籼稻愈伤组织培养和一株水稻黄绿叶突变体的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的粮食作物之一,也是单子叶植物研究的模式生物。随着全基因组测序计划的完成,水稻遗传学研究已进入功能基因组时代。克隆和解析功能基因是水稻功能基因组研究的主要任务。目前水稻中已发展了多种克隆和鉴定功能基因的方法,其中最直接有效的途径是构建基因突变群体,通过对突变体的分析鉴定基因功能。采用Ac/Ds转座子标签法构建突变群体是最有效和最常用的方法之一。为了促进水稻功能基因的研究,本论文主要围绕水稻Ac/Ds标签系统做了两方面的研究:
    
     1、为促进籼稻Ac/Ds基因捕获系统的构建,以籼稻成熟胚为起始材料,进行了籼稻愈伤组织培养,希望能够优化其愈伤组织再生体系。结果如下:1)愈伤组织诱导培养基含2,4-D 0.5 mg/L时,嘉育948、盐恢559、扬籼6547、中二软占、明恢86、广恢998、遵籼3号等7个品种的愈伤组织诱导效果最佳;含2,4-D 1.0 mg/L时,镇恢084的愈伤组织诱导效果最佳;含2,4-D 1.5 mg/L时,籼小粘和扬稻6号的愈伤组织诱导效果最佳;在含不同2,4-D浓度(0.5 ~ 2.5 mg/L)的培养基中,中鉴100和湘晚籼1号都没能诱导出愈伤组织;2)在含最适2,4-D水平的诱导培养基中再添加0.2 mg/L 6-BA对愈伤组织诱导率作用不明显,但抑制愈伤组织分化成苗;3)在分化培养基中适当降低6-BA浓度既能保证愈伤组织成苗率不下降甚至上升,又可以提高再生植株的质量。
     2、在水稻Ds插入突变体群体中得到一株黄绿叶突变体,在对其进行研究的过程中,取得了如下结果:1)采用hiTAIL-PCR技术,建立了扩增Ds侧翼序列的稳定体系;hiTAIL-PCR比TAIL-PCR更加稳定和高效,成功率更高,且可以应用于较水稻更复杂的基因组;2)黄绿叶突变体为一单基因隐性突变体;采用hiTAIL-PCR扩增了其Ds侧翼序列,序列分析发现Ds插入到了Os03g0344200上游150 bp处;连锁分析发现该Ds插入与黄绿叶突变表型并不存在连锁关系。
Rice is one of the most important food crops, and is also a model plant in monocot species. With the accomplishment of rice genome sequencing project, a new era of functional genomics has arrived in rice genetics research. The main task of rice functional genomics is functional deciphering of rice genes. Currently, several approaches have been developed in rice to clone new genes and determinate their functions, and among these strategies developing mutant population and deciphering functional genes through mutants concerned is most efficient, and mutagenesis through Ac/Ds tagging system is one of the most widely used and efficient tools for producing mutant population. To promote the development of rice functional genomics, in this paper, we will make two researches around rice Ac/Ds transposon tagging system.
     1. To push the development of Ac/Ds transposon tagging system in indica rice, we have made indica rice mature embryo callus culture and acquired results as follows: (1) The calli of seven varieties, including Jiayu 948, Yanghui 559, Yangxian 6547, Zhongerruanzhan, Minghui 86, Guanghui 998, and Zunxian 3, were best initiated on callus initiation media containing 2,4-D at 0.5 mg/L; The calli of Zhenhui 084 were best initiated on media containing 2,4-D at 1.0 mg/L ; When the level of 2,4-D was set at 1.5 mg/L, the calli of two varieties, including Yangdao 6 and Xianxiaonian, were best initiated; On media containing 2,4-D at 0.5 ~ 2.5 mg/L , the calli of two varieties, including Zhongjian 100 and Xiangwanxian 1, could not be initiated; (2) 0.2 mg/L 6-BA was supplemented into callus initiation media containing optimal 2,4-D level with an objective to explore the effects of 6-BA on callus initiation and plantlet regeneration, and it was found that the 6-BA treatment had no significant effects on callus initiation frequency, but could reduce plantlet regeneration frequency; (3) Not only plantlet regeneration frequency could be maintained and even increased, but also the quality of regenerated plantlets could be improved when the concentration of 6-BA in plantlet regeneration medium was properly reduced.
     2. We have found a yellow-green leaf mutant in Ds insertion rice lines, and during the genetic study of the mutant, we achieved the following results: (1) Using hiTAIL-PCR, we have established a stable system for identifying Ds flanking sequences; It is indicated that hiTAIL-PCR is more stable and efficient than TAIL-PCR, and can be applied to isolate Ds flanking sequences in genomes with more complexity than rice; (2) The yellow-green leaf mutant is caused by a single recessive mutant; Using hiTAIL-PCR, we isolated the Ds flanking sequence in the mutant, and sequence analysis revealed that the Ds element was inserted 150bp upstream of the rice predicted gene Os03g0344200; Analysis indicated that there is no genetic linkage between the Ds insertion and the yellow-green leaf mutant.
引文
[1] Izawa T, Shimamoto K. Becoming a model plant: the importance of rice to plant science. Trends Plant Sci, 1996, 1(3): 95-99.
    [2] Itoh JI, Nonomura KI, Ikeda K, et al. Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005, 46(1): 23-47.
    [3] Chen M, Presting G, Barbazuk WB, et al. An integrated physical and genetic map of the rice genome. Plant Cell, 2002, 14(3): 537-545.
    [4]王凤梅.水稻功能基因组学研究.生物技术通报. 2007,1:10-13.
    [5] Jeon JS, An G. Gene tagging in rice: a high throughput system for functional genomics. Plant Sci, 2001, 161(2): 211-219.
    [6] Chin HG, Choe MS, Lee SH, et al. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J, 1999, 19(5): 615-623.
    [7] Kim CM, Piao HL, Park SJ, et al. Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J, 2004, 39(2): 252-263.
    [8] Park SH, Jun NS, Kim CM, et al. Analysis of gene-trap Ds rice populations in Korea. Plant Mol Biol, 2007, 65(4): 373-384.
    [9]袁隆平.超级杂交水稻育种研究的进展.中国稻米, 2008, (1): 1-3.
    [10]赵开斌,余华强,房振兵,等.杂交水稻斑马叶片标记性状的表现特征与应用研究.湖北农业科学, 2005, (6): 17-22.
    [11] Wu DX, Shu QY, Xia YW. In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker. Euphytica, 2002, 123(2): 195-202.
    [12] Sun BY, Piao HL, Park SH, et al. Selection of optimal primers for TAIL-PCR in identifying Ds flanking sequences from Ac/Ds insertion rice lines. Chin J Biotech, 2004, 20(6): 821-826.
    [13]张帆,金维正,陈双燕,等.质粒营救法和TAIL-PCR法获得水稻T-DNA旁邻序列的效率比较.农业生物技术学报, 2004, 12(1): 13-18.
    [14]刘选明,周朴华,余平.杂交水稻体细胞胚诱导与同步化的研究.作物学报, 1994, 20(4): 465-471.
    [15]范钦,许新萍,黄小乐,等.早籼稻培矮64S愈伤组织形成及植株再生.西北植物学报, 2002, 22(6): 1469-1473.
    [16] Xie J, Gao M, Cai Q, et al. Improved isolated microspore culture efficiency in medium with maltose and optimized growth regulator combination in japonica rice (Oryza sativa). Plant Cell Tiss Org, 1995, 42(3): 245-250.
    [17]危晓薇,王冬梅,祖木热木·吐尔逊,等.水稻成熟胚愈伤组织诱导及其植株再生.新疆农业科学, 2007, 44(6): 889-891.
    [18]王亚琴,段中岗,黄江康,等.水稻幼穗培养高效再生系统的建立.植物学通报, 2004, 21(1): 52-60.
    [19]陈红,秦瑞珍.提高水稻同源四倍体花药培养愈伤诱导率的研究.作物学报, 2007, 33(1): 120-125.
    [20]杨跃生,简玉瑜.影响水稻愈伤组织再生植株数量和质量的因素.农业生物技术学报, 1996, 4(2): 124-128.
    [21] Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25(3): 674-681.
    [22] Liu YG, Chen YL. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007, 43(5): 649-656.
    [23] Kang TJ, Yang MS. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants. BMC Biotethnol, 2004, 4: 20.
    [24] Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8(3): 457-463.
    [25] Miyao A, Tanaka K, Murata K, et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell, 2003, 15(8): 1770-1881.
    [26] Siebert PD, Chenchik A, Kellogg DE, et al. An improved PCR method forwalking in uncloned genomic DNA. Nucleic Acids Res, 1995, 23(6): 1087-1088.
    [27] Miyao A, Yamazaki M, Hirochika H. Systematic screening of mutants of rice by sequencing retrotransposon-insertion sites. Plant Bioteth, 1998, 15(4): 253-256.
    [28] Kusumi K, Inada H, Kawabata S, et al. Chlorophyll deficiency caused by a specific blockage of the C5-pathway in seedlings of virescent mutant rice. Plant Cell Physiol, 1994, 35(3): 445-449.
    [29] Liu WZ, Fu YP, Hu GC, et al. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226(3): 785-795.
    [30] Jung KH, Hur J, Ryu CH, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44(5): 463-472.
    [31] Wu ZM, Zhang X, He B, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145(1): 29–40.
    [32]李得孝,郭月霞,员海燕,等.玉米叶绿素测定方法研究.中国农学通报, 2005, 21(6): 153-155.
    [33]张立军,樊金娟.植物生理学实验教程.北京:中国农业大学出版社, 2007.
    [1] Yu J, Hu SN, Wang J, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565): 79-92.
    [2] Goff SA, Ricke D, Lan TH, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565): 92-100.
    [3] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436(7052): 793-800.
    [4] Draper J, Mur LAJ, Jenkins G, et al. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol, 2001, 127(4): 1539-1555.
    [5] Izawa T, Shimamoto K. Becoming a model plant: the importance of rice toplant science. Trends Plant Sci, 1996, 1(3): 95-99.
    [6] Itoh JI, Nonomura KI, Ikeda K, et al. Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005, 46(1): 23-47.
    [7] Chen M, Presting G, Barbazuk WB, et al. An integrated physical and genetic map of the rice genome. Plant Cell, 2002, 14(3): 537-545.
    [8] Jeon JS, An G. Gene tagging in rice: a high throughput system for functional genomics. Plant Sci, 2001, 161(2): 211-219.
    [9] McCallum CM, Comai L, Greene EA, et al. Targeted screening for induced mutations. Nat Biotech, 2000, 18(31): 455-457.
    [10] McCallum CM, Comai L, Greene EA, et al. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol, 2000, 123(2): 439-442.
    [11] Jeon JS, Lee S, Jung KH, et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22(6): 561-570.
    [12] Jeong DH, An S, Kang HG, et al. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol, 2002, 130(4): 1636-1644.
    [13] Izawa T, Miyazaki C, Yamamoto M , et al. Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). Mol Genet Genomics, 1991, 227(3): 391-396.
    [14] Enoki H, Izawa T, Kawahara M, et al. Ac as a tool for the functional genomics of rice. Plant J, 1999, 19(5): 605-613.
    [15] Izawa T, Ohnishi T, Nakano T, et al. Transposon tagging in rice. Plant Mol Biol, 1997, 35(1-2): 219-229.
    [16] Chin HG, Choe MS, Lee SH, et al. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J, 1999, 19(5): 615-623.
    [17] Kim CM, Piao HL, Park SJ, et al. Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J, 2004, 39(2): 252-263.
    [18] Park SH, Jun NS, Kim CM, et al. Analysis of gene-trap Ds ricepopulations in Korea. Plant Mol Biol, 2007, 65(4): 373-384.
    [19] Zhu ZG, Fu YP, Xiao H, et al. Ac/Ds transposition activity in transgenic rice population and DNA flanking sequence of Ds insertion sites. Acta Bot Sin, 2003, 45: 102-107.
    [20] Jin WZ, Wang SM, Xu M, et al. Characterization of enhancer trap and gene trap harboring Ac/Ds transposon in transgenic rice. J Zhejiang Univ Sci, 2004, 5(4): 390-399.
    [21] Liu F, Zhang XQ, Zhang ZM, et al. Transpositional behaviour of the Ds element in the Ac/DS system in rice. Chin Sci Bull, 2007, 52(20): 2789-2796
    [22] Kolesnik T, Szeverenyi I, Bachmann D, et al. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J, 2004, 37(2): 301-314.
    [23] Szeverenyi I, Ramamoorthy R, Teo ZW, et al. Large-scale systematic study on stability of the Ds element and timing of transposition in rice. Plant Cell Physiol, 2006, 47(1): 84-95.
    [24] Greco R, Ouwerkerk PBF, Kam RJ, et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet, 2003, 108(1): 10-24.
    [25] Kohli A, Xiong J, Greco R, et al. Tagged transcriptome display (TTD) in indica rice using Ac transposition. Mol Genet Genomics, 2001, 266(1): 1-11.
    [26] Upadhyaya NM, Zhou XR, Zhu QH, et al. An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol, 2002, 29(5): 547-559.
    [27] Pohlman RF, Fedoroff NV, Messing J. The nucleotide sequence of the maize controlling element Activator. Cell, 1984, 37(2): 635-643.
    [28] Fedoroff N, Wessler S, Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell, 1983, 35(1): 235-242.
    [29]袁隆平.超级杂交水稻育种研究的进展.中国稻米, 2008, (1): 1-3.
    [30]张士陆,倪大虎,易成新,等.分子标记辅助选择降低籼稻057的直链淀粉含量.中国水稻科学, 2005, 19(5): 467-470.
    [31]尹鸿瑛,安韩冰,安利佳.影响根癌农杆菌介导水稻转化的因素分析.植物研究, 2001, 21(3): 437-443.
    [32]王莉江,明小天,安成才,等.籼稻明恢63成熟种子愈伤组织的诱导及转基因水稻的抗性检测.生物工程学报, 2002,18(3): 323-326.
    [33]许新萍,胡明,蚁乐洲,等.高效的水稻基因枪转化和可育转基因植株再生.作物学报, 1999, 25(6): 691-696.
    [34]张玲,谢崇华,李卫锋.水稻成熟胚组织培养研究.杂交水稻, 2002, 17(2): 44-46.
    [35] Abe T, Futsuhara Y. Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.) . Theor Appl Genet, 1986, 72(1): 3-10.
    [36] Reddy VS, Leelavathi S, Sen SK. Influence of genotype and culture medium on microspore callus induction and green plant regeneration in anthers of Oryza sativa. Physiol Plantarum, 1985, 63(3): 309-314.
    [37] Mikami T, Kinoshita T. Genotypic effects on the callus formation from different explants of rice, Oryza sativa L. Plant Cell Tiss Org, 1988, 12(3): 311-314.
    [38] Yu J, Wang J, Lin W, et al. The genomes of Oryza sativa: a history of duplications. Plos Biol, 2005, 3(2): e38.
    [39] Triglia T, Peterson MG, Kemp DJ. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res, 1988, 16(16): 8186.
    [40] Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics Soc America, 1988, 120(3): 621-623.
    [41] Prod’Hom G, Lagier B, Pelicic V, et al. A reliable amplification technique for the characterization of genomic DNA sequences flanking insertion sequences. FEMS Microbiol Lett, 1998, 158(1): 75-81.
    [42] Mueller PR, Wold B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science, 1989, 246(4931): 780-786.
    [43] Pfeifer GP, Steigerwald SD, Mueller PR, et al. Genomic sequencing and methylation analysis by ligation mediated PCR. Science, 1989, 246(4931): 810-813.
    [44] O’Malley RC, Alonso JM, Kim CJ, et al. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome.Nat Protoc, 2007, 2(11): 2910-2917.
    [45] Perucho M, Hanahan D, Leah L, et al. Isolation of chicken thymidine kinase gene by plasmid rescue. Nature, 1980, 285(4391): 207-210.
    [46] Nakazawa M, Yabe N, Ichikawa T, et al. DFLl, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J, 2001, 25(2): 213-221.
    [47] Migeon JC, Garfinkel MS, Edgar BA. Cloning and characterization of peter pan, a novel Drosophila gene required for larval growth. Mol Biol Cell, 1999, 10(6): 1733-1744.
    [48] Mathur J, Szabados L, Sabine S, et al. Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. Plant J, 1998, 13(5): 707-716.
    [49] Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25(3): 674-681.
    [50] Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8(3): 457-463.
    [51] Miyao A, Tanaka K, Murata K, et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell, 2003, 15(8): 1770-1881.
    [52] Sessions A, Burke E, Presting G, et al. A high-throughput Arabidopsis reverse. Plant Cell, 2002, 14(12): 2985-2994.
    [53] Margis-Pinheiro M, Zhou XR, Zhu QH, et al. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep, 2005, 23(12): 819-833.
    [54] Sun BY, Piao HL, Park SH, et al. Selection of optimal primers for TAIL-PCR in identifying Ds flanking sequences from Ac/Ds insertion rice lines. Chin JBiotech, 2004, 20(6): 821-826.
    [55] Liu YG, Chen YL. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007, 43(5): 649-656.
    [56] Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19(1): 47–56.
    [57] Sakamoto T, Miura K, Itoh H, et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant physiol, 2004, 134(4): 1642-1653.
    [58] Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene sd-l: rice“green revolution gene”encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9(1): 11-17.
    [59] Itoh H, Tatsumi T, Sakamoto T, et al. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54(4): 533–547.
    [60] Fambrini M,Castagna A,Vecchia FD, et al. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167(1): 79-89.
    [61] Singh UP, Prithiviraj B, Sarma BK. Development of Erysiphe pisi (powdery mildew) on normal and albino mutants of pea (Pisum sativum L.). J Phytopathol, 2000, 148(11-12): 591-595.
    [62]赵开斌,余华强,房振兵,等.杂交水稻斑马叶片标记性状的表现特征与应用研究.湖北农业科学, 2005, (6): 17-22.
    [63] Wu DX, Shu QY, Xia YW. In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker. Euphytica, 2002, 123(2): 195-202.
    [64] Oh SA, Park JH, Lee GI, et al. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J, 1997, 12(3): 527-535.
    [65] Gan S, Amasino RM. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270(5244): 1986-l988.
    [66] Beale SI . Green genes gleaned. Trends Plant Sci, 2005, 10(7): 301-312.
    [67] Nagata N, Tanaka R, Satoh S, et al. Identification of vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. Plant Cell, 2005, 17(1): 233-240.
    [68] Terry MJ, Wahleithner JA, Lagarias JC. Biosynthesis of the plant photoreceptor phytochrome. Arch Biochem Biophys, 1993, 306(1): 1-15.
    [69] Terry MJ, McDowell MT, Lagarias JC. (3Z)-and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore. J Biol Chem, 1995, 270(19): 11111-11119.
    [70] Weller JL, Terry MJ, Rameau C, et al. The phytochrome-deficient pcd1 mutant of pea is unable to convert heme to biliverdin IXα. Plant Cell, 1996, 8(1): 55-67.
    [71] Terry MJ, Kendrick RE. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119(1): 143-152.
    [72] Yaronskaya E, Ziemann V, Walter G, et al. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Plant J, 2003, 35(4): 512-522.
    [73] Kannangara GG, Gough SP, Bruyant P, et al. tRNAGlu as a cofactor inδ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem Sci, 1988, 13(4): 139-143.
    [74] Vicentini F, Hortensteiner S, Schellenberg M, et al. Chlorophyll breakdown in senescent leaves: identification of biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytol, 1995, 129(2): 247-252.
    [75] Chen G, Bi YR, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41(3): 364-375.
    [76] Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, et al. Rice dwarf mutant d1, which is defective in the a-subunit of the heterotrimeric G protein, affects gibberellin signal transduction. PANS. 2000, 97(21): 11638-11643.
    [77] Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLININSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature. 2005, 437(7059): 693-698.
    [78] Kushnir S, Babiychuk E, Storozhenko S, et al. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell, 2001, 13(1): 89-100.
    [79] Kusumi K, Inada H, Kawabata S, et al. Chlorophyll deficiency caused by a specific blockage of the C5-pathway in seedlings of virescent mutant rice. Plant Cell Physiol, 1994, 35(3): 445-449.
    [80] Liu WZ, Fu YP, Hu GC, et al. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226(3): 785-795.
    [81]王军,王宝和,周丽慧,等.一个水稻新黄绿叶突变体基因的分子定位.中国水稻科学, 2006, 20(5): 455-459.
    [82] Jung KH, Hur J, Ryu CH, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44(5): 463-472.
    [83] Wu ZM, Zhang X, He B, et al. A Chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145(1): 29–40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700