直流磁控反应溅射制备ZnO:Ga薄膜及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种Ⅱ-Ⅵ族化合物半导体材料,属于六方纤锌矿结构,(002)晶面的表面自由能最低,因而ZnO通常具有[0001]取向性生长。作为一种直接带隙宽禁带半导体材料,ZnO最具潜力的应用是在光电器件领域。ZnO的禁带宽度为3.37eV,激子结合能为60meV,远高于其它宽禁带半导体材料,如GaN为25meV,ZnO激子在室温下也是稳定的,可以实现室温或更高温度下高效的激子受激发光,所以,ZnO在短波长光电器件领域有着极大的应用潜力,如紫蓝光发光二极管(LEDs)和激光器(LDs)等,可作为白光的起始材料。另外掺入ⅢA族元素Al、In、Ga等可以实现各方面性能都很好的n型ZnO薄膜,如非常低的电阻率,最低可达到10~(-4)数量级;非常高的可见光范围的透过率,可达到90%以上;制备的薄膜高度的c轴择优取向等;可以作为很好的LEDs的接触电极。
     本课题是利用直流磁控反应溅射在玻璃衬底上制备ZnO:Ga透明导电薄膜,并利用多种测试手段分析了其性能,获得了一些结果:
     1.用大型无机原型设备直流磁控反应溅射仪在玻璃衬底上制备了ZnO:Ga透明导电薄膜。XRD测试表明制备的薄膜具有良好的c轴择优取向,并且证明了薄膜中的Ga是以替位式取代了六角晶格中的部分Zn原子的位置或者Ga原子弥散在薄膜晶粒间区域。
     2.SEM显示制备的薄膜表面致密化程度高,结构完整。Hall测试得出薄膜的电阻率低、迁移率和载流子浓度高,并且薄膜与电极的接触为欧姆接触。透射谱分析得到薄膜在可见光范围内的透过率达到90%以上。
     3.研究了各个实验参数对薄膜性能的影响,找出了各个参数的最佳值分别为:氧气、氩气流量分别为5sccm和40sccm;衬底温度最佳值为275℃;溅射压强为1.5Pa;溅射功率最佳值为130W;靶间距为6cm。
     4.制备的薄膜电阻率最低达到2.32×10~(-3)Ωcm,载流子浓度最高达到1.27×10~(20)cm~(-3)。
Zinc oxide (ZnO) is a novel II-VI compound semiconductor with a hexagonal wurtzite structure. It grows usually along the [0001] orientation due to its lower surface free energy for the (002) plane. ZnO is a unique material that exhibits optoelectronic, piezoelectric, and ferromagnetic properties, as well as its versatile nanostructures. In particular, it is a potential candidate for applications in short-wavelength optoelectronic devices, including light emitting diodes (LEDs) and laser diodes (LDs), due to its direct wide-band gap (3.37 eV) and high exciton binding energy (60 meV, cf. 25 meV for GaN), which will favor efficient excitonic emission at room temperature. In addition, good quality n-type ZnO films have been prepared by doped IIIA elements (Al, In, Ga). The resistivity of the film can be down to 10~-4Ωcm;The transmittance of the film can be more than 90% in the visible region. All the films were of good crystal quality with high (002) orientation and closed packed columnar grains, which can be used for contact electrode in LEDs.This thesis is that preparing Gallium doped zinc oxide (ZnO:Ga) films on glass substrates by DC magnetron reactive sputtering and using various testing technique to analyze the performance of the film.The main content of this thesis is listed as follows:1. The obtained films are polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the [0001] crystallographic direction in the ZnO grains by XRD testing and the Ga atom in the film occupies the Zn position or distributes in the boundary of the crystal2. Good quality, compact surface and integrated structure have been observed by SEM. Hall testing shows that the resistivity of the film is lower than other ZnO films and the carrier concentration is much higher. The contact between the film and electrode is ohm contact. The transmittance of the film can be more than 90% in the visible region.3. Studying the dependence of the performance of the film on the experimental
    parameters, we find out the optimal value of various experimental parameters: the flux of O2 and Ar are 5sccm and 40sccm;the substrate temperature is 275 °C;the sputtering pressure is 1.5Pa;the sputtering power is 130W;the target-substrate distance is 6cm.4. The lowest resistivity of the film is 2.32 X 10"3Qcm, the carrier concentration is 1.27X1020cm"3o
引文
[1] C. Klingshirn, R. Hauschild, H. Priiler, M. Decker, J. Zeller and H. Kalt, ZnO rediscovered-once again, Superlattices and Microstructures, 38 (2005) 209-222
    [2] S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63 (2001) 075205.
    [3] S. W. Kim, Sz. Fujita, and Sg. Fujita, Appl. Phys. Lett. 81 (2002) 5036.
    [4] H. Zhou, H. AIves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk, and A. Hoffmann, Appl. Phys. Lett. 80 (2002) 210.
    [5] J. E. Jaffe, A. C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure, Phys. Rev. B, 48 (1993) 7903-7909.
    [6] S. L. King, I. W. Boyd, J. G. E. Gardeniers, Pulsed-laser deposited ZnO for device applications, Appl. Surf. Sci., 96-98 (1996) 811-818.
    [7] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan. V. Avrutin, S. J. Cho and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301: 1-103.
    [8] D. C. Look, Recent advances in ZnO materials and devices, Materials science and engineering B, 80 (2005) 383-387
    [9] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlattices & Microstructures 34 (2003) 3.
    [10] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, Nature, 422 (2003) 599
    [11] A. Kobayashi, O.F. Sankey, and J. D. Dow, Phys. Rev. B 28 (1983) 946.
    [12] T. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Moriga, and I. Nakabayashi, Thin Solid Films 316 (1998) 85.
    [13] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi. and D. B. Chrisev. Annl. Phvs. Lett. 76 (2000) 259.
    [14] 叶志镇,张银珠,徐伟中,吕建国,无机材料学报18(2003)11.
    [15] D. C. Look and B. Claflin, Phys. Star. Soc. (b) 241 (2004) 624.
    [16] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Progress in Materials Science 50 (2005) 293
    [17] T. Nagase, T. Ooie, A novel approach to prepare zinc oxide films: excimer laser irradiation of sol-gel derived precursor films, Thin Solid Films, 357 (1999) 151-158.
    [15] B. Joseph, K. G. Gopchandran, P. V. Thomas, P. Koshy, V. K. Vaidyan, A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties, Materials Chemistry and Physics, 58 (1999) 71-77.
    [19] T. Schuler, M. A. Aegerter, Optical, electrical and structural properties of sol gel ZnO: Al coatings, Thin Solid Films, 351 (1999) 125-131
    [20] P. Nunes, E. Fortunato, and R. Martins, Inter. J. Inorg. Mater. 3 (2001) 1125.
    [21] J. Hu and R. G. Gordon, J. Appl. Phys. 72 (1992) 5381.
    [22] ED. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven, D. C. Look, Appl. Phys. Lett. 79 (2001)3074.
    [23] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Communications 105 (1998) 399.
    [24] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, J. Cryst. Growth 184-185 (1998) 601.
    [25] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer, and R. T. Williams, Physica B 308/310 (2001) 1197.
    [26] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72 (1998) 3270
    [27] R. F. Service, Science 276 (1997) 895.
    [28] N. K. Zayer, R. Greef, K. Rogers, A. J. C. Grellier, C. N. Pannell, In situ monitoring of sputtered zinc oxide films for piezoelectric transducers, Thin Solid Films, 352 (1999) 179-184.
    [29] H. Xu, X. Liu, D. Cui, M. Li and M. Jiang, A novel method for improving the performance of ZnO gas sensors, Sensors and Actuators B: Chemical, 114 (2006) 301-307.
    [30] C. S. Rout, S. H. Krishna, S. R. C. Vivekchand, A. Govindaraj and C. N. R. Rao, Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes, Chemical Physics Letters, 418 (2006) 586-590.
    [31] S. Chu, W. Walter and J. Liaw, An investigation of the dependence of ZnO film on the sensitivity of Love mode sensor in ZnO/quartz structure, Ultrasonics, 41(2003) 133-139.
    [32] S. Li, L. Liang, J. Li, N. Liu and M. A. Alim, Characterization of water absorbed epoxy insulating coating material used in ZnO varistors by dielectric measurements, Materials letters, 60 (2006) 114-119.
    [33] G. Heiland, H. lbach, Pyroelectricity of Zinc Oxide, Solid State Communications, 4 (1966) 353-356.
    [34] 贾锐,曲凡钦,武光明,宋世庚,陶明德,ZnO系低压压敏薄膜喷雾热分解法制备及膜厚对其压敏特性影响的研究,功能材料,30(1999)636-638.
    [35] S. E Chichibu, T. Yoshida, T. Onuma, Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire (0001) substrates, J. Appl. Phys. 91 (2002) 874.
    [36] Y. Zhang, G. Du, D. Liu, Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions, J. Crystal Growth, 243 (2002) 439.
    [37] 李剑光,硅基上直流反应磁控溅射沉积优质ZnO薄膜及其性能研究半导体学报,17(1996)877.
    [38] K. Ogata, T. Kawanishi, K. Maejima, Improvements of ZnO Qualities Grown by Metal-Organic Vapor Phase Epitaxy Using a Molecular Beam Epitaxy Grown ZnO Layer as a Substrate Jpn. J. Appl. Phys. 40 (2001) L657.
    [39] C. R. Gorla, N. M. Emanetoglu, S. Liang, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01-12) sapphire by metalorganic chemical vapor deposition J. Appl. Phys. 85 (1999) 2595.
    [40] Y. Kashiwaba, K. Haga, H. Watanabe, Phys. Status. Solidi (b)229 (2002) 921.
    [41] P. Souletie, S. Bethke, B. W. Wessels, J. Crystal Growth, 86 (1988) 248.
    [42] J. H. Hu, R. G. Gordon, Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition J Appl Phys, 71 (1992) 880
    [43] S. Suh, J Mater Sci Left, 18 (1999) 789
    [44] Joseph M, et al, Physica B., 302-303 (2001) 140.
    [45] Joseph M, et al, Jpn. J. App. Phys. part 1., 38 (1999) 1205.
    [46] GXin-Li, T. Hitoshi, K. Tomoji, Optical Materials, 19 (2002) 229-233.
    [47] K. Nagahara, H. Takasu, P. Fons, et al, J. Crystal Growth, 227-28 (2000) 923-928.
    [48] B. J. Jin, S. H. Bae, S. Y. Lee et al, Materials Science and Engineering B, 17 (2000) 301-305.
    [49] T. Makino, C. H. Chia, N. T. Tuan et al, Appl. Phys Lett., Vol76 No24 (2000) 3549-3551.
    [50] A. Ohtomo, M. Kawasaki, Y. Sakurai, et al, Mater. Sci. and Eng., B56 (1998) 263-266.
    [51] H. Fabricius, T. Skettrup, P. Bisgaard, Appl. Opt., 25(1986) 2764.
    [52] P. Nunes, E. Fortunato;R. Martins Influence of the post-treatment on the properties of ZnO thin films, Thin Solid Films, 383 (2001) 277.
    [53] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Commun. 105, 399, 1998.
    [54] A. Hausmann and B. Schallenberger, Z. Phys. B 31 (1978) 269.
    [55] A. P6ppl and G. Volkel, Phys. Status Solidi A 121 (1990) 195.
    [56] V. A. Nikitenko, Zh. Prikl. Spektrosk. 57 (1992) 367.
    [57] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68 (1996) 403.
    [58] J. Zhong, A. H. Kitai, P. Mascher, and W. Puff, J. Electrochem. Soc. 140 (1993) 3644.
    [59] N. Ohashi, T. Nakata, T. Sekiguchi, H. Hosono, M. Mizuguchi, T. Tsurumi, J. Tanaka, and H. Haneda, Jpn. J. Appl. Phys. Part 238 (1999) 113.
    [60] J. C. Simpson and J. F. Cordaro, J. Appl. Phys. 63 (1988) 1781.
    [61] R. A. Winston and J. F. Cordaro, J. Appl. Phys. 68 (1990) 6495.
    [62] R. Krause-Rehberg, H. S. Leipner, T. Abgajan, and A. Polity, Appl. Phys. A: Mater. Sci. Process. 66 (1998) 599.
    [63] R. M. de la Cruz, R. Pareja, R. Gonzalez, L. A. Boatner, and Y. Chen, Phys. Rev. B 45 (1992) 6581.
    [64] T. K. Gupta, W. D. Straub, M. S. Ramanachalam, J. P. Schaffer, and A. Rohatgi, J. Appl. Phys 66 (1989) 6132.
    [65] H. Wolf, S. Deubler, D. Forkel, H. Foettinger, M. lwatschenko-borho, F. Meyer, M. Renn, W. Witthuhn, and R. Helbig, Mater. Sci. Forum 10-12 (1986) 863.
    [66] S. Deubler, J. Meier, R. Schutz, and W. Witthuhn, Nucl. lnstrum. Methods Phys. Res. B 63 (1992) 223.
    [67] J. S. Choi and C. H. Yo, J. Phys. Chem. Solids 37 (1976) 1149.
    [68] G. D. Mahan, J. Appl. Phys. 54 (1983) 3825.
    [69] F. Oba, S. R. Nishitani, S. lsotani, H. Adachi, and 1. Tanaka, J. Appl. Phys. 90 (2001) 824.
    [70] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rew. B 61 (2000) 15019.
    [71] 叶志镇,徐伟中,曾昱嘉,江柳,赵炳辉,朱丽萍,吕建国,黄靖云,汀雷,李先杭,MOCVD法制备ZnO同质发光二极管,半导体学报,26(2005)2264-2266.
    [72] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams, Appl. Phys. Lett. 80 (2002) 1195.
    [73] 林碧霞,傅竹两,贾云波,缪桂红,物理学报50(2001)2208.
    [74] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)
    [75] C. G. Van de Walle, Phys. Star. Sol. (b) 229, No. 1, 221-228 (2002)
    [76] K. Minegishi, Y. Koiwai, K. Kikuchi, Jpn. J. Appl. Phys. 36, L1453 (1997).
    [77] C. H. Seager, S. M. Myers, J. Appl. Phys. 94, 2888 (2003).
    [78] D. C. Look and B. Claflin, Phys. Status. Solidi (b) 241 (2004) 624
    [79] D. C. Look, J. W. Hemsky, J. R. Sizelove, Residual Native Shallow Donor in ZnO Phys. Rev. Lert. 82, 2552(1999) C. G. Van De Walle, Hydrogen as a Cause of Doping in Zinc Oxide Phys. Rev. Lett, 85 (2000) 1012
    [80] A. Suzuki, T. Matsushita, N. Wada, Transparent Conducting Al-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition Jpn. J. Appl. Phys. 35 (1996) L56
    [81] T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 25 (1986) L776.
    [82] B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, and M. R. Rabadanov, J. Cryst. Growth 198/199 (1999) 1222.
    [83] M. de la L. Olvera, A. Maldonado, R. Asomoza, O. Solorza, and D. R. Acosta, Thin Solid Films, 394 (2001)242.
    [84] J. Hu and R. G. Gordon, Solar Cells 30 (1991) 437.
    [85] A. V. Singh, R. M. Mehra, A. Wakahara, A. Yoshida, J. Appl. Phys. 93, 396 (2003).
    [86] G. Mandel, Phys. Rev. 134, A1037 (1964).
    [87] G. F. Neumark, in Widegap Ⅱ-Ⅵ Compounds for Opto-Electronics Applications, edited by H. E. Ruda (1992), p. 281.
    [88] G. D. Yuan, Z. Z. Ye, L. P. Zhu, Q. Qian, B. H. Zhao, R. X. Fan, Craig L. Perkins, S. B. Zhang, Controi of conduction type in Al-and N-codoped ZnO thin film, Appl. Phys. Lett., 86 (2005) 202106: 1-3.
    [89] G. Yuan, L. Zhu, Z. Ye, Q. Qian, B. Zhao, R. Fan, Effect of substrate temperature on structural, electrical and optical properties of Al-N co-doped ZnO thin films, Thin Solid Films, 484 (2005) 420-425.
    [90] G. Yuan, Z. Ye, Q. Qian, L. Zhu J. Huang, B. Zhao, p-type ZnO thin films fabricated by Al-N co-doping method at different substrate temperature, Journal of Crystal Growth, 273 (2005) 451-457.
    [91] G. Yuan, Z. Ye, L. Zhu, Y. Zeng, J. Huang, Q. Qian, and J. Lu, p-type conduction in Al-N co-doped ZnO films, Materials Letters, 58 (2004) 3741-3744.
    [92] Z. Z. Ye, Q. Qian, G. Yuan, B. Zhao, D. Ma, Effect of oxygen partial pressure ratios on the properties of Al-N co-doped ZnO thin films, J. of Cryst. Growth, 274 (2005) 178-182.
    [93] J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, p-type conduction in N-Al co-doped ZnO thin films, Appl. Phy. Lett., 85 (2004) 3134-3135.
    [94] J. G. Lu, L. P. Zhu, Z. Z. Ye, Y. J. Zeng, E Zhuge, B. H. Zhao, and D. W. Ma, Improved N-Al codoped p-type ZnO thin films by introduction of a homo-buffer layer, J. Cryst. Growth 274 (2005) 425-429.
    [95] Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, and J.Y. Huang, Preparation of p-type ZnO films by Al-N codoping method, J. Cryst. Growth, 265 (2004) 127-132.
    [96] E Zhuge, Z. Z. Ye, L. P. Zhu, J. G. Lu, B. H. Zhao, J. Y. Huang, Z. H. Zhang, L. Wang, and Z. G. Ji, Electrical and optical properties of Al-N co-doped p-type zinc oxide films, J. Cryst. Growth, 268 (2004) 163-168.
    [97] Y. J. Zeng, Z. Z. Ye, J. G. Lu, L. E Zhu, D. Y. Li, B. H. Zhao, J. Y. Huang, Effect of Al content on properties of Al-N codoped ZnO films, Appl. Sur. Sci. 249 (2005) 203.
    [98] Blasse G, Ball A. [J]. J Phys Chem Solids, 31 (1970) 707.
    [99] Harwig T, Kellendonk E [J]. J Solid State Chem, 24 (1978) 255.
    [100] Fei Zhu-Ge, Zhi-Zhen Ye, et al. J. Crystal Growth, 268 (2004) 163-168.
    [101] Minami T, Nakatani T, Miyata T. [J]. J Vac Sci Technol, A 18(4) (2000) 1234.
    [102] Minami T, Shirai T, Nakatani T, et al. [J]. Jpn J Appl Phys, 39 (2000) 524.
    [103] Look D. C., Reynolds D. C., Hemsky J. W., Appl Phys Lett, 75(6) (1999) 88.
    [104] D. E. Brodie et al, 14s IEEE photovoltatic Specialists Conference, New York, (1980) 468.
    [105] G. L.Tan, J. Wu, X. J. Wu, J Mater Sci Technol, 13 (1997) 302.
    [106] D. EParaguay, M. M. Yoshida, J. Morales, Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour, Thin Solid Films, 373 (2000) 137.
    [107] Gang Xiong, John Wikinson, Brian Mischuck, et al, Appt. Phys. Lett., 80 (2001 ) 1195.
    [108] K. Y. Cheong, Norani Muti, S. Roy Ramanan, Electrical and optical studies of ZnO: Ga thin films fabricated via the sol-gel technique, Thin Solid Films 410 (2002) 142
    [109] S. Shirakata, T. Sakemi, K. Awai, T. Yamamoto, Superlattices and Microstructures 39 (2006) 218
    [110] K. T. Ramakrishna Reddy, T. B. S. Reddy , I. Forbes , R. W. Miles, Surface and Coatings Technology 151-152 (2002) 110
    [111] Y. Lia) and G. S. Tompa Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition American Vacuum Society. [S0734-2101(97)03403-9]
    [112] Tadatsugu Minami, Satoshi Ida, Toshihiro Miyata, Thin Solid Films 445 (2003) 268
    [113] Hiroshi Hirasawa, Makoto Yoshida, Susumu Nakamura, Solar Energy Materials & Solar Cells 67 (2001) 231
    [114] Xuhu Yua, Jin Ma, Feng Ji Applied Surface Science 239 (2005) 222
    [115] P. K. Song, M. W atanabe, M. Kon Thin Solid Films 411 (2002) 82
    [116] Minami T, Sonohara H, et al. [J]. Jpn J Appl Phys, 1994, 33: L1693~L1699.
    [117] Siener I, Wanderka N, et al. [J]. Thin Solid Films, 1998, 330: 108~112.
    [118] 杨邦朝,王文生,薄膜物理与技术,电子科技大学出版社,1994.
    [119] 田民波,刘德令,薄膜科学与技术手册(上册),机械工业出版社,1991.
    [120] 顾培夫,薄膜技术,浙江大学出版社,1990.
    [121] 王力衡,黄运添,郑海涛,薄膜技术,清华大学出版社,1991.
    [122] [日]金原粲,藤原英夫著,王力衡,郑海涛译,薄膜,电子工业出版社,1988.
    [123] P. J. Clarke, US Patent, 3616450, 1971.
    [124] J. S. Chapin, Res. Devel. 25 (1974) 37.
    [125] A. S. Penfold, J. A. Hornton, US Patent, 3844793, 1975.
    [126] Hu J H, Gordon R G. Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water and triethyi gallium[J]. J Appl Phys, 1992, 72: 5381~5386.
    [127] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J., Control of preferred orientation for ZnOx films: Control of self-texture, Crystal Growth, 130 (1993)269-279.
    [128] Y. Kajikawa, Texture development of non-epitaxial polycrystalline ZnO films, J. Cryst. Growth, 289 (2006) 387-394.
    [129] H. S. Lee, J. Y. Lee, T. W. Kim, D. W. Kim, W. J. Cho, Formation mechanism of preferential c-axis oriented ZnO thin films grown on p-Si substrates, J. Mater. Sci. 39 (2004) 3525-3528.
    [130] K. S. Kim, H. W. Kim, C. M. Lee, Effect of growth temperature on ZnO thin films deposited on SiO_2 substrate, Mater. Sci. Eng. B 98 (2003) 135-139.
    [131] S. V. Prasad, S. D. Walck, J. S. Zabinski, Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition, Thin Solid Films 360 (2000)107-117.
    [132] J. H. Choi, H. Tabata, T. Kawai, Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition, J. Crystal Growth 226 (2001) 493-500.
    [133] L. Znaidi, G. J. A. A. Soler Illia, S. Benyahia, C. Sanchez, A. V. Kanaev, Oriented ZnO thin films synthesis by sol-gel process for laser application, Thin Solid Films 428 (2003) 257-262.
    [134] L. Znaidi, G. J. A. A. Soler Illia, R. Le Guennic, C. Sanchez, A. V. Kanaev, Elaboration of ZnO thin films with preferential orientation by a soft chemistry route, J. Sol-Gel Sci. Technol. 26 (2003) 817-821.
    [135] K. Govender, D. S. Boyle, EB. Kenway, P. O. Bden, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution?, J. Mater. Chem. 14 (2004) 2575-2591.
    [136] M. K. Puchert, P. Y. Timbrell, R. N. Lamb, Postdeposition annealing of radio frequency magnetron sputtered ZnO films, J. Vac. Sci. Technoi. A 14(1996) 2220-2230.
    [137] S. Fujihara, C. Sasaki, T. Kimura, Crystallization behaviour and origin oft-axis orientation in sol-gel-derived ZnO: Li thin films on glass substrates, Appl. Surf. Sci. 180 (2001) 341-350.
    [138] Y. X. Liu, Y. C. Liu, D. Z. Shen, G. Z. Zhong, X. W. Fan, X. G. Kong, R. Mu, D. O. Henderson, Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica, Solid State Commun. 121 (2002) 531-536.
    [139] S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition, J. Appl. Phys. 80 (1996) 787-791.
    [140] 李剑光,叶志镇,汪雷,赵炳辉,袁俊,阙端麟,半导体学报20(1999)862.
    [141] M. Miura, J. Appl. Phys. 21 (1982) 264.
    [142] R. J. Lad, P. D. Funkenbusch, and C. R. Aita, J. Vac. Sci. Technol. 17 (1980) 808.
    [143] P. Nunes, A. Malika, B. Fernandesa, E. Fortunato, P. Vilarinho, and R. Martins, Vacuum 52(1999) 45.
    [144] S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 87 (2000) 2413.
    [145] 李剑光,叶志镇,赵炳辉,袁俊,半导体学报17(1996)877.
    [146] A. Barker, S. Crowther and D. Rees, Sensors & Actuators A 58 (1997) 229.
    [147] V. Gupta and A. Mansingh, J. Appl. Phys. 80 (1996) 1063.
    [148] C. J. Gawlak and C. R. Aita, J. Vac. Sci. Technol. A, 1 (1983) 415.
    [149] Hu J H, Gordon R G. Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water and triethyl gallium[J]. J Appl Phys, 1992, 72: 5381~5386.
    [150] Burstein E. Anomalous optical absorption limit in InSb[J]. Phys Rev, 1954, 93: 632~635.
    [151] 余旭浒,马瑾,计峰,等.射频磁控溅射制备ZnO:Ga透明导电膜及特性[J]半导体学报,2005,26(2):314~318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700