电力系统恢复辅助决策方法研究与系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网互联和远距离交直流输电技术的发展,大容量机组、超(特)高压设备、电力电子装置以及分布式发电技术等在电力系统中的大量引入,系统规模日益扩大,动态行为愈加复杂,由局部故障引发电力灾难的风险大大增加。2003年下半年至今,在北美和加拿大、英国伦敦、瑞典和丹麦、意大利、希腊、科威特、俄罗斯首都莫斯科、西欧8国以及巴西等国家和地区都先后发生过大停电事故。我国近20年来在各大电网发生的停电事故也有100余起。国内外电力系统的运行实际充分说明,新设备和新技术固然能为系统的安全稳定运行提供有力保障,但无法从根本上避免大停电事故的发生。由于现代社会对电力供应的依存度越来越高,大停电事故造成的后果日趋严重,一旦发生停电事故,必须采取措施安全和快速地恢复系统供电。
     由于大停电事故发生的概率极小,调度员缺乏实战经验。事故发生后,为使其在时间紧、任务重和压力大的情况下,能够给出正确的恢复决策,保证系统的安全快速恢复,调度部门迫切需要切实可行的电力系统恢复优化决策方法,以及能为调度员提供辅助决策和恢复培训的软件系统。因此,应当分析系统恢复问题的特点,完善系统恢复策略,研究能够综合协调系统安全和恢复速度的系统恢复优化决策方法,以解决现有方法在处理大规模电力系统恢复问题时灵活性和综合协调能力方面的不足;设计开发具有统一数据平台,且可与EMS/DTS系统接口的电力系统恢复辅助决策与培训仿真系统,以弥补现有电力系统恢复辅助决策系统在数据一致性、仿真分析工具的完备性、图形和数据维护工作量大等方面的不足,拓展DTS系统在电力系统恢复培训方面的理论和功能。上述工作的开展对于丰富电力系统的恢复控制理论,完善电力系统的应急指挥系统,提高电力系统应对停电事故的能力和减少停电损失都具有重要的理论意义和应用价值。在广泛阅读电力系统恢复与辅助决策方面相关文献的基础上,论文针对以上几个方面开展了深入的研究,主要研究工作和创新成果如下:
     1)针对电力部门对电力系统恢复辅助决策支持系统的实际需求,提出了基于数据仓库的输电网架恢复群体智能决策支持系统框架。该系统包括综合数据平台、智能控制子系统和决策支持子系统,采用三段式输电网架恢复策略和多属性效用理论综合考虑各属性评价值并做出最终恢复决策;可以综合考虑网架恢复过程中的暂态过电压、工频过电压、自励磁、负荷恢复引起的频率波动、机组/负荷特性及其重要程度、恢复时间、线路可用传输容量、设备故障概率等约束条件和影响因素。该系统的综合数据平台能够解决恢复过程中各安全校验和分析评估算法所需数据和模型不一致的问题。采用的分布式计算技术将各计算任务交给不同的计算机节点处理,能够加快网架恢复方案的生成速度。智能控制子系统和决策支持子系统能够保障网架恢复过程的安全性与快速性。该系统既可用于制定网架恢复方案和调度员培训,以便应对停电事故后的系统恢复,又可在实际恢复过程中为省级或地区级调度部门的决策者提供在线支持。
     2)针对网架恢复的优化决策问题,结合分层分区的输电网架恢复策略及各分区内网架恢复方案的制定流程,提出了基于多属性决策理论的输电网架恢复决策方法。该方法在决策前进行方案筛选,减少了计算量;利用几何平均法对多个决策者的方案评价值进行聚合,使其支持群体决策;结合最小加权法和信息熵算法,使选取的组合权重能够综合考虑决策者的主观意志和属性评价值的客观信息;利用欧氏距离和非线性规划,对方案排序结果进行了敏感性分析,给出了最优方案的绝对敏感指数及确定权重时需重点关注的属性。该方法可用于系统恢复的在线优化决策,它能够综合协调系统安全和恢复速度,给出每一恢复步骤的优化决策,提高恢复决策的可行性和灵活性。山东电网的仿真结果表明了本文方法的有效性。
     3)针对黑启动方案的自动生成、校验和评估问题,以及对调度员进行黑启动培训的应用需求,提出了在DTS系统中扩展黑启动方案制定与培训仿真子系统的设计方案,以及黑启动操作方案的生成算法,完成了与该子系统相关的开发工作,实现了黑启动方案制定与培训仿真子系统与DTS系统的跨平台集成。该子系统可与DTS系统共享数据库、图形库、人机交互界面,以及通讯平台等功能模块,避免了独立型黑启动辅助决策支持系统庞大的数据和图形维护工作量。扩展后的DTS系统可根据停电后的电网运行状态自动生成黑启动操作方案,并对其进行校验、调整和评估,克服了黑启动预案更新速度慢和灵活性差的缺点;可利用黑启动方案或教案对调度员进行黑启动培训,提高其应对停电事故的能力;可对工频过电压、暂态过电压、自励磁、大型辅机启动引起的电压和频率波动进行仿真,可根据黑启动方案自动验证黑启动过程中保护定值和安全自动装置的设置是否合适,保证黑启动方案的可行性。山东电网的仿真结果表明该系统具有较好的应用前景。
     4)针对抽水蓄能电站提供黑启动服务时的最优预留水量问题,建立了能够综合考虑黑启动效益、静态效益和边际运行位置约束的抽水蓄能电站黑启动最优预留水量计算模型;提出了抽水蓄能电站的黑启动效益、静态效益、黑启动所需水量以及边际运行位置的计算方法。利用山东电网的黑启动现场试验数据,计算获取了泰安抽水蓄能电站#1机组在超低负荷工况下的发电效率,并以试验数据为基础计算了泰安抽水蓄能电站提供黑启动服务时的黑启动效益、静态效益和黑启动耗水量,分析了影响黑启动效益、静态效益和黑启动耗水量的主要参数,可为泰安抽水蓄能电站的运行调度提供参考。该方法将黑启动服务引入抽水蓄能电站的运行调度,完善了抽水蓄能电站的运行调度模型。该方法也可应用于其他以抽水蓄能电站作为黑启动电源的系统。
With the development of power grid interconnection and long-distance AC and DC transmission technology, high-capacity units, super (ultra) high voltage equipments, power electronic devices and distributed generation technology are largely introduced into power system. Power system becomes larger and its dynamic behavior becomes more complex than before. The risk of blackout caused by partial failure has increased significantly. Since 2003, several large blackouts have occurred in North America and Canada, England, Sweden and Denmark, Italy, Greece, Kuwait, Moscow, Western Europe, Brazil and other countries. In recent 20 years, there were also more than 100 blackouts occurred in China. The actual operation of power system at home and abroad shows that new equipments and technologies can make power system operate more safely and stably, but the occurance of blackout is unavoidable. As modern society becomes increasingly dependent on electricity supply, consequences caused by blackouts become more and more serious. Once blackout occurred, measures must be taken to restore the power supply as soon as possible.
     As the probability of blackout is extremely small, dispatchers are commonly lack of restoration experience. After blackout, in order to make right decisions and guarantee power system restored safely and quickly, utilities urgently needs a feasible power system restoration decision-making method and the software which can provide power system restoration decision support and training simulation for dispatchers. Therefore, it is necessary to analyze the characteristics of power system restoration problem and improve restoration strategy. The decision-making method which can comprehensively coordinate system security and restoration speed should be studied to improve the existing methods on flexibility and coordination ability in dealing with large scale power system restoration. The power system restoration decision support and training simulation system, which has unified data platform and can integrate with EMS/DTS, should be designed and developed to improve the existing system in data consistency, simulation tools completeness and graphic and data maintenance. These studies have important theoretical significance and application value in expanding the theory and function of DTS system on power system restoration. They can enrich power system restoration control theory, enhance power system emergency command system and reduce blackout losses. Based on literature review of researches on power system restoration and its decision support, thorough studies on skeleton restoration decision-making method, power system restoration decision support and training simulation system and the optimal reserved water of pumped storage power station have been made in this dissertation. The main research work and innovative fruits are as follows.
     1) According to the actual needs of utilities on power system restoration decision support system, a group intelligent decision support system framework for power system skeleton restoration based on data warehouse is proposed. This system is composed of three parts:they are comprehensive data platform, intelligent control subsystem and group decision support subsystem. A three-stage skeleton restoration strategy is proposed to control restoration process. According to evaluation values of every benefit-oriented attribute, the multi-attribute utility theory is employed to dynamically determine the target and plan of next restoration step. The system can comprehensively consider the constrains such as transient overvoltage, sustained power frequency overvoltage, self-excitation, frequency fluctuation, units and loads characteristics, restoration duration, available transfer capability of transmission line and equipment failure probability. The comprehensive data platform can guarantee the data needed by every security verification and assessment algorithm are consistent. By using distributed computing technology assign computing tasks to different computers, restoration plan generation rate is accelerated. Intelligent control and decision support subsystem can ensure the safety and rapidness of the restoration process. Simulation results of a practical power system demonstrate that the system not only can generate feasible cases for case-based reasoning, but also can provide online supports in actual restoration process.
     2) Combining the subsystem paralleling restoration strategy with the restoration plan development processes, a novel group multi-attribute decision-making method for power system skeleton restoration is presented. The proposed method improves the technique for order preference by similarity to an ideal solution (TOPSIS) in supporting group decision-making. Subsequently, the combined weights can comprehensively take into account the subjective preference of decesion maker and the objective information of attribute values by combining the weighted least-square method with Shannon entropy theory. Furthermore, the ranking results sensitivity of the improved TOPSIS is analyzed and the absolute sensitive index of the optimal plan was presented by using Euclidean distance and non-linear programming method. This method can comprehensively consider the safety margin and restoration rate of power system, and can be used to support the restoration decision-making of a subsystem. Simulation results of Shandong Power Grid in China show the proposed method is feasible.
     3) A black start plan generation and training simulation subsystem is designed on the data and graph platform of DTS, to which the tables, fields and metafiles are added, according to the actual requirements of utilities on black start plan generation, checking, evaluation and dispatcher training. A new black start operation plan generation algorithm is proposed. This subsystem has been developed and integrated with the cross-platform DTS system. It can share database, graphics library, human-machine interface, communications platform and other modules with DTS system. In this way, the large maintenance workload of data and graphics in independent black start decision support system is saved. The extended DTS generates black start plans according to the power system conditions after blackout. Then, these plans are checked, adjusted and evaluated. The settings of protections and automatic devices are automatically verified. The system has the training simulation functions of power frequency overvoltage, transient overvoltage, self-excitation, the voltage and frequency fluctuation caused by load or large motor restoration. Simulation results of Shandong power grid show its good application prospect.
     4) In the power grid with a larger proportion of thermal generator set, the pumped storage power station needs not only to provide black-start ancillary service but also to meet the demands of peak load shifting, frequency regulating and so on. However, the reserve water which is used to meet the needs of black start has a direct impact on the benefits of peak load shifting. In order to obtain the largest benefits of pumped storage power station, the calculation methods for black-start benefits, static benefits, marginal running position and black-start consumed water are proposed. Considering the black-start benefits of pumped storage power station, static benefits and the constraint of marginal running position, the mathematical model of optimal reserve water is constructed. Using the data acquired from the black start field test in Shandong power grid, the generating efficiency of Taian pumped storage unit #1 in ultra low load condition is calculated, and the black-start benefits, static benefits and black-start consumed water of it is computed. Then, the main influence factors on black-start benefits, static benefits and black-start consumed water are analyzed. These results can provide reference to the operation of Taian pumped storage power station. It is the first time to introduce black start service into the operation scheduling of pumped storage power station, which improves the operation scheduling model of pumped storage power station. This method can be used in other power grids which use pumped storage power station as black start power.
引文
[1]薛禹胜.时空协调的大停电防御框架(一)从孤立防御到综合防御.电力系统自动化,2006,30(1):8-16.
    [2]王梅义,吴竞昌,蒙定中.大电网系统技术.北京:中国电力出版社,1995.
    [3]葛睿,董昱,吕跃春.欧洲11.4大停电事故分析及对我国电网运行工作的启示.电网技术,2007,21(3):1-6.
    [4]周孝信,郑健超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训.电网技术,2003,27(9):1-1.
    [5]U.S.-Canada Power System Outage Task Force. Final report on the August 14,2003 blackout in the United States and Canada. https://reports.energy.gov/.
    [6]韩祯祥,曹一家.电力系统的安全性及防治措施.电网技术,2004,28(9):1-6.
    [7]Adibi M M, Borkoski J N, Kafka R J. Power system restoration-the second task force report. IEEE Transactions on Power Systems,1987,2(4):927-933.
    [8]NERC Planning Standards. North American Electric Reliability Council,1997.
    [9]吴涛,郭嘉阳,李华伟.华北电网利用十三陵抽水蓄能电厂水电机组进行黑启动的试验研究.电网技术,2001,25(3):56-58.
    [10]Lindstorm R R. Simulation and field tests of the black start of large coal-fired generating station utilizing small remote hydro generation. IEEE Transactions on Power Systems, 1990,5(1):162-168.
    [11]Adibi M M, Fink L H. Power system restoration planning. IEEE Transactions on Power Systems,1994,9(1):22-28.
    [12]周云海.大停电事故后恢复控制技术研究[博士学位论文].北京:清华大学,2001.
    [13]房鑫炎,郁惟镛,熊惠敏.电力系统黑启动的研究.中国电力,2000,33(1):40-43.
    [14]Adibi M M, Milanicz D P, Volkmann T L. Remote cranking of steam electric stations. IEEE Transactions on Power Systems,1996,11(3):1613-1618.
    [15]Adibi M M, Alexander R W, Avramovic B. Overvoltage control during restoration. IEEE Transactions on Power Systems,1992,7(4):1464-1470.
    [16]Adibi M M, Borkoski J N, Kafka R J, et al. Frequency response of prime movers during restoration. IEEE Transactions on Power Systems,1999,14(2):751-756.
    [17]Adibi M M, Fink L H, Andrews C J, et al. Special considerations in power system restoration. IEEE Transactions on Power Systems,1992,7(4):1419-1427.
    [18]Delfino B, Denegri G B, Bonini E C, et al. Black-start and restoration of part of Italian HV network:modelling and simulation of field test. IEEE Transactions on Power Systems, 1996,11(3):1371-1378.
    [19]刘隽,李兴源,许秀芳.互联电网的黑启动策略及相关问题.电力系统自动化,2004, 28(5):93-97.
    [20]蔡述涛,张尧,荆朝霞.地方电网黑启动方案的制定.电力系统自动化,2005,29(12):73-76.
    [21]Adibi M M, Fink L H. Overcoming restoration challenges associated with major power system disturbances-restoration from cascading failures. IEEE Power and Energy Magazine,2006,4(5):68-77.
    [22]Adibi M M, Alexander R W, Milanicz D P. Energizing high and extra-high voltage lines during restoration. IEEE Transactions on Power Systems,1999,14(3):1121-1126.
    [23]周云海,闵勇.恢复控制中的系统重构优化算法研究.中国电机工程学报,2003,23(4):67-70.
    [24]Popovic D P, Mijailovic S V. An efficient methodology for the analysis of primary frequency control of electric power system. International Journal of Electrical Power and Energy Systems,2000,22(5):331-341.
    [25]Rodriguez J, Rodrigo A, Vargas A. A fuzzy-heuristic methodology to estimate the load restoration time in MV networks. IEEE Transactions on Power Systems,2005,20(2): 1595-1602.
    [26]周云海,闵勇.负荷的快速恢复算法研究.中国电机工程学报,2003,23(3):74-79.
    [27]Kostic T, Germond A J, Alba J J. Optimization and learning of load restoration strategies. International Journal of Electrical Power and Energy Systems,1998,20(2):131-140.
    [28]Kearsley R. Restoration in Sweden and experience gained from the blackout of 1983. IEEE Transactions on Power Systems,1987,2(2):422-428.
    [29]王昊昊,薛禹胜,Dong Zhaoyang,等.互联电网恢复控制的自适应优化.电力系统自动化,2007,31(22):1-5.
    [30]王洪涛,刘玉田.电力系统恢复的主从递阶决策模型及其优化算法.中国电机工程学报,2007,27(1):8-13.
    [31]Feltes J W, Grande-Moran C, Duggan P, et al. Some considerations in the development of restoration plans for electric utilities serving large metropolitan areas. IEEE Transactions on Power Systems,2006,21(2):909-915.
    [32]Quaia S, Marchesin A, Marsigli B, et al. Using pumped storage loads in restoration paths: a field test in the Italian national grid. IEEE Transactions on Power Systems,2005,20(3): 1580-1587.
    [33]Gomes P, Lima A C S, Guarini A P. Guidelines for power system restoration in the Brazilian system. IEEE Transactions on Power Systems,2004,19(2):1159-1164.
    [34]王洪涛,刘玉田,邱夕兆.基于分层案例推理的黑启动决策支持系统.电力系统自动化,2004,28(11):49-52.
    [35]顾雪平,赵书强,刘艳,等.一个实用的电力系统黑启动决策支持系统.电网技术,2004,28(9):54-57.
    [36]刘艳,顾雪平.基于节点重要度评价的骨架网络重构.中国电机工程学报,2007,27(10):20-27.
    [37]周云海,胡翔勇,罗斌.基于案例推理的大停电恢复系统设计.电力系统自动化,2007,31(25):87-90.
    [38]Sakaguchi T, Matsumoto K. Development of a knowledge-based system for power system restoration. IEEE Transactions on Power Apparatus and Systems,1983,102(2):320-326.
    [39]程改红,徐政,晁剑.南方电网因直流故障切机后的恢复策略.电力系统自动化,2005,29(22):81-86.
    [40]刘艳.电力系统黑启动恢复及其决策支持技术的研究[博士学位论文].北京:华北电力大学,2007.
    [41]Ancona J J. A framework for power system restoration following a major power failure. IEEE Transactions on Power Systems,1995,10(3):1480-1485.
    [42]Fink L H, Liou K L, Liu C C. Form generic restoration actions to restoration strategies. IEEE Transactions on Power Systems,1995,10(2):745-752.
    [43]Huang J A, Audette L, Harrison S. A systematic method for power system restoration planning. IEEE Transactions on Power Systems,1995,10(2):869-875.
    [44]Kirby B, Hirst E. New black start standards needed for competitive markets. IEEE Power Engineering Review,1999,19(3):9-11.
    [45]Adibi M M, Barrie D, Cooper M E, et al. System operations challenges. IEEE Transactions on Power Systems,1988,3(1):118-126.
    [46]Shultz R D, Mason G A. Black start utilization of remote combustion turbines, analysis and field test. IEEE Transactions on Power Apparatus and Systems,1984,103(8): 2186-2191.
    [47]Liu C C, Liou K L, Chu R F, et al. Generation capability dispatch for bulk power system restoration:a knowledge-based approach. IEEE Transactions on Power Systems,1993, 8(1):316-323.
    [48]Mello F P, Westcott J C. Steam plant startup and control in system restoration. IEEE Transactions on Power Systems,1994,9(1):93-101.
    [49]董张卓,焦建林,孙启宏.用层次分析法安排电力系统事故后火电机组恢复的次序.电网技术,1997,21(6):48-54.
    [50]Hannett L N, Mello F P, Tylinski G H, et al. Validation of nuclear plant auxiliary power supply by test. IEEE Transactions on Power Apparatus and Systems,1982,101(9): 3068-3074.
    [51]Adibi M M, Adamski G, Jenkins R, et al. Nuclear plant requirements during power system restoration. IEEE Transactions on Power Systems,1995,10(3):1486-1491.
    [52]Hassan I D, Weronick R, Bucci R M. Evaluating the transient performance of standby diesel-generator units by simulation. IEEE Transactions on Energy Conversion,1992,7(3): 470-477.
    [53]Yeager K E, Willis J R. Modeling of emergency diesel generators in an 800 megawatt nuclear power plant. IEEE Transactions on Energy Conversion,1993,8(3):433-441.
    [54]Mirza O H. Usage of CLPU curve to deal with the cold load pickup problem. IEEE Transactions on Power Delivery,1997,12(2):660-667.
    [55]NERC Operating Committee. Electric system restoration. New Jersey:North American Electric Reliability Council,1993.
    [56]Bruning A M. Cold load pickup. IEEE Transactions on Power Apparatus and Systems, 1979,98(4):1384-1386.
    [57]Chong C Y, Malhami R P. Statistical synthesis of physically based load models with applications to cold load pickup. IEEE Transactions on Power Apparatus and Systems, 1984,103(7):1621-1628.
    [58]Adibi M M, Kafka R J. Power system restoration issues. IEEE Computer Applications in Power,1991,4(2):19-24.
    [59]Jadid S, Salami A. Accurate model of hydroelectric power plant for load pickup during power system restoration. IEEE TENCON 2004, Chiang Mai, Thailand,2004,3:307-310.
    [60]Furukawak K, Izena A, Shimojo T. Governor control study at the time of a black start. IEEE Power Engineering Society General Meeting, Denver, USA,2004,2:1521-1526.
    [61]Izena A, Naoto S, Toshikazu S, et al. PID governor for black start. The 15th Power Systems Computation Conference, Liege, Belgium,2005, pp.1-6.
    [62]Lindenmeyer D. A framework for power system restoration [Doctoral Thesis]. Canada: University of British Columbia,2000.
    [63]Wang Q, Ajjarapu V. A novel approach to implement generic load restoration in continuation-based quasi-steady-state analysis. IEEE Transactions on Power Systems, 2005,20(1):516-518.
    [64]瞿寒冰,刘玉田.计及暂态电压约束的负荷恢复能力快速计算.电力系统自动化,2009,33(15):8-12.
    [65]Power System Restoration Working Group. Special consideration in power system restoration:the second working group report. IEEE Transactions on Power Systems,1994, 9(1):15-21.
    [66]Adibi M M, Polyak R A, Griva A I, et al. Optimal transformer tap selection using modified barrier-augmented Lagrangian method. IEEE Transactions on Power Systems,2003,18(1): 251-257.
    [67]Povh D, Schultz W. Analysis of overvoltages caused by transformer magnetizing inrush current. IEEE Transactions on Power Delivery,1978,97(4):1355-1365.
    [68]Morin G. Service restoration following a major failure on the hydro-Quebec power system. IEEE Transactions on Power Systems,1987,2(2):454-463.
    [69]Ketabi A, Ranjbar A M, Feuillet R. Analysis and control of temporary overvoltages for automated restoration planning. IEEE Transactions on Power Systems,2002,17(4): 1121-1127.
    [70]程改红,徐政.电力系统故障恢复初期的谐波过电压问题.电网技术,2005,29(10):14-19.
    [71]王洪涛,刘玉田,栾兆文.空载线路合闸对发电机励磁回路的影响.中国电力,2002,35(7):31-34.
    [72]李膨源,顾雪平.基于神经网络的黑启动操作过电压快速预测.电网技术,2006,30(3):66-70.
    [73]张玉琼,顾雪平.基于随机统计分析的黑启动操作过电压的计算校验.电工技术学报,2005,20(5):92-97.
    [74]钱家骊,袁大陆,徐国政.对1000kV电网操作过电压及相位控制高压断路器的讨论.电网技术,2005,29(10):1-4.
    [75]Adibi M M. Remote black start of steam electric station. IEEE Power Engineering Soeiety Summer Meeting, Chieago, USA,2002,3:1229-1232.
    [76]Adibi M M, Milanicz D P, Volkmann T L. Simulating transformer taps for remote cranking operations. IEEE Computer Applications in Power,1996,9(3):24-29.
    [77]程改红,徐政.电力系统故障恢复过程中的过电压控制.电网技术,2004,28(11):29-33.
    [78]刘映尚,张碧华,周云海.黑启动过程中继电保护和安全自动装置的特性和运行.中国电力,2005,38(5):25-28.
    [79]Adibi M M, Milanicz D P. Protective system issues during restoration. IEEE Transactions on Power Systems,1995,10(3):1492-1497.
    [80]Sidhu T S, Tziouvaras D A. Protection issues during system restoration. IEEE Transactions on Power Delivery,2005,20(1):47-56.
    [81]李阳坡,顾雪平,刘艳.电力系统黑启动过程中线路继电保护的配置与整定.电力系统自动化,2006,30(7):89-92.
    [82]Liou K L, Liu C C, Chu R F. Tie line utilization during power system restoration. IEEE Transactions on Power Systems,1995,10(1):192-199.
    [83]郁惟镛,房鑫炎,熊惠敏.华东电网黑启动方案研究之一.电力系统及其自动化学报,2000,12(2):1-4.
    [84]Fountas N A, Hatziargyriou N D, Orfanogiannis C, et al. Inter-relative long-term simulation for power system restoration planning. IEEE Transactions on Power Systems, 1997,12(1):61-68.
    [85]何宝灵,刘玉田,王洪涛,等.利用抽水蓄能黑启动大型火电机组辅机的频率估计.电力自动化设备,2008,28(5):68-71.
    [86]周云海,闵勇,林姿峰.吉林电网黑启动方案的制定及仿真.中国电力,2002,11(3): 28-31.
    [87]Adibi M M, Milanicz D P, Volkmann T L. Asymmetry issues in power system restoration. IEEE Transactions on Power Systems,1999,14(3):1085-1091.
    [88]Adibi M M, Fink L H, Giri J, et al. New approaches in power system restoration. IEEE Transactions on Power Systems,1992,7(4):1428-1434.
    [89]Hazarika D, Sinha A K. An algorithm for standing phase angle reduction for power system restoration. IEEE Transactions on Power Systems,1999,14(4):1213-1218.
    [90]Ketabi A, Ranjbar A M, Feuillet R. New approach to standing phase angle reduction for power system restoration. European Transactions on Electrical Power,2002,12(4): 301-307.
    [91]Wunderlich S, Adibi M M, Fishchl R, et al. An approach to standing phase angle reduction. IEEE Transactions on Power Systems,1994,9(1):470-478.
    [92]刘天琪.超高压大系统最优恢复计划的多目标模糊决策法.电力系统自动化,2000,24(8):27-31.
    [93]Islam S, Chowdhury N. A case-based windows graphic package for the education and training of power system restoration. IEEE Transactions on Power Systems,2001,16(2): 181-187.
    [94]Barry S, Mark T K, Padraig C. Hierarchical case-based reasoning integrating case-based and decompositional problem-solving techniques for plant-control software design. IEEE Transactions on Knowledge and Data Engineering,2001,13(5):793-812.
    [95]Kostic T, Cherkaoui R, Pruvot P. Decision aid function for restoration of transmission power systems:conceptual design and real time consideration. IEEE Transactions on Power Systems,1998,13(3):923-929.
    [96]Teo C Y, Shen W. Real-time generation and supervision of a dynamic restoration plan for bulk-power systems. Electric Power Systems Research,2000,53(2):113-122.
    [97]Adibi M M, Kafka L R J, Milanicz D P. Expert system requirements for power system restoration. IEEE Transactions on Power Systems,1994,9(3):1592-1600.
    [98]邱晓燕,唐海平,李兴源,等.基于专家系统和数值计算的电力系统恢复.中国电机工程学报,1996,16(6):413-416.
    [99]Fountas N A, Hatziagyriou N D, Valavanis K P. A novel framework for the process control of the restoration of electrical industrial systems. Electric Power Systems Research,1999, 50(3):163-167.
    [100]Lee H J, Park Y M. A restoration aid expert system for distribution subsystems. IEEE Transactions on Power Systems,1996,11(4):1765-1770.
    [101]Shimakura K, Inagaki J, Matsunoki Y, et al. A knowledge based method for making restoration plan of bulk power system. IEEE Transactions on Power Systems,1992,7(2): 914-920.
    [102]Teo C Y, Jiang W. Adaptive real-time knowledge based approach for bulk power system restoration. Electric Machines and Power Systems,1997,25(10):1079-1088.
    [103]Kirschen D S, Volkmann T L. Guiding a power system restoration with expert system. IEEE Transactions on Power Systems,1991,6(4):558-566.
    [104]Kojima Y, Warashina S, Nakamura S, et al. Development of a guidance method for power system restoration. IEEE Transactions on Power Systems,1989,4(3):1219-1227.
    [105]Nadira R, DyLiacco T E, Loparo K A. A hierarchical interactive approach to electric power system restoration. IEEE Transactions on Power Systems,1992,7(3):1123-1131.
    [106]Shimakura Y, Inagaki J, Fukui S, et al. Knowledge-based approach for the determination of restorative operation procedures for bulk power systems. International Journal of Electrical Power and Energy Systems,1994,16(3):183-190.
    [107]Ma T K, Liu C C, Tsai M S, et al. Operational experience and maintenance of an on-line expert system for customer restoration and fault testing. IEEE Transactions on Power Systems,1992,7(2):835-842.
    [108]张志毅,陈允平,袁荣湘.系统重构阶段机组最优恢复次序的模糊多属性决策法.电工技术学报,2007,22(11):153-157.
    [109]张志毅,赵秀英.电力系统恢复过程中过电压校正控制序列的模糊多属性决策方法.继电器,2006,34(21):33-36.
    [110]Kuo H C, Hsu Y Y. A heuristic based fuzzy reasoning approach for distribution system service restoration. IEEE Transactions on Power Delivery,1994,9(2):948-953.
    [111]Ahn B S, Lim S I, Lee S J. Service restoration of primary distribution systems based on fuzzy evaluation of multi-criteria. IEEE Transactions on Power Systems,1998,13(3): 1156-1163.
    [112]Momoh J A, Ma X W, Tomsovic K. Overview and literature survey of fuzzy set theory in power system. IEEE Transactions on Power Systems,1995,10(3):1676-1690.
    [113]刘栋,陈允平,沈广,等.基于UML和Petri网的电力系统恢复模型.高电压技术,2006,32(6):90-93.
    [114]Wu J S, Liu C C.A Petri net algorithm for scheduling of generic restoration actions. IEEE Transactions on Power Systems,1997,12(1):69-76.
    [115]刘春颖,李月乔,文亚凤.基于时间Petri网的电力系统故障恢复算法的研究.系统仿真学报,2007,19(1):254-258.
    [116]刘栋,陈允平,沈广,等.电力系统恢复相关问题及其三层Petri网建模.高电压技术,2006,32(7):109-112.
    [117]马骞杨,刘文颖.基于对象Petri网技术的电力系统故障恢复方法.电网技术,2005,29(3):21-28.
    [118]Yang H T, Huang C M. Distribution system service restoration using fuzzy Petri net models. International Journal of Electrical Power and Energy Systems,2002,24(5): 395-403.
    [119]Sadeghkhani I, Ketabi A, Feuillet R. Estimation of temporary overvoltages during power system restoration using artificial neural network.15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil,2009, pp.1-6.
    [120]Bretas A S, Phadke A G. Artificial neural networks in power system restoration. IEEE Transactions on Power Delivery,2003,18(4):1181-1186.
    [121]Hassan M, Mekhamer S F, Mahmoud H, et al. Intelligent techniques for electrical power system restoration. IEEE Eleventh International Middle East Power System Conference, Minia, Egypt,2006, pp.498-502.
    [122]刘强,石立宝,倪以信,等.电力系统恢复控制的网络重构智能优化策略.中国电机工程学报,2009,29(13):8-15.
    [123]顾雪平,韩忠晖,梁海平.电力系统大停电后系统分区恢复的优化算法.中国电机工程学报,2009,29(10):41-46.
    [124]杨可,刘俊勇,贺星棋,等.黑启动中考虑动态过程的负荷最优恢复.电力自动化设备,2009,29(10):88-92.
    [125]沈广,陈允平,刘栋.基于最小生成树编码的配电网恢复遗传算法.电力系统自动化,2007,31(14):81-84.
    [126]Solanki J M, Khushalani S, Schulz N N. A multi-agent solution to distribution systems restoration. IEEE Transactions on Power Systems,2007,22(3):1026-1034.
    [127]王洪涛,刘玉田,邱夕兆,等.基于多Agent的电力系统主从递阶恢复决策.电力系统自动化,2006,30(15):5-9.
    [128]Nagat A T, Sasaki H. A multi-agent approach to power system restoration. IEEE Transactions on Power Systems,2002,17(2):457-462.
    [129]李秋丹,迟忠先,金妮,等.基于数据仓库的地区电网调度决策支持系统.电力系统自动化,2004,28(12):86-90.
    [130]Shi D, Lee Y, Duan X, et al. Power system data warehouses. IEEE Computer Applications in Power,2001,14(3):49-55.
    [131]陈曦,王执铨.决策支持系统理论与方法研究综述.控制与决策,2006,21(9):961-968.
    [132]Linares P. Multiple criteria decision-making and risk analysis as risk management tools for power systems planning. IEEE Transactions on Power Systems,2002,17(3):895-900.
    [133]徐玖平,吴巍.多属性决策的理论与方法.北京:清华大学出版社,2006.
    [134]蒋艳.多属性决策中参数敏感性研究及应用[博士学位论文].武汉:华中科技大学,2002.
    [135]周云海,刘映尚,胡翔勇.大停电事故后的系统网架恢复.中国电机工程学报,2008,28(10):32-36.
    [136]魏智博,刘艳,顾雪平.基于DPSO算法以负荷恢复为目标的网络重构.电力系统自 动化,2007,31(1):38-42.
    [137]徐升,房鑫炎.专家系统在电力系统结构恢复中的应用.电力自动化设备,2003,23(5):33-35.
    [138]Liu Y, Gu X. Reconfiguration of network skeleton based on discrete particle-swarm optimization for black-start restoration. IEEE Power Engineering Society General Meeting, 2006, pp.1-7.
    [139]He X, Liao Z, Guo W, et al. A multi-objective model for transmission network restoration based on multi-agent and Tabu search.3th International Conference on Deregulation and Restructuring and Power Technologies, Nanjing, China,2008, pp.2392-2397.
    [140]Liu Q, Shi L, Zhou M, et al. A new solution to generators start-up sequence during power system restoration.3th International Conference on Deregulation and Restructuring and Power Technologies, Nanjing, China,2008, pp.2845-2849.
    [141]Adibi M M, Milanicz D P. Estimating restoration duration. IEEE Transactions on Power Systems,1999,14(4):1493-1498.
    [142]张恒旭,张宁,刘玉田.电力系统暂态稳定数字仿真有效性评价.电力自动化设备,2007,27(7):13-16.
    [143]吴荻,辛焕海,甘德强.电力系统动态仿真中参数不确定性影响的评估.电力系统自动化,2008,32(5):15-19.
    [144]Shyur H J, Shih H S. A hybrid MCDM model for strategic vendor selection. Mathematical and Computer Modelling,2006,44(7-8):749-761.
    [145]Hui G, Bifeng S. Study on effectiveness evaluation of weapon systems based on grey relational analysis and TOPSIS. Journal of Systems Engineering and Electronics,2009, 20(1):106-111.
    [146]林振智,文福拴,薛禹胜.黑启动决策中指标值和指标权重的灵敏度分析.电力系统自动化,2009,33(9):20-25.
    [147]Hwang C L, Yoon K. Multiple attribute decision making methods and applications:a state-of-the-art survey. New York:Springer-Verlag,1981.
    [148]Chen H, Kocaoglu D F. A sensitivity analysis algorithm for hierarchical decision models. European Journal of Operational Research,2008,185(1):266-288.
    [149]孟宪朋,么莉,林济铿,等.天津电网黑启动方案.电力自动化设备,2008,28(2):108-112.
    [150]严奉军,王宁.电厂黑启动方案及其系统试验.电力自动化设备,2007,27(1):122-125.
    [151]邢金峰,常鲜戎,张洁.多级模糊综合评价在电网调度员培训评估中应用.电力自动化设备,2005,25(10):78-81.
    [152]孙宏斌,吴文传,张伯明.电网调度员培训仿真系统的新特征和概念扩展.电力系统自动化,2005,29(7):6-11.
    [153]高远望,顾雪平,刘艳,等.电力系统黑启动方案的自动生成与评估.电力系统自动化,2004,28(13):50-54.
    [154]Andersson G, Donalek P, Farmer R. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Transactions on Power Systems,2005,20(4):1922-1928.
    [155]Pourbeik P, Kundur P S, Taylor C W. The anatomy of a power grid blackout-root causes and dynamics of recent major blackouts. IEEE Power and Energy Magazine,2006,4(5): 22-29.
    [156]刘艳,顾雪平.评估黑启动方案的层次化数据包络分析方法.电力系统自动化,2006,30(21):33-38.
    [157]陈雪青,郑彤昕,石光,等.有抽水蓄能电站的联合电力系统优化调度模型和算法.中国电机工程学报,1995,15(4):274-288.
    [158]徐得潜,杨善林,杨立峰,等.抽水蓄能电站调节库容与经济效益关系的研究.水力发电学报,2006,25(6):1-7.
    [159]龙军.电力市场中抽水蓄能电站的生产成本评估与水库的优化利用策略.电网技术,2004,28(12):62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700