Trans. Com-munications, 1977, 25(1): 169–178.
    [4] Kahn R, Gronemeyer S, Burchfiel J, et al. Advances in packet ratio technology[J]. Proc. the IEEE,1978, 66(11): 1468–1496.
    [5] JubinJ,TornowJ. TheDARPApacketradionetworkprotocols[J]. Proc.theIEEE,1987, 75(1): 21–32.
    [6] Shacham N, Westcott J. Future directions in packet radio architectures and protocols[J]. Proc. theIEEE, 1987, 75(1): 83–99.
    [7] Mo J, So H, Walrand J. Comparison of multichannel MAC protocols[J]. IEEE Trans. Mobile Comput.,2007, 7(1): 50–65.
    [8]姜胜明,韦岗,游淋娜,等.单收发器无控制信道的发与收方同步信道控制方法[P].中国:华南理工大学, 2010.已授权,申请号:ZL 2009100383760.
    [9] Ye W, Heidemann J, Estrin D. Medium access control with coordinated adaptive sleeping for wirelesssensor networks[J]. IEEE/ACM Trans. Netw., 2004, 12(3): 493–506.
    [10] ECMA-368 Std. High Rate Ultra Wideband PHY and MAC Standard[S]. Ecma Internetional, 2005.
    [11] Liu P, Tao Z, Korakis T, et al. CoopMAC: A cooperative MAC for wireless LANs[J]. IEEE J. Sel.Areas Commun., 2007, 25(2): 340–354.
    [12] Perkins C E, Belding-Royer E M, Das S R. Ad hoc on-demand distance vector (AODV) routing[S].IETF Draft, draft-ietf-manet-aodv-13.txt, 2003-Feb.
    [13] Johnson D B, Maltz D A, Hu Y C. The dynamic source routing protocol for mobile ad hoc networks(DSR)[S]. IETF Draft, draft-ietf-manet-dsr-09.txt, 2003-Apr.
    [14] Clausen T, Jaqcquet P. Optimized Link State Routing (OLSR)[S]. IETF Networking Group, Internet-Draft: RFC 3626, 2003-Oct.
    [15] Ogier R, Templin F, Lewis M. Topology Dissemination Based on Reverse-Path Forwarding(TBRPF)[S]. IETF Networking Group, Internet-Draft: RFC 3684, 2004-Feb.
    [16] Gerla M, Hong X, Li M, et al. Landmark Routing Protocol (LANMARK) for Large Scale Ad HocNetworks[S]. IETF Networking Group, Internet-Draft: draft-ietf-manet-lanmar-05.txt, 2002-Nov.
    [17] Gerla M, Pei G, Hong X, et al. Fisheye State Routing Protocol (FSR) for Ad Hoc Networks[S]. IETFNetworking Group, Internet-Draft: draft-ietf-manet-fsr-01.txt, 2000-Nov.
    [18] Haas Z, Pearlman M, Samar P. Zone routing protocol (ZRP)[S]. IETF MANET Working Group,Internet-Draft: draft-ietf-manet-zone-zrp-04.txt, 2002.
    [19] Biswas S, Morris R. Opportunistic routing in multi-hop wireless networks[J]. ACM SIGCOMMComputer Communication Review, 2004, 34(1): 74.
    [20] Chachulski S, Jennings M, Katti S, et al. Trading structure for randomness in wireless opportunisticrouting[A]. In: Proc. the ACM SIGCOMM 2007 Conf. Applications, technologies, architectures, andprotocols for computer communications[C], 2007: 169–180.
    [21] Royer E, Perkins C. Multicast ad hoc on-demand distance vector (MAODV) routing[S]. IETF IntemetDraft: draft-ietf-manet-maodv-00.txt, 2000.
    [22] Vu T. Flood-and-forward routing for broadcast packets in packet switching networks[M]. US: GooglePatents, 1991. US Patent 5,056,085.
    [23] Xylomenos G, Polyzos G, Mahonen P, et al. TCP performance issues over wireless links[J]. IEEECommunications Magazine, 2002, 39(4): 52–58.
    [24] Holland G, Vaidya N. Analysis of TCP performance over mobile ad hoc networks[J]. Wireless Net-works, 2002, 8(2/3): 275–288.
    [25] Chandran K, Ragbunathan S, Venkatesan S, et al. A feedback based scheme for improving TCP per-formance in ad-hoc wireless networks[A]. In: Proc. Int. Conf. Distributed Computing Systems[C],1998: 472–479.
    [26] Liu J, Singh S. ATCP: TCP for mobile ad hoc networks[J]. IEEE J. Sel. Areas Commun., 2002, 19(7):1300–1315.
    [27] Kopparty S, Krishnamurthy S, Faloutsos M, et al. Split TCP for mobile ad hoc networks[A]. In: IEEEGlobal Telecommunications Conference GLOBECOM’02[C], 2002: 138–142.
    [28] Jiang S, Zuo Q, Wei G. Decoupling congestion control from TCP for multi-hop wireless networks:semi-TCP[A]. In: Proceedings of the 4th ACM workshop on Challenged networks[C], 2009: 27–34.
    [29] ANSI/IEEE Std 802.11e, Draft 5.0. Wireless Medium Access Control (MAC) and Physical Layer(PHY) Specification: Medium Access Control (MAC) Enhancement for Quality of Service (QoS)[S].2003.
    [30] Lin C, Liu J. QoS routing in ad hoc wireless networks[J]. IEEE J. Sel. Areas Commun., 2002, 17(8):1426–1438.
    [31] Blake S, Black D, Carlson M, et al. An Architecture for Differentiated Services[S]. RFC 2475, 1998.
    [32] Braden R, Clark D, Shenker S. Integrated Services in the Internet Architecture: an Overview[S]. RFC1633, 1994.
    [33] Jiang S. Granular differentiated queueing services for QoS: structure and cost model[J]. ACM SIG-COMM Computer Communication Review, 2005, 35(2): 13–22.
    [34] Teng X, Jiang S, Wei G, et al. A cross-layer implementation of differentiated queueing service (DQS)for wireless mesh networks[A]. In: IEEE Vehicular Technology Conference (VTC Spring 2008)[C],2008: 2233–2237.
    [35] Yang H, Ricciato F, Lu S, et al. Securing a Wireless World[J]. Proc. the IEEE, 2006, 94(2): 442–454.
    [36] IEEE Standard 802.11i. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifi-cations: Specifications for Enhanced Security[S]. 2002.
    [37] GB1562911.无线认证保密基础设施(WAPI)中华人民共和国国家标准[S]. 2003.
    [38] Yang H, Luo H, Ye F, et al. Security in mobile ad hoc networks: challenges and solutions[J]. IEEEWireless Communications, 2004, 11(1): 38–47.
    [39] Garg N, Mahapatra R. MANET Security Issues[J]. International Journal of Computer Science andNetwork Security, 2009, 9(8): 241.
    [40] Santi P. Topology control in wireless ad hoc and sensor networks[J]. ACM Computing Surveys(CSUR), 2005, 37(2): 164–194.
    [41] RamanathanR,Rosales-HainR. Topologycontrolofmultihopwirelessnetworksusingtransmitpoweradjustment[A]. In: Proc. IEEE INFOCOM 2000[C], 2000: 404–413.
    [42] Kirousis L M, Kranakis E, Krizanc D, et al. Power consumption in packet radio networks[J]. Theor.Comput. Sci., 2000, 243: 289–305.
    [43] Chen B, Jamieson K, Balakrishnan H, et al. Span: An energy-efficient coordination algorithm fortopology maintenance in ad hoc wireless networks[J]. Wireless Networks, 2002, 8(5): 481–494.
    [44] Ding Y, Wang C, Xiao L. An Adaptive Partitioning Scheme for Sleep Scheduling and TopologyControl in Wireless Sensor Networks[J]. IEEE Trans. Parallel and Distributed Systems, 2009, 20(9):1352–1365.
    [45] Shirali M, Meybodi M, Shirali N. Sleep Based Topology Control: Based on the Distributed Learn-ing Automata[A]. In: 6th Int. Conf. Wireless Communications Networking and Mobile Computing(WiCOM)[C], 2010: 1–4.
    [46] Moraes R, Ribeiro C, Duhamel C. Optimal solutions for fault-tolerant topology control in wireless adhoc networks[J]. IEEE Trans. Wireless Commun., 2009, 8(12): 5970–5981.
    [47] Hajiaghayi M, Immorlica N, Mirrokni V. Power Optimization in Fault-Tolerant Topology ControlAlgorithms for Wireless Multi-hop Networks[J]. IEEE/ACM Trans. Netw., 2007, 15(6): 1345–1358.
    [48] Zhang H, Hou J. Asymptotic Critical Total Power for k-Connectivity of Wireless Networks[J].IEEE/ACM Trans. Netw., 2008, 16(2): 347–358.
    [49] Miyao K, Nakayama H, Ansari N, et al. LTRT: An efficient and reliable topology control algorithmfor ad-hoc networks[J]. IEEE Trans. Wireless Commun., 2009, 8(12): 6050–6058.
    [50] Akyildiz I F, Lee W Y, Chowdhury K R. CRAHNs: Cognitive radio ad hoc networks[J]. Elsevier AdHoc Networks, 2009, 7(5): 810–836.
    [51] Luis M, Oliveira R, Bernardo L, et al. Joint topology control and routing in ad hoc vehicular net-works[A]. In: 2010 European Wireless Conference (EW)[C], 2010: 528–535.
    [52] Butun I, Talay A C, Altilar D T, et al. Impact of mobility prediction on the performance of CognitiveRadio networks[A]. In: 2010 Wireless Telecommunications Symposium (WTS)[C]. Tampa, Florida,US, 2010: 1–5.
    [53] Gao Y, Hou J, Nguyen H. Topology control for maintaining network connectivity and maximizingnetwork capacity under the physical model[A]. In: Proc. IEEE INFOCOM 2008[C]. Pheonix, AZ,US, 2008: 1013–1021.
    [54] Liu J, Li B. MobileGrid: capacity-aware topology control in mobile ad hoc networks[A]. In: Proc.11th Int. Conf. Computer Communications and Networks[C]. Miami, US, 2002: 570–574.
    [55] Jain K, Padhye J, Padmanabhan V N, et al. Impact of interference on multi-hop wireless networkperformance[A]. In: Proc. 9th Annual Int. Conf. Mobile Computing and Networking (MobiCom)[C].San Diego, US, 2003: 66–80.
    [56] Burkhart M, von Rickenbach P, Wattenhofer R, et al. Does topology control reduce interference?[A].In: Proc. 5th ACM Int. Symposium on Mobile Ad Hoc Networking and Computing[C]. RoppongiHills, Tokyo, Japan, 2004: 9–19.
    [57] Johansson T, Carr-Motyˇakov′a L. Reducing interference in ad hoc networks through topology con-trol[A]. In: Proc. Joint Workshop on Foundations of Mobile Computing[C]. Cologne, Germany,2005: 17–23.
    [58] Ismail M, Sanavullah M. Security topology in wireless sensor networks with routing optimisation[A].In: Proc.4thInt.Conf.WirelessCommunicationandSensorNetworks[C]. Jhalwa,Deoghat,Allahabad(U.P.), India, 2008: 7–15.
    [59] Galiotos P. Security-Aware Topology Control for Wireless Ad-Hoc Networks[A]. In: Proc. IEEEGLOBECOM’08[C]. New Orleans, LA, US, 2008: 1–6.
    [60] GabrielK,SokalR. Anewstatisticalapproachtogeographicvariationanalysis[J]. SystematicBiology,1969, 18(3): 259.
    [61] Rodoplu V, Meng T H. Minimum energy mobile wireless networks[J]. IEEE J. Sel. Areas Commun.,1999, 17(8): 1333–1344.
    [62] Toussaint G T. The relative neighbor graph of a finite plannar set[J]. Pattern Recognition, 1980, 12(1):261–268.
    [63] Wattenhofer R, Zollinger A. XTC: A practical topology control algorithm for ad-hoc networks[A]. In:Proc. 18th Int. Parallel and Disttributed Processing Symp.(IPDPS’04)[C]. Santa Fe, New Mexico, US,2004.
    [64] DobkinD,FriedmanS,SupowitK. Delaunaygraphsarealmostasgoodascompletegraphs[J]. Discreteand Computational Geometry, 1990, 5(1): 399–407.
    [65] Li X, Calinescu G, Wan P, et al. Localized delaunay triangulation with application in ad hoc wirelessnetworks[J]. IEEE Trans. Parallel and Distributed Systems, 2003, 14(10): 1035–1047.
    [66] Yao A. On constructing minimum spanning trees in k-dimensional spaces and related problems[J].SIAM J. Comput., 1982, 11(4): 721–736.
    [67] Li L, Halpern J, Bahl P, et al. A cone-based distributed topology-control algorithm for wireless multi-hop networks[J]. IEEE/ACM Trans. Netw., 2005, 13(1): 147–159.
    [68] Poduri S, Pattem S, Krishnamachari B, et al. Using Local Geometry for Tunable Topology Control inSensor Networks[J]. IEEE Trans. Mobile Comput., 2009, 8(2): 218–230.
    [69] RaiM,VermaS,TapaswiS. APowerAwareMinimumConnectedDominatingSetforWirelessSensorNetworks[J]. Journal of Networks, 2009, 4(6): 511.
    [70] Funke S, Kesselman A, Meyer U, et al. A simple improved distributed algorithm for minimum CDSin unit disk graphs[J]. ACM Transactions on Sensor Networks (TOSN), 2006, 2(3): 444–453.
    [71] Liang O, Sekercioglu Y, Mani N. Gateway Multipoint Relays-an MPR-Based Broadcast Algorithmfor Ad Hoc Networks[A]. In: Communication systems, 2006. ICCS 2006. 10th IEEE SingaporeInternational Conference on[C], 2006: 1–6.
    [72] Jeng A, Jan R. The r-Neighborhood Graph: An Adjustable Structure for Topology Control in WirelessAd Hoc Networks[J]. Parallel and Distributed Systems, IEEE Transactions on, 2007, 18(4): 536–549.
    [73]路纲,周明天,牛新征,等.无线网络邻近图综述[J].软件学报, 2008, 19(4): 888–911.
    [74] Zhang G, Zhang Z, Fan J. A Locally-Adjustable Planar Structure for Adaptive Topology Control inWireless Ad Hoc Networks[J]. IEEE Wireless Comm., 2010, 21(10): 1387–1397.
    [75] Jeng A, Jan R. Adaptive Topology Control for Mobile Ad Hoc Networks[J]. IEEE Trans. Parallel andDistributed Systems, 2011, PP(99): 1.
    [76] Zhao L, Lloyd E, Ravi S. Topology control in constant rate mobile ad hoc networks[J]. WirelessNetworks, 2010, 16(2): 467–480.
    [77] Avin C. Random geometric graphs: an algorithmic perspective[D]:[PhD Thesis]. US: University ofCalifornia Los Angeles, 2006.
    [78]许琼方,王东.基于几何随机图模型的传感器网络拓扑分析[J].衡阳师范学院学报, 2007, 28(3):90–92.
    [79] Haenggi M, Andrews J, Baccelli F, et al. Stochastic geometry and random graphs for the analysis anddesign of wireless networks[J]. IEEE J. Sel. Areas Commun., 2009, 27(7): 1029–1046.
    [80] Glauche I, Krause W, Sollacher R, et al. Continuum percolation of wireless ad hoc communicationnetworks[J]. Physica A: Statistical Mechanics and its Applications, 2003, 325(3-4): 577–600.
    [81]李永,方锦清,刘强.连续渗流网络模型特性[J].复杂系统与复杂性科学, 2010, 7(2).
    [82] SantiP,BloughD. Thecriticaltransmittingrangeforconnectivityinsparsewirelessadhocnetworks[J].IEEE Trans. Mobile Comput., 2003: 25–39.
    [83] Blough D, Leoncini M, Resta G, et al. The k-neigh protocol for symmetric topology control in ad hocnetworks[A]. In: Proc. ACM MobiHoc[C], 2003: 141–152.
    [84] Kleinrock L, Silvester J. Optimum transmission radii for packet radio networks or why six is a magicnumber[A]. In: Proc. IEEE National Telecommunications Conference[C], 1978. 4:1–4.
    [85] TakagiH,KleinrockL. Optimaltransmissionrangesforrandomlydistributedpacketradioterminals[J].IEEE Trans. Commun., 1984, 32(3): 246–257.
    [86] Xue F, Kumar P. The number of neighbors needed for connectivity of wireless networks[J]. Wirelessnetworks, 2004, 10(2): 169–181.
    [87] Ding L, Melodia T, Batalama S, et al. Cross-Layer Routing and Dynamic Spectrum Allocation inCognitive Radio Ad Hoc Networks[J]. IEEE Trans. Veh. Tech., 2010, 59(4): 1969–1979.
    [88] Hou Y, Shi Y, Sherali H. Spectrum Sharing for Multi-HopNetworking with Cognitive Radios[J]. IEEEJ. Sel. Areas Commun., 2008, 26(1): 146–155.
    [89] Xin C, Xie B, Shen C. A novel layered graph model for topology formation and routing in dynamicspectrum access networks[A]. In: Proc. IEEE DySPAN’05[C]. Baltimore, Maryland, US, 2005:308–317.
    [90] Liu Y, Zhang Q, Ni L. Opportunity-Based Topology Control in Wireless Sensor Networks[J]. Paralleland Distributed Systems, 2010, 21(3): 405–416.
    [91] Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wire-less microsensor networks[A]. In: Proc. 33rd Annual Hawaii Int. Conf. System Sciences[C], 2000:1–10.
    [92] Younis O, Fahmy S. HEED: a hybrid, energy-efficient, distributed clustering approach for ad hocsensor networks[J]. Mobile Computing, IEEE Transactions on, 2004, 3(4): 366–379.
    [93] Zhang T, Yang K, Chen H. Topology control for service-oriented wireless mesh networks[J]. IEEEWireless Communication, 2009, 16(4): 64–71.
    [94] Ren H, Meng M. Game-Theoretic Modeling of Joint Topology Control and Power Scheduling forWirelessHeterogeneousSensorNetworks[J]. IEEETrans.AutomationScienceandEngineering,2009,6(4): 610–625.
    [95] Hu L. A novel topology control for multihop packet radio networks[A]. In: Proc. IEEE INFO-COM’91[C]. Bal Harbour, FL, US, 1991: 1084–1093.
    [96] Rajaraman R. Topology control and routing in ad hoc networks: a survey[J]. SIGACT News, 2002,33(2): 60–73.
    [97]张学,陆桑璐,陈贵海,等.无线传感器网络的拓扑控制[J].软件学报, 2007, 18(4): 943–954.
    [98] Jia X, Li D, Du D. QoS topology control in ad hoc wireless networks[A]. In: Proc. IEEE INFO-COM[C]. Hong Kong, 2004: 1264–1272.
    [99] Mohar B. The Laplacian spectrum of graphs[J]. Graph theory, combinatorics, and applications, 1991,2: 871–898.
    [100] Merris R. Laplacian matrices of graphs: a survey[J]. Linear Algebra and its Applications, 1994, 197:143–176.
    [101] Abbagnale A, Cuomo F. Connectivity-Driven Routing for Cognitive Radio Ad-Hoc Networks[A]. In:Proc. 7th Annual IEEE Communications Society Conf. Sensor Mesh and Ad Hoc Communicationsand Networks (SECON)[C]. Boston, US, 2010: 1–9.
    [102] Jamakovic A, Uhlig S. On the relationship between the algebraic connectivity and graph’s robustnessto node and link failures[A]. In: 3rd EuroNGI Conf. Next Generation Internet Networks[C], 2007:96–102.
    [103] Abbagnale A, Cuomo F, Cipollone E. Analysis of k-connectivity of a cognitive radio ad-hoc net-work[A]. In: Proc. 6th ACM Symposium on Performance evaluation of wireless ad hoc, sensor, andubiquitous networks[C], 2009: 124–131.
    [104] Lloyd E, Liu R, Marathe M, et al. Algorithmic aspects of topology control problems for ad hoc net-works[J]. Mobile Networks and Applications, 2005, 10(1): 19–34.
    [105] KomaliR,ThomasR,DasilvaL,etal. Thepriceofignorance: distributedtopologycontrolincognitivenetworks[J]. IEEE Trans. Wireless Commun., 2010, 9(4): 1434–1445.
    [106] WangSC,WeiDSL,KuoSY. SPT-basedtopologyalgorithmforconstructingpowerefficientwirelessad hoc networks[A]. In: Proc. 13th Int. World Wide Web Conf. Alternate track papers & posters[C].New York, NY, USA, 2004: 234–235.
    [107] Chew L. There is a planar graph almost as good as the complete graph[A]. In: Proc. 2st AnnualSymposium on Computational Geometry[C], 1986: 169–177.
    [108] LI X, WAN P, Wang Y. Power efficient and sparse spanner wireless ad hoc networks[A]. In: Proc.IEEE Int. Conf. Computer Communications and Networks (ICCCN01)[C], 2001: 564–567.
    [109] Farago A. Scalability of node degrees in random wireless network topologies[J]. IEEE J. Sel. AreasCommun., 2009, 27(7): 1238–1244.
    [110] Gupta P, Kumar P. The capacity of wireless networks[J]. IEEE Trans. Inform. Theory, 2000, 46(2):388–404.
    [111] Radunovic B, Le Boudec J. Optimal power control, scheduling, and routing in UWB networks[J].IEEE J. Sel. Areas Commun., 2004, 22(7): 1252–1270.
    [112] SrivastavaV,MotaniM. Cross-layerdesign: asurveyandtheroadahead[J]. IEEEComm.Mag., 2005,43(12): 112–119.
    [113]卢先领,孙亚民,周灵,等. Ad Hoc无线网络跨层设计综述[J].计算机科学, 2007, 34(10): 24–27.
    [114] Behzad A, Rubin I. High transmission power increases the capacity of ad hoc wireless networks[J].IEEE Trans. Wireless Commun., 2006, 5(1): 156–165.
    [115] Gastpar M, Vetterli M. On the capacity of wireless networks: The relay case[A]. In: Proc. IEEEINFOCOM 2002[C], 2002: 1577–1586.
    [116] Grossglauser M, Tse D. Mobility increases the capacity of ad hoc wireless networks[J]. IEEE/ACMTrans. Netw., 2002, 10(4): 477–486.
    [117] Blough D, Harvest C, Resta G, et al. A simulation-based study on the throughput capacity of topologycontrol in CSMA/CA networks[A]. In: Proc. 4th Annual IEEE Int. Conf. Pervasive Computing andCommunications Workshops[C], 2006: 5–404.
    [118] Keshavarz-Haddad A, Riedi R. Bounds for the capacity of wireless multihop networks imposed bytopology and demand[A]. In: Proc. 8th ACM Int. Symposium on Mobile ad hoc networking andcomputing[C], 2007: 256–265.
    [119] Li J, Blake C, De Couto D, et al. Capacity of ad hoc wireless networks[A]. In: Proc. 7th Annual Int.Conf. Mobile Computing and Networking[C], 2001: 61–69.
    [120] NosratiniaA,HunterT,HedayatA. Cooperativecommunicationinwirelessnetworks[J]. IEEEComm.Mag., 2004, 42(10): 74–80.
    [121] Cottatellucci L, Mestre X, Larsson E G, et al. Cooperative Communications in Wireless Networks[J].EURASIP J. Wireless Comm. and Netw., 2009, 2009.
    [122] Woradit K, Quek T, Suwansantisuk W, et al. Outage behavior of selective relaying schemes[J]. IEEETrans. Wireless Commun., 2009, 8(8): 3890–3895.
    [123] Scaglione A, Hong Y. Opportunistic large arrays: Cooperative transmission in wireless multihop adhoc networks to reach far distances[J]. IEEE Trans. Signal Proc., 2003, 51(8): 2082–2092.
    [124] Shi Y, Sharma S, Hou Y T, et al. Optimal relay assignment for cooperative communications[A]. In:Proc. ACM Int. Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc)[C]. Hong Kong,China, 2008: 3–12.
    [125] DingL,MelodiaT,BatalamaSN,etal. DistributedRouting,RelaySelection,andSpectrumAllocationin Cognitive and Cooperative Ad Hoc Networks[A]. In: Proc. IEEE SECON 2010[C]. Boston, USA,2010.
    [126] Sharma S, Shi Y, Hou Y T, et al. Cooperative Communications in Multi-hop Wireless Networks: JointFlow Routing and Relay Node Assignment[A]. In: Proc. IEEE INFOCOM 2010[C]. San Diego, USA,2010.
    [127] Zhang J, Zhang Q. Cooperative Routing in Multi-Source Multi-Destination Multi-hop Wireless Net-works[A]. In: Proc. IEEE INFOCOM 2008[C]. Phoenix, AZ, USA, 2008.
    [128] Andradottir S. Accelerating the convergence of random search methods for discrete stochastic opti-mization[J]. ACM Transactions on Modelling and Computer Simulation, 1999, 9(4): 349–380.
    [129] Kushner H. Stochastic approximation: a survey[J]. Wiley Interdisciplinary Reviews: ComputationalStatistics, 2010, 2(1): 87–96.
    [130] Berenguer I, Wang X, Krishnamurthy V. Adaptive MIMO antenna selection via discrete stochasticoptimization[J]. IEEE Trans. Signal Proc., 2005, 53(11): 4315–4329.
    [131] Krishnamurthy V, Chung S. Large-Scale Dynamical Models and Estimation for Permeation in Bio-logical Membrane Ion Channels[J]. Proc. the IEEE, 2007, 95(5): 853–880.
    [132] Andradottir S. A Global Search Method for Discrete Stochastic Optimization[J]. SIAM J. Optimiza-tion, 1996, 6(2): 513–530.
    [133] Mitola J, Maguire G Q. Cognitive radio: Making software radios more personal[J]. IEEE Pers. Com-mun., 1999, 6(4): 13–18.
    [134] Haykin S. Cognitive Radio: Brain-Empowered Wireless Communications[J]. IEEE J. Sel. AreasCommun., 2005, 23(2): 201–220.
    [135] Liang Y C, Zeng Y, Peh E C Y, et al. Sensing-Throughput Tradeoff for Cognitive Radio Networks[J].IEEE Trans. Wireless Commun., 2008, 7(4): 1326–1337.
    [136] Jiang H, Lai L, Fan R, et al. Optimal selection of channel sensing order in cognitive radio[J]. IEEETrans. Wireless Commun., 2009, 8(1): 297–307.
    [137] Li Z, Yu F R, Huang M. A Distributed Consensus-Based Cooperative Spectrum Sensing in CognitiveRadios[J]. IEEE Trans. Veh. Tech., 2010, 59(1): 383–393.
    [138] Letaief K B, Zhang W. Cooperative communications for cognitive radio networks[J]. IEEE Commun.Letters, 2009, 97: 878–893.
    [139] Yu F R, Huang M, Tang H. Biologically Inspired Consensus-based Spectrum Sensing in Mobile AdHoc Networks with Cognitive Radios[J]. IEEE Networks, 2010: 26–30.
    [140] SiP,YuF,JiH,etal. OptimalCooperativeInternetworkSpectrumSharingforCognitiveRadioSystemswith Spectrum Pooling[J]. IEEE Trans. Veh. Tech., 2010, 59(4): 1760–1768.
    [141] Su H, Zhang X. Cross-Layer Based Opportunistic MAC Protocols for QoS Provisionings Over Cog-nitive Radio Mobile Wireless Networks[J]. IEEE J. Sel. Areas Commun., 2008, 26(1): 118–129.
    [142] Wysocki T, Jamalipour A. MAC framework for intermittently connected cognitive radio networks[A].In: Proc. IEEE Personal, Indoor, and Mobile Radio Communications (PIMRC)[C]. Tokyo, Japan,2009.
    [143] Tseng Y C, Ni S Y, Chen Y S, et al. The broadcast storm problem in a mobile ad hoc network[J].Wireless Networks, 2002, 8(2/3): 153–167.
    [144] Thomas R W, L. A. DaSilva, A. B. MacKenzie. Cognitive networks[A]. In: Proc. IEEE DyS-PAN’05[C]. Baltimore, Maryland US, 2005: 352–360.
    [145] Perkins C E, Bhagwat P. Highly dynamic destination-sequenced distance-vector routing (DSDV) formobile computers[A]. In: Proc. ACM SIGCOMM’94[C]. London, UK, 1994: 234–244.
    [146] Yang K, Tsai Y. Link stability prediction for mobile ad hoc networks in shadowed environments[A].In: Proc. IEEE GLOBECOM[C]. San Francisco, US, 2006.
    [147] JiangS,HeD,RaoJ. Aprediction-basedlinkavailabilityestimationforroutingmetricsinMANETs[J].IEEE/ACM Trans. Networking, 2005, 13(6): 1302–1312.
    [148] Alavi B, Pahlavan K. Modeling of the TOA-based Distance Measurement Error Using UWB IndoorRadio Measurements[J]. IEEE Communication Letters, 2006, 10(4): 275–277.
    [149] Jiang S, Liu Y, Jiang Y, et al. Provisioning of adaptability to variable topologies for routing schemesin MANETs[J]. IEEE J. on Selected Areas in Comm.? 2004, 22(7): 1347–1356.
    [150] Philips T, Panwar S, Tantawi A. Connectivity properties of a packet radio network model[J]. IEEETrans. Inform. Theory, 2002, 35(5): 1044–1047.
    [151] Sesia S, Toufik I, Baker M. LTE, The UMTS Long Term Evolution: From Theory to Practice[M]. NY:Wiley, 2009.
    [152] Clausen T, Jacquet P, Laouiti A, et al. Optimized link state routing protocol for ad hoc networks[S].IETF Draft, draft-ietf-manet-olsr-11.txt, 2003-Jan.
    [153] Venkateswaran A, Sarangan V, Gautam N, et al. Impact of mobility prediction on the temporal stabilityof MANET clustering algorithms[A]. In: Proc. 2nd ACM int. workshop on Performance evaluation ofwireless ad hoc, sensor, and ubiquitous networks[C]. Montreal, Quebec, Canada, 2005.
    [154] Zapata M G. Secure ad hoc on-demand distance vector routing[J]. SIGMOBILE Mob. Comput. Com-mun. Rev., 2002, 6(3): 106–107.
    [155] Laneman J, Tse D, Wornell G. Cooperative diversity in wireless networks: Efficient protocols andoutage behavior[J]. IEEE Trans. Inform. Theory, 2004, 50(12): 3062–3080.
    [156] PerrigA,CanettiR,TygarJ,etal. TheTESLAbroadcastauthenticationprotocol[J]. RSACryptoBytes,2002, 5(2): 2–13.
    [157] Gouda M, Elnozahy E, Huang C, et al. Hop integrity in computer networks[J]. IEEE/ACM Trans. onNetworking, 2002, 10(3): 308–319.
    [158] Heer T, G?tz S, Morchon O G, et al. ALPHA: an adaptive and lightweight protocol for hop-by-hopauthentication[A]. In: Proc. ACM CoNEXT[C]. Madrid, Spain: ACM, 2008: 1–12.
    [159] Merkle R. A Certified Digital Signature[A]. In: Proc. Advances in Cryptology (CRYPTO89)[C],1989: 218–238.
    [160] Lamport L. Password authentication with insecure communication[J]. ACM Commun., 1981, 24(11):770–772.
    [161] Lin S, Costello D J, Miller M J. Automatic-repeat-request error control schemes[J]. IEEE Commun.Mag., 1984, 22(12): 5–17.
    [162] Proakis J. Digital communications[M]. second. US: McGraw-Hill, 1989.
    [163] Herhold P, Zimmermann E, Fettweis G. A simple cooperative extension to wireless relaying[A]. In:Proc. 2004 International Zurich Seminar on Communications[C]. Zurich, Switzerland, 2004.
    [164] MathewsV,XieZ. Astochasticgradientadaptivefilterwithgradientadaptivestepsize[J]. IEEETrans.Signal Processing, 1993, 41(6): 2075–2087.
    [165] Park K, Kim L, Hou J. Adaptive Physical Carrier Sense in Topology-Controlled Wireless Networks[J].IEEE Trans. Mobile Comput., 2010, 9(1): 87–97.
    [166] Zavlanos M, Pappas G. Distributed connectivity control of mobile networks[J]. IEEE Trans. Robotics,2008, 24(6): 1416–1428.
    [167] Gelenbe E. Steps toward self-aware networks[J]. Communications of the ACM, 2009, 52(7): 66–75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700