水稻苍白叶突变体pgl3(t)的遗传分析和基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶绿素是地球上最重要的光合色素,植物叶绿素的含量与其光合速率、营养状况及生物产量等密切相关。水稻是单子叶植物发育分子生物学研究的理想模式植物,开展水稻叶绿素相关突变体的基因克隆和功能基因组学研究,不仅为揭示水稻叶绿素合成代谢机制、基因表达调控和叶绿体的发育提供理论依据,对水稻超高产育种也具有重要的应用价值。
     本研究组从经EMS处理的粳稻品种日本晴后代中得到一株苍白叶(pale-green-leaf)叶色突变体,该叶色突变体的表型特征是:从苗期开始,整个生育期表现叶色苍白,抽穗后发现穗部也较野生型的略显苍白,突变体的株高和分蘖与野生型植株没有明显区别,结实率有轻微的下降。
     取该突变体与野生型日本晴分蘖盛期的功能叶片,采用丙酮法进行叶绿素含量的测定,结果显示,与野生型日本晴相比,突变体pgl3(t)的叶绿素a、b的含量明显下降。对该突变体进行遗传分析表明,该叶色突变是受单隐性核基因控制的。将该突变体与已报道的和本实验已有的其它叶色突变体进行等位性检测,结果各杂交后代都能在表型上互补,表明该基因不与目前已报道的叶色相关基因等位,是一个新的叶色相关的基因,鉴于目前已有pgl2(t)的报道,故将该突变体暂时命名为pgl3(t) (pale-green-leaf3 temporary)。
     利用籼稻品种TN1与突变体pgl3(t)杂交得到F1代,F1代自交获得F2分离群体,从F2分离群体中选择突变体表型的单株作为定位群体,共鉴定出1427株苍白叶表型突变单株;根据已公布的分子标记和本实验室检测到的多态性标记,用图位克隆法首先将Pgl3(t)基因初步定位在10号染色体的长臂上。进一步发展新的STS标记、SSR标记和CAPs标记,最终将Pgl3(t)基因精细定位于10号染色体长臂上的两个CAPs标记C2和C3之间,物理距离为64kb,序列分析与基因预测发现该区域含有3个开放与阅读框,目前已正在进行基因序列的预测。
Chlorophyll is one of the most important pigments for photosynthesis. The content of chlo-rophyll is intimately related to the photosynthesis efficiency and nutrition and bio-outputs of the plants. As one of the most important food supplies and the ideal model plants in the study of de-veloped and molecular biology of the monocotyledon, it not only offer theories and evidence for showing us the mechanism of chlorophyll metabolism, regulation of gene expression and the development of chloroplast, it’s also of grate importance in breeding of supper rice.
     A leaf color mutant was identified from the descendants of an Indica variety Nipponbare which has been dealt with EMS in our laboratory. The mutant displays a pale green leaf during the whole life stage, with low grain set rate. After several generation growed in Hangzhou and Hainan, we found that the characters of the mutant can be geneticed stably. Genetic analysis showed that the mutant is controlled by a single recessive nuclear gene which is not allelic with the known genes. So it’s a new gene related to leaf colour. The mutation was temporarily desig-nated as pgl3(t)(pale-green-leaf temporary) since there has reported the gene named pgl2. Chlo-rophyll anlysis stated that the contents of both chlorophyll a and b showed a decrease compared with the wild type Nipponbare in the tillering stage.
     We used a F2 population generated from the cross between the mutant pgl3(t) and an Indica variety TN1 to map the Pgl3(t) gene. The Pgl3(t) gene was finally located to a 64 kb region be-tween two new designed markers c2 and c3 on the long arm of chromosome 10 after primary, fine mapping. Sequence annotation revealed that there are three ORFs in this 64kb region, all of which had a full length cDNA support. Although we had not confirmed which candidate gene is Pgl3(t), the study would be useful for cloning the Pgl3(t) gene and its function analysis.
引文
[1] Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)[J]. Science, 2002, 296(5565): 92-100.
    [2] Ito Y, Arikawa K, Antonio BA, et al. Rice Annotation Database (RAD): a contig-oriented database for map-based rice genomics[J]. Nucleic Acids Res, 2005, 33(Database issue): D651-655.
    [3] Shimada H. [Rice chloroplast genome][J]. Tanpakushitsu Kakusan Koso, 1989, 34(14): 1863-1872.
    [4] Hirai A. [Rice mitochondrial genome][J]. Tanpakushitsu Kakusan Koso, 1989, 34(14): 1859-1861.
    [5] Saito A. [Nuclear genome configuration of rice][J]. Tanpakushitsu Kakusan Koso, 1992, 37(7): 1022-1032.
    [6] Terryn N, Rouze P, Van Montagu M. Plant genomics[J]. FEBS Lett, 1999, 452(1-2): 3-6.
    [7] Goff SA. Rice as a model for cereal genomics[J]. Curr Opin Plant Biol, 1999, 2(2): 86-89.
    [8] Saegusa A. Japanese plan speeds up rice genome sequencing[J]. Nature, 1999, 401(6749): 102.
    [9] Macilwain C. US provides funding for sequencing rice genome[J]. Nature, 1999, 401(6753): 520.
    [10]辛碧芬.谷类作物基因组的共线性[J].上饶师范学院学报, 2006, 26(3): 98-105.
    [11]赵孔南,王彩莲,慎玫,等.氯化钠对γ辐射诱发水稻M2代突变的修饰效应[J].浙江农业大学学报, 1990, 16(3): 247-251.
    [12] Oki T, Masuda M, Kobayashi M, et al. Polymeric procyanidins as radical-scavenging components in red-hulled rice[J]. J Agric Food Chem, 2002, 50(26): 7524-7529.
    [13]何冰,刘玲珑,张文伟,等.植物叶色突变体[J].植物生理学通讯, 2006, 42(1): 1-9.
    [14]夏英武,吴殿星,舒庆尧.人工诱发的植物叶绿素突变体的遗传及其应用[J].核农学报, 1996: 41-44.
    [15] Eckhardt U, Grimm B, H?rtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J]. Plant Mol Biol, 2004, 56(1-14):
    [16]王聪田,王国槐,青先国,等.一个新的水稻黄化突变体的光合作用及叶绿素荧光特性研究[J].江西农业学报, 2007, 19(9): 10-13.
    [17]黄晓群,王平荣,赵海新,等.一个新的水稻叶绿素缺失突变基因的遗传分析和分子标记定位[J].中国水稻科学, 2007, 21(4): 355-359.
    [18]徐光辉,虎晓红,熊淑萍,等.烤烟叶片叶绿素含量与颜色特征的关系[J].河南农业大学学报, 2007, 41(6): 600-604.
    [19]吴殿星,夏英武,舒庆尧.植物基因工程及其应用性研究进展[J].生物学杂志, 1995, 6: 11-14.
    [20]王欣丽,朱飞.人工诱变在植物病原真菌研究中的应用[J].临沂师范学院学报, 2007, 29(6): 62-66.
    [21]郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报, 2006, 23(1): 1-13.
    [22] Li X, Qian Q, Fu Z, et al. Control of tillering in rice[J]. Nature, 2003, 422(6932): 618-621.
    [23] Zuo L, Li S, Chu M, et al. Phenotypic characterization, genetic analysis, and molecular mapping of a new mutant gene for male sterility in rice[J]. Genome, 2008, 51(4): 303-308.
    [24] Zhang H, Li J, Yoo JH, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Mol Biol, 2006, 62(3): 325-337.
    [25]陈善福,舒庆尧.利用γ射线辐照诱发水稻龙特甫B叶色突变[J].浙江大学学报农业与生命科学版, 1999, 25(6): 51-56.
    [26]吴殿星,舒庆尧,夏英武,等. 60Co—y射线诱发的籼型温敏核不育水稻叶色突变系变异分析[J].作物学报, 1999, 25(1): 64-69.
    [27]魏玉波,梁乃亭,布哈丽且木,等. 60Coγ射线辐照诱发水稻茎叶超绿突变体[J].核农学报, 2003, 17(6): 409-411.
    [28] Meskaushiene R, nater M, David G. FLU:A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2001, 98: 12826-12831.
    [29] Mochizuki N, brusslan JA, Larkini R. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the in-volvement of Mg-chalatase H subunit in plastid-to-nucleus signal transduction[J]. Proc Natl Acad Sci USA, 2001, 2001(98): 2053-2058.
    [30] Maluszynski M, Nichterlein K, Zanten L, et al. Official released mutant varieties the FAO/IAEA data-base[J]. Mutation Breed, 2000, 12: 1-88.
    [31]孙宗修,朱旭东,董凤高,等.中国水稻基因组计划标准实验材料的构建[J].中国农业科学, 1997, 30(2): 91-93.
    [32] Hirochika H, Guiderdoni E, An G, et al. Rice mutant resources for gene discovery[J]. Plant Mol Biol, 2004, 54(3): 325-334.
    [33] Wu JL, Wu C, Lei C, et al. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics[J]. Plant Mol Biol, 2005, 59(1): 85-97.
    [34] Fisher ks, Barton J, Khush GS, et al. collaboration in rice[J]. science, 2000, 290(279-280):
    [35] Leung H, Wu C, Baraoidan M, et al. Deletion mutants functional genomics:progress in phenotyp-ing,sequence assignment and database development,4th International Rice Genetics Symposium[J]. IR-RI Philippines Abstract Book, 2000: 18.
    [36]钱前,程式华.水稻遗传学和功能基因组学[M].科学出版社,
    [37] Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobac-terium and sequence analysis of the boundaries of the T-DNA[J]. Plant J, 1994, 6(2): 271-282.
    [38] Jeon JS, Lee S, Jung KH, et al. T-DNA insertional mutagenesis for functional genomics in rice[J]. Plant J, 2000, 22(6): 561-570.
    [39] Jung KH, Hur J, Ryu CH, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. Plant Cell Physiol, 2003, 44(5): 463-472.
    [40] Lee S, Kim JH, Yoo ES, et al. Differential regulation of chlorophyll a oxygenase genes in rice[J]. Plant Mol Biol, 2005, 57(6): 805-818.
    [41] Liu W, Fu Y, Hu G, et al. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mu-tant in rice (Oryza sativa L.)[J]. Planta, 2007, 226(3): 785-795.
    [42]朱正歌,孙宗修.转座子标签法克隆水稻基因前景[J].中国水稻科学, 2001, 15(1): 46-50.
    [43] Wu C, Li X, Yuan W, et al. Development of enhancer trap lines for functional analysis of the rice ge-nome[J]. Plant J, 2003, 35(3): 418-427.
    [44] Sundaram TK, Radhakrishnamurty R, Shanmugasundaram ER, et al. Tryptophan metabolism in rice moth larva (Corcyra cephalonica st.)[J]. Proc Soc Exp Biol Med, 1953, 84(3): 544-546.
    [45] Jeong DH, An S, Kang HG, et al. T-DNA insertional mutagenesis for activation tagging in rice[J]. Plant Physiol, 2002, 130(4): 1636-1644.
    [46] Ryu CH, You JH, Kang HG, et al. Generation of T-DNA tagging lines with a bidirectional gene trap vec-tor and the establishment of an insertion-site database[J]. Plant Mol Biol, 2004, 54(4): 489-502.
    [47] Yin Z, Chen J, Zeng L, et al. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Mol Plant Microbe Interact, 2000, 13(8): 869-876.
    [48] Barakat A, Gallois P, Raynal M, et al. The distribution of T-DNA in the genomes of transgenic Arabidop-sis and rice[J]. FEBS Lett, 2000, 471(2-3): 161-164.
    [49] Sallaud C, Gay C, Larmande P, et al. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics[J]. Plant J, 2004, 39(3): 450-464.
    [50] Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics[J]. Curr Opin Plant Biol, 2001, 4(2): 118-122.
    [51] An G, Lee S, Kim SH, et al. Molecular genetics using T-DNA in rice[J]. Plant Cell Physiol, 2005, 46(1): 14-22.
    [52] Enoki H, Izawa T, Kawahara M, et al. Ac as a tool for the functional genomics of rice[J]. Plant J, 1999, 19(5): 605-613.
    [53] Greco R, Ouwerkerk PB, De Kam RJ, et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Theor Appl Genet, 2003, 108(1): 10-24.
    [54]郝铭,阎双勇,谭震波,等.粳稻中花11 T—DNA插入突变体的分离和鉴定[J].西南农业学报, 2006, 19(5): 777-781.
    [55] Zhu ZG, Xiao H, Fu YP, et al. [Construction of transgenic rice populations by inserting the maize trans-ponson Ac/Ds and genetic analysis for several mutants][J]. Sheng Wu Gong Cheng Xue Bao, 2001, 17(3): 288-292.
    [56] Luan WJ, Sun ZX. [Ac/Ds tagging system and functional genomics in rice][J]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 2005, 31(5): 441-450.
    [57] Luan WJ, He CK, Hu GC, et al. An efficient field screening procedure for identifying transposants for constructing an Ac/Ds-based insertional-mutant library of rice[J]. Genome, 2008, 51(1): 41-49.
    [58] Hirochika H, Otsuki H, Yoshikawa M, et al. Autonomous transposition of the tobacco retrotransposon Tto1 in rice[J]. Plant Cell, 1996, 8(4): 725-734.
    [59] Miyao A, Tanaka K, Murata K, et al. Target site specificity of the Tos17 retrotransposon shows a prefe-rence for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J]. Plant Cell, 2003, 15(8): 1771-1780.
    [60] Coulson A, Sulston J, Brenner S, et al. Toward a physical map of the genome of the nematode Caenor-habditis elegans[J]. Proc Natl Acad Sci USA, 1986, 83(20): 7821-7825.
    [61] Jander G, Norris SR, Rounsley SD, et al. Arabidopsis map-based cloning in the post-genome era[J]. Plant Physiol, 2002, 129(440-450):
    [62] Meinke DW, Meinke LK, Showalter TC, et al. A sequence-based map of Arabidopsis genes with mutant phenotypes[J]. Plant Physiol, 2003, 131: 409-418.
    [63] McCallum CM, Comai L, Greene EA, et al. Targeted induced local lesions in genomes(TILLING)for plant functional genomics[J][J]. Plant Physiol, 2000, 123: 439.
    [64] Kurata N, Miyoshi K, Nonomura K, et al. Rice mutants and genes related to organ development, mor-phogenesis and physiological traits[J]. Plant Cell Physiol, 2005, 46(1): 48-62.
    [65] Kusaba M, Ito H, Morita R, et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence[J]. Plant Cell, 2007, 19(4): 1362-1375.
    [66] Ayumi T, Ryouichi T. Chlorophyll metabolism[J]. Current Opinion in Plant Biology, 2006, 9: 248–255.
    [67] Park SY, Yu JW, Park JS, et al. The senescence-induced staygreen protein regulates chlorophyll degrada-tion[J]. Plant Cell, 2007, 19(5): 1649-1664.
    [68] Mccormac AC, Fischer A, Kumar AM, et al. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana[J]. Plant J, 2001, 25: 549-561.
    [69] Ilag LL, Kumar AM, Soll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis[J]. Plant Cell, 1994, 6: 265-275.
    [70] Chang KJ, Lu FJ, Tung TC, et al. Studies on patients with polychlorinated biphenyl poisoning. 2. Deter-mination of urinary coproporphyrin, uroporphyrin, delta-aminolevulinic acid and porphobilinogen[J]. Res Commun Chem Pathol Pharmacol, 1980, 30(3): 547-554.
    [71] Seki Y, Kawanishi S, Sano S. Mechanism of PCB-induced porphyria and yusho disease[J]. Ann N Y Acad Sci, 1987, 514: 222-234.
    [72] Ishikawa A, Okamtomo H, Iwasaki Y, et al. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis [J]. Plant J, 2001, 27: 89-99.
    [73] Watanabe N, Che FS, Iwano M, et al. Dual targeting of spinach protoporphyrinogen oxidase II to mito-chondria and chloroplasts by alternative use of two in-frame initiation codons[J]. J.Biol.Chem, 2001, 276: 20474-20471.
    [74] Block MA, Tewari AK, Albrieux C, et al. The plant S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase id located in both enevlope and thylakoid chloroplast membranes[J]. Eur.J.Biochem, 2002, 269: 240-248.
    [75] Tottey S, Block MA, Allen M, et al. Arabidopsis CHL27,located in both envelope and thylakoid mem-branes,is required for the synthesis of protochlorophyllide[J]. Proc.Natl.Acad.Sci, 2003, 100: 16119-16124.
    [76] Gaubier P, Wu HJ, Laudie M, et al. A chlorophyll synthase gene from Arabidopsis thaliana[J]. Mol.Gen.Genet, 1995, 249: 58-64.
    [77] Oster U, Tanaka R, Tanaka A, et al. Cloning and functional expression of the gene encoding the key en-zyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana[J]. Plant Journal, 2000, 21(3): 305-310.
    [78] Su Q, Frick G, Armstrong G, et al. POR C of Arabidopsis thaliana: a third- and NADPH-dependent pro-tochlorophyllide oxidoreductase that is differentially regulated by light[J]. Plant.Mol.Biol, 2001, 47: 805-813.
    [79] Keller T, Damude HG, Werner D, et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs[J]. Plant Cell, 1998, 10(2): 255-266.
    [80] Tsuchiya T, Ohta H, Okawa K, et al. Cloning of chlorophyllipase,the key enzyme in chlorophyll degrada-tion:finding of a lipase motif and the induction by methyl jasmonate[J]. Proc.Natl.Acad.Sci, 1999, 96: 15362-15367.
    [81] Suzuki T, Shioi Y. Re-examination of Mg-dechelation reaction in the degradation of chlorophylls using chlorophyllin a as substrate[J]. Photosynth.Res, 2002, 74: 217-223.
    [82] Pruzinska A, Anders I, Tanner G, et al. Chlorophyll breakdown:pheophorbide a oxygenase is a Rieske-type iron-sulfur protein,encoded by the accelerated cell death 1 gene[J]. Proc.Natl.Acad.Sci, 2003, 100: 15259-15264.
    [83] Wuthrich LK, Bovet L, Hunziker PE, et al. The gun4 gene is essential for cyanobacterial porphyrin me-tabolism[J]. Plant J, 2000, 21(189-198):
    [84] Chen X, Zhong L, Zuo Q. [Dynamics of water retaining capacity and chlorophyll content of two-line hy-brid rice during heading-grain filling stage and their relations with grain yield][J]. Ying Yong Sheng Tai Xue Bao, 2005, 16(8): 1459-1464.
    [85] Aldridge C, Maple J, Moller SG. The molecular biology of plastid division in higher plants[J]. J Exp Bot, 2005, 414: 1061-1077
    [86] Schultes NP, Sawers RH, Brutnell TP, et al. Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17[J]. Plant J, 2000, 21( 4): 317-327.
    [87] Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis[J]. Eur J Bio-chem, 1996, 237: 323-343.
    [88] Vincentini F, Hortensteiner S, Schellenberg M, et al. Chlorophyll breakdown in senescent leaves,identification of biochemical lesion in a stay-green genotype of Festuca pratensis Huds[J]. New Phytol, 1995, 129: 247-252.
    [89] Babiychuk E, Müller F, Eubel H, et al. Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function[J]. Plant J, 2003, 33(5): 899-909.
    [90] Sugimoto H, Kusumi K, Noguchi K, et al. The rice nuclear gene, VIRESCENT 2, is essential for chlo-roplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochon-dria[J]. Plant J, 2007, 52(3): 512-527.
    [91] Weiss MR. Floral color change:a widespread functional convergence [J]. American Journal of Botany, 1995, 82: 167-185.
    [92] Erich G. The genetics and biochemistry of floral pigments[J]. Annual Review of Plant Biology, 2006, 57: 761.
    [93] Lepiniec L, Debeaujon, Routaboul JM. Genetics and biochemistry of seed flavonoids[J]. Annual Reviewof Plant Biology, 2006, 57: 405~430.
    [94] Koes R, Verweij W, Quattrocchio F. Flavonoids:a colorful model for the regulation an d evolution of bi-ochemical pathways[J]. Trends in Plan t Science, 2005, 10: 236~242.
    [95] Lesnick ML, Chandler VL. Activation of the maize anthocyanin gene a2 is mediated by an element con-served in many anthocyanin promoters[J]. Plant Physiol, 1998, 117: 437-445.
    [96] Cone KC, Cocciolone SM, Burr B. Maize anthocyanin regulatory gene pl is a duplicate of the c1 that functions in the plant[J]. Plant Cell, 1993, 5: 1795-1805.
    [97] Reddy VS, Scheffler BE, Wienand U, et al. Cloning and characterization of the rice homologue of the anthocyanin regultory gene[J]. Plant Mol Biol, 1998, 36: 497-498.
    [98] Sakamoto W, Ohmori T, Kageyama K, et al. The Purple leaf (Pl) locus of rice: the Pl(w) allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in an-thocyanin biosynthesis[J]. Plant Cell Physiol, 2001, 42(9): 982-991.
    [99] Hable WE, Oishi KK, Schumaker KS. Viviparous-5 encodes phytoene desaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize[J]. Mol.Genet. Genomics, 1998, (257): 167–176.
    [100] Miki D, Shimamoto K. Simple RNAi vectors for stable and transient suppression of gene function in rice[J]. Plant Cell Physiol, 2004, 45(4): 490-495.
    [101] Conti A, Pancaldi S, Fambrini M, et al. A deficiency at the gene coding for zeta-carotene desaturase characterizes the sunflower non dormant-1 mutant[J]. Plant Cell Physiol, 2004, 45(4): 445-455.
    [102] Matthews PD, Luo R, Wurtzel ET. Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops[J]. J Exp Bot, 2003, 54(391): 2215-2230.
    [103] Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants[J]. Plant Cell, 2002, 14: 333-342.
    [104] PARK H, Kreunen SS, Cuttriss AJ, et al. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation and photomorphogenesis[J]. Plant Cell, 2002, 14(321-332):
    [105] Fang J, Chai C, Qian Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice[J]. Plant J, 2008:
    [106]董凤高,朱旭东.以淡绿叶为标记的籼型光-温敏核不育系M2S的选育[J].中国水稻科学, 1995, 9(2): 65-70.
    [107]曹立勇,钱前.紫叶标记籼型光-温敏核不育系中紫S的选育及其配组的杂种优势[J].作物学报, 1999, 25(1): 44-49.
    [108]沈圣泉,舒庆尧,吴殿星,等.白化转绿型水稻三系不育系白丰A的选育[J].杂交水稻, 2005, 20(5): 10-14.
    [109] Arnon DI. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris[J]. Plant Phy-siol, 1949, 24: 1-15.
    [110] McCouch SR, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement)[J]. DNA Res, 2002, 9(6): 257-279.
    [111] Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA[J]. Nucl Acid Res, 1980, 8: 4321-4325.
    [112] Michelmore RW, Paran I, Kesseli RV. Identification of Markers Linked to Disease-Resistance Genes by Bulked Segregant Analysis: A Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations[J]. PNAS, 1991, 88: 9828-9832.
    [113] Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resis-tance gene, Xa21[J]. Science, 1995, 270(5243): 1804-1806.
    [114] Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proc Natl Acad Sci U S A, 1998, 95(4): 1663-1668.
    [115] Ashikari M, Wu J, Yano M, et al. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein[J]. Proc Natl Acad Sci U S A, 1999, 96(18): 10284-10289.
    [116] Wang ZX, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleo-tide binding and leucine-rich repeat class of plant disease resistance genes[J]. Plant J, 1999, 19(1): 55-64.
    [117] Bryan GT, Wu KS, Farrall L, et al. tA single amino acid difference distinguishes resistant and suscepti-ble alleles of the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000, 12(11): 2033-2046.
    [118] Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell, 2000, 12(9): 1591-1606.
    [119] Jeon JS, Jang S, Lee S, et al. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affect-ing rice flower development[J]. Plant Cell, 2000, 12(6): 871-884.
    [120] Izawa T, Oikawa T, Tokutomi S, et al. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant)[J]. Plant J, 2000, 22(5): 391-399.
    [121] Itoh H, Ueguchi-Tanaka M, Sentoku N, et al. Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice[J]. Proc Natl Acad Sci U S A, 2001, 98(15): 8909-8914.
    [122] Ikeda A, Ueguchi-Tanaka M, Sonoda Y, et al. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8[J]. Plant Cell, 2001, 13(5): 999-1010.
    [123] Yamanouchi U, Yano M, Lin H, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proc Natl Acad Sci U S A, 2002, 99(11): 7530-7535.
    [124] Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. Green revolution: a mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702.
    [125] Mori M, Nomura T, Ooka H, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis[J]. Plant Physiol, 2002, 130(3): 1152-1161.
    [126] Li Y, Qian Q, Zhou Y, et al. BRITTLE CULM1, which encodes a COBRA-like protein, affects themechanical properties of rice plants[J]. Plant Cell, 2003, 15(9): 2020-2031.
    [127] Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell, 2003, 15(12): 2900-2910.
    [128] Komatsu K, Maekawa M, Ujiie S, et al. LAX and SPA: major regulators of shoot branching in rice[J]. Proc Natl Acad Sci U S A, 2003, 100(20): 11765-11770.
    [129] Nagasawa N, Miyoshi M, Sano Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice[J]. Development, 2003, 130(4): 705-718.
    [130] Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant J, 2004, 37(4): 517-527.
    [131] Zeng LR, Qu S, Bordeos A, et al. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. Plant Cell, 2004, 16(10): 2795-2808.
    [132] Komori T, Ohta S, Murai N, et al. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.)[J]. Plant J, 2004, 37(3): 315-325.
    [133] Miyoshi K, Ahn BO, Kawakatsu T, et al. PLASTOCHRON1, a timekeeper of leaf initiation in rice, en-codes cytochrome P450[J]. Proc Natl Acad Sci U S A, 2004, 101(3): 875-880.
    [134] Yamaguchi T, Nagasawa N, Kawasaki S, et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa[J]. Plant Cell, 2004, 16(2): 500-509.
    [135] Itoh H, Tatsumi T, Sakamoto T, et al. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibbe-rellin biosynthesis enzyme, ent-kaurene oxidase[J]. Plant Mol Biol, 2004, 54(4): 533-547.
    [136] Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance[J]. Mol Plant Microbe Interact, 2004, 17(12): 1348-1354.
    [137] Bohnert HU, Fudal I, Dioh W, et al. A putative polyketide synthase/peptide synthetase from Magna-porthe grisea signals pathogen attack to resistant rice[J]. Plant Cell, 2004, 16(9): 2499-2513.
    [138] Moon S, Jung KH, Lee DE, et al. The rice FON1 gene controls vegetative and reproductive develop-ment by regulating shoot apical meristem size[J]. Mol Cells, 2006, 21(1): 147-152.
    [139] Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid bio-synthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J]. Plant Cell, 2005, 17(3): 776-790.
    [140] Haga K, Takano M, Neumann R, et al. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin[J]. Plant Cell, 2005, 17(1): 103-115.
    [141] Inukai Y, Sakamoto T, Ueguchi-Tanaka M, et al. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling[J]. Plant Cell, 2005, 17(5): 1387-1396.
    [142] Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF1 en-codes a soluble receptor for gibberellin[J]. Nature, 2005, 437(7059): 693-698.
    [143] Gu K, Tian D, Yang F, et al. High-resolution genetic mapping of Xa27(t), a new bacterial blight resis-tance gene in rice, Oryza sativa L[J]. Theor Appl Genet, 2004, 108(5): 800-807.
    [144] Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant Cell Physiol, 2005, 46(1): 79-86.
    [145] Komorisono M, Ueguchi-Tanaka M, Aichi I, et al. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling[J]. Plant Physiol, 2005, 138(4): 1982-1993.
    [146] Sazuka T, Aichi I, Kawai T, et al. The rice mutant dwarf bamboo shoot 1: a leaky mutant of the NACK-type kinesin-like gene can initiate organ primordia but not organ development[J]. Plant Cell Physiol, 2005, 46(12): 1934-1943.
    [147] Kawakatsu T, Itoh J, Miyoshi K, et al. PLASTOCHRON2 regulates leaf initiation and maturation in rice[J]. Plant Cell, 2006, 18(3): 612-625.
    [148] Luo A, Qian Q, Yin H, et al. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice[J]. Plant Cell Physiol, 2006, 47(2): 181-191.
    [149] Zhang K, Qian Q, Huang Z, et al. GOLD HULL AND INTERNODE2 encodes a primarily multifunc-tional cinnamyl-alcohol dehydrogenase in rice[J]. Plant Physiol, 2006, 140(3): 972-983.
    [150] Wang Z, Zou Y, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silenc-ing[J]. Plant Cell, 2006, 18(3): 676-687.
    [151] Suzaki T, Toriba T, Fujimoto M, et al. Conservation and diversification of meristem maintenance me-chanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 gene[J]. Plant Cell Physiol, 2006, 47(12): 1591-1602.
    [152] Ma JF, Tamai K, Yamaji N, et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691.
    [153] Chen X, Shang J, Chen D, et al. A B-lectin receptor kinase gene conferring rice blast resistance[J]. Plant J, 2006, 46(5): 794-804.
    [154] Pan G, Zhang X, Liu K, et al. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides[J]. Plant Mol Biol, 2006, 61(6): 933-943.
    [155] Chu Z, Fu B, Yang H, et al. Targeting xa13, a recessive gene for bacterial blight resistance in rice[J]. Theor Appl Genet, 2006, 112(3): 455-461.
    [156] Qu S, Liu G, Zhou B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics, 2006, 172(3): 1901-1914.
    [157] Deng Y, Zhu X, Shen Y, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety[J]. Theor Appl Genet, 2006, 113(4): 705-713.
    [158] Zhou B, Qu S, Liu G, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Mol Plant Microbe Interact, 2006, 19(11): 1216-1228.
    [159] Chu H, Qian Q, Liang W, et al. The floral organ number4 gene encoding a putative ortholog of Arabi-dopsis CLAVATA3 regulates apical meristem size in rice[J]. Plant Physiol, 2006, 142(3): 1039-1052.
    [160] Zou J, Zhang S, Zhang W, et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Ara-bidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J]. Plant J, 2006, 48(5): 687-698.
    [161] Li N, Zhang DS, Liu HS, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. Plant Cell, 2006, 18(11): 2999-3014.
    [162] Wu Z, Zhang X, He B, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterifi-cation in chlorophyll biosynthesis[J]. Plant Physiol, 2007, 145(1): 29-40.
    [163] Kurakawa T, Ueda N, Maekawa M, et al. Direct control of shoot meristem activity by a cytoki-nin-activating enzyme[J]. Nature, 2007, 445(7128): 652-655.
    [164] Ma JF, Yamaji N, Mitani N, et al. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-212.
    [165] Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J]. Mol Genet Genomics, 2008:
    [166] Cheng L, Wang F, Shou H, et al. Mutation in nicotianamine aminotransferase stimulated the Fe(II) ac-quisition system and led to iron accumulation in rice[J]. Plant Physiol, 2007, 145(4): 1647-1657.
    [167] Ikeda K, Ito M, Nagasawa N, et al. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate[J]. Plant J, 2007, 51(6): 1030-1040.
    [168] Li P, Wang Y, Qian Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Res, 2007, 17(5): 402-410.
    [169] Zeng D, Yan M, Wang Y, et al. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.)[J]. Plant Mol Biol, 2007, 65(4): 501-509.
    [170] Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. Plant J, 2007, 51(6): 1019-1029.
    [171] Lin F, Chen S, Que Z, et al. The blast resistance gene Pi37 encodes a nucleotide binding site leu-cine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics, 2007, 177(3): 1871-1880.
    [172] Liu X, Lin F, Wang L, et al. The in silico map-based cloning of Pi36, a rice coiled-coil nucleo-tide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus[J]. Genetics, 2007, 176(4): 2541-2549.
    [173] Hiroki S, Kensuke K, Ko N, et al. The rice nuclear gene,VIRESCENT2,is essential for chloroplast de-velopment and encodes a novel type of guanylate kinase targeted to plastids and mitochondria[J]. The Plant Journal, 2007, 10: 1-15.
    [174] Nagasaki H, Itoh J, Hayashi K, et al. The small interfering RNA production pathway is required for shoot meristem initiation in rice[J]. Proc Natl Acad Sci U S A, 2007, 104(37): 14867-14871.
    [175] Satoh N, Hong SK, Nishimura A, et al. Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes[J]. Development, 1999, 126(16): 3629-3636.
    [176] Jia L, Zhang B, Mao C, et al. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell devel-opment and reproductivity in rice (Oryza sativa L.)[J]. Planta, 2008:
    [177] Lander ES, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package for con-structing primary genetic linkage maps of experimental and natural populations[J]. Genomics, 1987, 1(2): 174-181.
    [178] Gao ZY, Zeng DL, Cui X, et al. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice[J]. Science in China Series C-Life Sciences, 2003, 46(6): 661-668.
    [179] Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. Plant Cell, 2000, 12(12): 2473-2484.
    [180] Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2[J]. Proc Natl Acad Sci U S A, 2001, 98(14): 7922-7927.
    [181] Sasaki A, Itoh H, Gomi K, et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant[J]. Science, 2003, 299(5614): 1896-1898.
    [182] Gao ZY, Zeng DL, Cui X, et al. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice[J]. Science in China Series C-Life Sciences, 2003, 46(6): 661-668.
    [183] Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions[J]. Plant Cell Physiol, 2002, 43(10): 1096-1105.
    [184] Doi K, Izawa T, Fuse T, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes Dev, 2004, 18(8): 926-936.
    [185] Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745.
    [186] Ren ZH, Gao JP, Li LG, et al. A rice quantitative trait locus for salt tolerance encodes a sodium trans-porter[J]. Nat Genet, 2005, 37(10): 1141-1146.
    [187] Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet, 2007, 39(5): 623-630.
    [188] Perata P, Voesenek LA. Submergence tolerance in rice requires Sub1A, an ethy-lene-response-factor-like gene[J]. Trends Plant Sci, 2007, 12(2): 43-46.
    [189] Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet, 2006, 112(6): 1164-1171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700