脂环仲胺催化醛的Aldol反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不对称羟醛缩合反应是有机合成中立体选择性地形成碳碳键的最重要方法之一。近年来,有机小分子已经被证实可以有效地催化醛酮的直接羟醛缩合反应。迄今为止,反应底物醛的选择范围依然狭小,有关高活性醛或含官能团的醛的羟醛缩合反应的研究很少,而此类羟醛缩合反应产物是一类多官能团化合物,应用广泛。在本论文中,我们研究了在脂环仲胺催化下脂肪醛酮与高活性醛或3-邻苯二甲酰亚胺基丙醛间的交叉羟醛缩合反应。
     鉴于α-三氯甲基醇是应用广泛的中间体,其中β-三氯甲基-β-羟基醛能容易地转化成生物活性的化合物与天然产物,论文第二章研究了三氯乙醛与简单脂肪醛间的交叉羟醛缩合反应。通过筛选反应溶剂与有机催化剂发现哌啶和L-脯氨酰胺可以有效催化交叉羟醛缩合,并抑制了脂肪醛的自身缩合反应。事实上,等摩尔的简单脂肪醛与三氯乙醛在30%的哌啶催化下反应能获得产率高达87%的β-三氯甲基-β-羟基醛118。另外,L-脯氨酰胺催化的反应,除了可以获得产率高达95%的118,其ee值最高也可达到88%。利用酵母直接还原手性118a(ee值80%)可得到更高对映选择性的1,3-二醇化合物122a(ee值高达95%)。
     由于α-三氟甲基醇化合物在药物以及功能材料等领域的广泛应用,建立其有效的合成方法已成为人们关注的一个课题。β-三氟甲基-β-羟基酮的合成一般是通过酮预先形成的烯胺或烯醇硅醚与三氟乙醛乙基半缩醛反应得到。论文第三章主要探讨了脂环仲胺催化下三氟乙醛乙基半缩醛与脂肪醛酮的直接羟醛缩合反应。首先,以三氟乙醛乙基半缩醛与环己酮的直接羟醛缩合反应为模型,通过GC跟踪反应过程,考查了各脂环仲胺的催化活性及反应历程。结果表明,四氢吡咯的催化效果最好,催化活性明显高于哌啶。同时还观察到:1)、四氢吡咯与三氟乙醛乙基半缩醛几乎完全形成氨基半缩醛,氨基半缩醛在羟醛缩合反应的初期含量不变,其含量在三氟乙醛乙基半缩醛消失后才缓慢下降;2)、羟醛缩合产物138b的anti/syn的比值随时间变化,在反应的初期产物以anti为主,而到反应的末期则是syn产物为主;3)、反应过程中四氢吡咯可以与酮反应生成的烯胺中间体不过其浓度相当的低。通过分析上述实验结果,我们认为烯胺的形成速率是羟醛缩合反应进行的决速步。
     不仅环酮及直链脂肪酮而且芳香酮及脂肪醛都可以在四氢吡咯催化下与三氟乙醛乙基半缩醛顺利进行羟醛缩合反应,并都得到良好产率的羟醛缩合产物。经比较所有使用的酮,发现环戊酮的活性最高,而有意思的是,低催化活性的哌啶也能催化高反应活性的环戊酮与三氟乙醛乙基半缩醛顺利进行直接羟醛缩合反应。最后,初步研究了L-脯氨酰胺催化下三氟乙醛乙基半缩醛与环己酮的不对称羟醛缩合反应,羟醛缩合产物138b能以92%的产率获得,其对映选择性达到88%。
     鉴于L-脯氨酰胺催化三氯乙醛及三氟乙醛乙基半缩醛的直接羟醛缩合反应可获得高对映选择性的产物,是否也能有效催化同为高活性醛的乙醛酸酯与脂肪醛酮间的反应?论文第四章对此进行了探索。考虑到乙醛酸酯与α位有取代基的脂肪醛的直接交叉羟醛缩合反应未见报道,并且产物容易衍生得到泛内酯、泛内酰胺,我们重点研究了在L-脯氨酰胺催化下乙醛酸苄酯与异丁醛间的不对称交叉羟醛缩合反应,发现能以93%的高产率得到ee值为52%的羟醛缩合产物151。通过一步还原氨化,151很容易的转化成药物中间体N-苯基泛内酰胺。
     论文第五章研究了L-脯氨酸催化β-氨基醛的不对称羟醛缩合反应,并在此基础上建立了一种合成光学活性的双环哌啶化合物的方法。首先,详细研究了L-脯氨酸催化下3-邻苯二甲酰亚胺基丙醛与丙酮及环酮间的不对称交叉羟醛缩合及Mannich反应,发现与环酮的反应可以得到产率良好的交叉羟醛缩合产物171,其ee值都高于99%。通过对路线及反应条件的筛选,最佳合成双环哌啶化合物176的方法是:羟醛缩合产物171先用过量的硼氢化钠还原,再在醋酸中回流,获得的氨基醇直接与苯甲酰氯反应,得到氨基选择性被保护的化合物180,所得180与对甲苯磺酰氯反应选择性地磺酰化,得到化合物181,随后181用氢化钠处理后得到关环产物182,化合物182在氢氧化钠水溶液中回流水解得到双环哌啶化合物176,四步总产率为18%。双环哌啶化合物176催化直接羟醛缩合反应的活性研究还在进行之中。
The asymmetric aldol reaction is one of the most important methods of forming carbon-carbon bonds. It has been known that small organic molecules can catalyze the direct aldol reaction between aldehydes or between aldehyde and ketone. However, the substrate scope of this catalytic reaction is still narrow up to now. There are few reports refered to the aldol reaction converned on reactive or functionalized aldehydes, although the aldol products with various functional groups are very useful. In this thesis, the cross aldol reactions of aliphatic ketones or aldehydes with reactive aldehydes or 3-phthalimidopropanal were studied by using alicyclic secondary amines as catalysts.
     In view ofα-trichloromethyl alcohols, especiallyβ-trichloromethyl-β-hydroxy aldehydes are easily converting into biologically important compounds and natural products, in the second part of the thesis, direct catalytic cross aldol reaction of chloral with aliphatic aldehydes was investigated. Through screening the organocatalysts in different solvents, we found that both piperidine and L-prolinamide are the efficient catalysts for the cross aldol reaction, while the competitive self-aldol reacrion of aliphatic aldehyde is markedly restrained. In fact, in the presence of 20 mol% of piperidine, the cross aldol reaction undergoes smoothly when equimolar amounts of aliphatic aldehyde and chloral are used, givingβ-trichloromethyl-β-hydroxy aldehydes in high yield (up to 87%). In the case of L-prolinamide, the aldol products 118 were isolated in up to 95% yield with 88% ee. In addition, the baker’s yeast mediated reduction of chiral 118a (80% ee) underwent smoothly and afforded the higher enantioselective primary alcohol 122a (95% ee).
     Due to the usefulness ofα-trifluoromethylated in drugs and materials, it becomes an interesting task to search for a suitable approach to such compounds for synthetic chemists. The synthesis ofβ-hydroxy-β-trifluoromethyl ketones was commonly performed through the reaction of trifluoroacetaldehyde ethyl hemiacetal with enamines or silyl enolates. In the third part of the thesis, we described that the direct aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with ketones or aldehydes catalyzed by alicyclic secondary amines. Chosing the aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with cyclohexanone as a model system, the catalytic reactivity of secondary amines was investigated and the reaction progress was followed by GC analysis. The results clearly demonstrated that pyrrolidine was an appropriate catalyst for this reaction and the catalytic reactivity of pyrrolidine was much higher than piperidine. Three interesting phenomena were also observed. 1) the concentration of hemiaminal formed in situ was almost kept constant at the initial stage, and started to decrease slowly when the hemiacetal was completely consumed. 2) the reaction preferentially gave anti-138b initially, and was gradually converted in situ into syn-138b during the reaction. 3) the concentration of the catalyst and the enamine intermediates were kept extremely low during the reaction. Based on these observations, we suggested that formation of the enamine would be a rate-determining step for the catalytic aldol reaction.
     Pyrrolidine-catalyzed aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with other ketones such as linear aliphatic ketones, alicyclic ketones and aromatic ketones as well as aliphatic aldehydes were tested under similar conditions and the reaction proceeded smoothly to afford the aldol products in good yields. Among all the ketones, cyclopentanone was the most reactive. In fact, piperidine, a poor catalyst, can effectively catalyze the aldol reaction of hemiacetal with cyclopentanone. In addition, the asymmetric aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with cyclohexanone catalyzed by L-prolinamide was also discussed. The aldol product 138b was afforded in 92% yield with high enantioselectivity (88% ee).
     Since L-prolinamide was an efficient catalyst for the direct cross aldol reactions of chloral or fluoral, in the fourth part of the thesis, we continued to explore the cross aldol reaction of another reactive aldehyde, glyoxylate with aliphatic ketones and aldehydes. For the direct cross aldol reaction of glyoxylate with branched aldehydes was not reported hitherto and the cross adduct was easily converted into pantolactone and pantolactam. The L-prolinamide catalyzed asymmetric cross aldol reaction of benzyl glyoxylate with isobutanal was investigated, and afforded the cross adducts 151 in good yield (93%) with moderate enantioselectivity (52%). The aldol product 151 was easily converted into pantolactam in high yield through a reductive amination.
     In the fifth part of the thesis, base on the observations for the L-proline catalyzed asymmetric aldol reaction ofβ-amino aldehyde, we have developed a highly enantioselective approach for preparing optically active bicyclic piperidines. The L-proline catalyzed asymmetric aldol or Mannich reaction of 3-phthalimidopropanal with aliphatic ketones was investigated in details. The cross adducts 171 were afforded in good yields in the reactions with alicyclic ketones. A high enantioselectivity up to 99 % ee was also observed. Then, the possible synthetic routes and the reaction conditions were evaluated, and a workable synthetic route to the target bicyclic 4-hydroxypiperidine 176 was found. After treating 171 with excess NaBH4, the reduction mixture was heated in acetic acid at 80 oC. The obtained amino alcohol was further benzoylated without isolation with benzoyl chloride, affording the desired amino protective product 180. When the tosylation of 180 was performed with tosyl chloride, almost only the desired tosylates 181 was given. Subsequent cyclization carried out by treatment with NaH produced 182. Deprotection of 182a was achieved by refluxing in NaOH aqueous solution, and the target bicyclic 4-hydroxypiperidine 176a obtained in 18% overall yield. The application of 176 to the catalytic direct aldol reaction is underway.
引文
[1] Gabriela G., Carmen N., Diego J. R. Enantioselective Direct Aldol Reaction: the Blossoming of Modern Organocatalysis. Tetrahedron: Asymmetry 2007, 18: 2249–2293.
    [2] Bernd S., Rainer M. Modern Aldol Methods for the Total Synthesis of Polyketides. Angew. Chem. Int. Ed. 2006, 45: 7506– 7525.
    [3] Mukaiyama T., Banno K., Narasaka K. New Cross Aldol Reactions. Reactions of Silyl Enol Ethers with Carbonyl Compounds Activated by Titanium Tetrachloride. J. Am. Chem. Soc. 1974, 96: 7503-7510.
    [4] Kobayashi S., Fujishita Y., Mukaiyama T. The Efficient Catalytic Asymmetric Aldol-type Reaction. Chem. Lett. 1990, 19: 1455-1458.
    [5] Kobayashi S., Uchiro H., Mukaiyama T., et al Asymmetric Aldol Reaction between Achiral Silyl Enol Ethers and Achiral Aldehydes by Use of a Chiral Promoter System. J. Am. Chem. Soc. 1991, 113: 4247-4252.
    [6] Evans D. A., Kozlowski M. C., MacMillan D. W. C., et al C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids. Catalytic Enantioselective Aldol Additions of Enolsilanes to Pyruvate Esters. J. Am. Chem. Soc. 1997, 119: 7893-7894.
    [7] Yanagisawa A., Matsumoto Y., Yamamoto H. et al Enantioselective Aldol Reaction of Tin Enolates with Aldehydes Catalyzed by BINAP Silver(I) Complex. J. Am. Chem. Soc. 1997, 119: 9319-9320.
    [8] Kruger J., Carreira E. M. Apparent Catalytic Generation of Chiral Metal Enolates: Enantioselective Dienolate Additions to Aldehydes Mediated by Tol-BINAP Cu(II) Fluoride Complexes. J. Am. Chem. Soc. 1998, 120: 837-838.
    [9] Yoshikawa N., Yamada Y. M. A., Shibasaki M. et al Direct Catalytic Asymmetric Aldol Reaction. J. Am. Chem. Soc. 1999, 121: 4168-4178.
    [10] Berkessel A., Gr?ger H. Asymmetric Organocatalysis. Wiley-VCH, Weinheim. 2004.
    [11] Machajewski T. D., Wong C. H. The Catalytic Asymmetric Aldol Reaction. Angew. Chem. Int. Ed. 2000, 39: 1352-1374.
    [12] Wong C. H., Eduardo G. J., Chen L., et al Recombinant 2-Deoxyribose-5-phosphate Aldolase in Organic Synthesis: Use of Sequential Two-Substrate and Three-Substrate Aldol Reactions. J. Am. Chem. Soc. 1995, 117: 3333-3339.
    [13] Espelt L., Parella T., Clapés P., et al Stereoselective Aldol Additions Catalyzed by Dihydroxyacetone Phosphate-Dependent Aldolases in Emulsion Systems: Preparation and Structural Characterization of Linear and Cyclic Iminopolyols from Aminoaldehydes. Chem. Eur. J. 2003, 9: 4887-4899
    [14] Castillo J. A., Calveras J., Clapés P., et al Fructose-6-phosphate Aldolase in Organic Synthesis: Preparation of D-Fagomine, N-Alkylated Derivatives, and Preliminary Biological Assays. Org. Lett. 2006, 8: 6067-6070.
    [15] Tramontano A., Janda K. D., Lerner R. A. Catalytic Antibodies. Science, 1986, 234: 1566 -1570.
    [16] Pollack S. J., Jacobs J. W., Schultz P. G. Selective Chemical Catalysis by an Antibody. Science, 1986, 234: 1570 -1573.
    [17] Barbas III C. F., Wilson I. A., Lerner R. A., et al Immune Versus Natural Selection: Antibody Aldolases with Enzymic Rates But Broader Scope. Science, 1997, 278: 2085-2093.
    [18] Hoffmann T., Lerner R. A., Barbas III C. F., et al Aldolase Antibodies of Remarkable Scope. J. Am. Chem. Soc. 1998, 120: 2768-2779.
    [19] Zhong G. F., Lerner R. A., Barbas III C. F., et al Catalytic Enantioselective Retro-Aldol Reactions: Kinetic Resolution of b-Hydroxyketones with Aldolase Antibodies. Angew. Chem. Int. Ed. 1998, 37: 2481-2485.
    [20] List B., Lerner R. A., Barbas III C. F., et al Enantioselective Total Synthesis of Some Brevicomins Using Aldolase Antibody 38C2. Chem. Eur. J. 1998, 4: 881-886.
    [21] List B., Lerner R. A., Barbas III C. F. Enantioselective Aldol Cyclodehydrations Catalyzed by Antibody 38C2. Org. Lett. 1999, 1: 59-61.
    [22] Schoemaker H. E., Mink D., Wubbolts M. G., et al Dispelling the Myths Biocatalysis in Industrial Synthesis. Science, 2003, 299: 1693-1698.
    [23] Ahrendt K. A., Borths C. J., MacMillan D. W. C. New Strategies for Organic Catalysis: the first Highly Enantioselective Organocatalytic Diels-Alder Reaction. J. Am. Chem. Soc. 2000, 122: 4243-4244.
    [24] Hajos Z. G., Parrish D. R. Asymmetric Synthesis of Bicyclic Intermediates of Natural Product Chemistry. J. Org. Chem. 1974, 39: 1615-1621.
    [25] Eder U., Sauer G., Wiechert R. New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures. Angew. Chem. Int. Ed. 1971, 10: 496-497.
    [26] List B.; Lerner R. A.; Barbas III C. F. Proline-catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122: 2395-2396.
    [27] Dalko P. I., Moisan L. In the Golden Age of Organocatalysis. Angew. Chem. Int. Ed., 2004, 43: 5138–5175.
    [28] Northrup A. B., MacMillan D. W. C. The First Direct and Enantioselective Cross Aldol Reaction of Aldehydes. J. Am. Chem. Soc. 2002, 124: 6798-6799.
    [29] Northrup A. B., Mangion I. K., MacMillan D. W. C., et al Enantioselective Organocatalytic Direct Aldol Reactions ofα-Oxyaldehydes: Step One in a Two-step Synthesis of Carbohydrates. Angew. Chem. Int. Ed., 2004, 43: 2152-2154.
    [30] Northrup A. B., MacMillan D. W. C. Two-step Synthesis of Carbohydrates by Selective Aldol Reactions. Science, 2004, 305: 1752-1755.
    [31] Chowdari N. S., Ramachary D. B., Barbas III C. F. Organocatalytic Asymmetric Assembly Reactions: One-Pot Synthesis of Functionalizedβ-Amino Alcohols from Aldehydes, Ketones, and Azodicarboxylates. Org. Lett. 2003, 5: 1685-1688.
    [32] Thayumanavan R., Tanaka F., Barbas III C. F. Direct Organocatalytic AsymmetricAldol Reactions ofα-Amino Aldehydes: Expedient Syntheses of Highly Enantiomerically Enriched anti-β-Hydroxy-α-amino Acids. Org. Lett. 2004, 6: 3541-3544.
    [33] Sun B., Peng L. Z., Li Y., et al Synthesis of (-)-(5R,6S)-6-Acetoxyhexadecan-5-ol ide by L-proline-catalyzed Asymmetric Aldol Reactions. Tetrahedron: Asymmetry 2005, 16: 1305–1307.
    [34] Ikishima H., Sekiguchi Y., Kotsuki H., et al Synthesis of (-)-(5R,6S)-6- Acetoxyhexadecanolide Based on L-proline-catalyzed Asymmetric Aldol Reactions. Tetrahedron 2006, 62: 311–316.
    [35] Ward D. E., Jheengut V. Proline-catalyzed Asymmetric Aldol Reactions of Tetrahydro-4H-thiopyran-4-one with Aldehydes. Tetrahedron Lett. 2004, 45: 8347–8350.
    [36] Suri J. T., Mitsumori S., Barbas III C. F., et al Dihydroxyacetone Variants in the Organocatalytic Construction of Carbohydrates: Mimicking Tagatose and Fuculose Aldolases. J. Org. Chem. 2006, 71: 3822-3828.
    [37] Ward D. E., Jheengut V., Akinnusi O. T. Enantioselective Direct Intermolecular Aldol Reactions with Enantiotopic Group Selectivity and Dynamic Kinetic Resolution. Org. Lett. 2005, 7: 1181-1184.
    [38] Samanta S., Zhao C. G. Organocatalytic Enantioselective Synthesis ofα-Hydroxy Phosphonates. J. Am. Chem. Soc. 2006, 128: 7442-7443.
    [39] Bernard A. M., Frongia A., Piras P. P., et al L-Proline-Catalyzed Direct Intermolecular Asymmetric Aldol Reactions of 1-Phenylthiocycloalkyl Carboxaldehydes with Ketones. Easy Access to Spiroand Fused-Cyclobutyl Tetrahydrofurans and Cyclopentanones. Org. Lett. 2007, 9: 541-544.
    [40] Pidathala C., Hoang L., List B., et al Direct Catalytic Asymmetric Enolexo Aldolizations. Angew. Chem. Int. Ed., 2003, 42: 2785-2788.
    [41] Pan Q. B., Zou B. L., Ma D. W., et al Diastereoselective Aldol Reaction of N,N-Dibenzyl-r-amino Aldehydes with Ketones Catalyzed by Proline. Org. Lett. 2004, 6: 1009-1012.
    [42] Calderon F., Doyaguez E. G., Mayoralas A. F. Synthesis of Azasugars through a Proline-Catalyzed Reaction. J. Org. Chem. 2006, 71: 6258-6261.
    [43] Alcaide B., Almendros P., Luna A., et al Proline-Catalyzed Diastereoselective Direct Aldol Reaction between 4-Oxoazetidine-2-carbaldehydes and Ketones. J. Org. Chem. 2006, 71: 4818-4822.
    [44] Mukherjee S., Yang J. W., List B. et al Asymmetric Enamine Catalysis. Chem. Rev. 2007, 107: 5471-5569.
    [45] Dalko P. I. Enantioselective Organocatalysis. Wiley-VCH, Weinheim. 2007.
    [46] Tang Z., Gong L.Z., Wu Y. D. et al Novel Small Organic Molecules for a Highly Enantioselective Direct Aldol Reaction. J. Am. Chem. Soc. 2003, 125: 5262-5263.
    [47] Chen J. R., Li X.Y., Xiao W. J., et al Sterically and Electronically Tunable and Bifunctional Organocatalysts: Design and Application in Asymmetric Aldol Reaction of Cyclic Ketones with Aldehydes. J. Org. Chem. 2006, 71: 8198-8202.
    [48] Torii H., Saito S., Yamamoto H., et al Asymmetric Direct Aldol Reaction Assisted by Water and a Proline-Derived Tetrazole Catalyst. Angew. Chem. Int. Ed. 2004, 43: 1983–1986.
    [49] Lacoste E., Landais Y., Vincent J. M., et al Benzoimidazole–pyrrolidine (BIP), a Highly Reactive Chiral Organocatalyst for Aldol Process. Tetrahedron Lett. 2004, 45: 8035–8038.
    [50] Mangion I. K., Northrup A. B., MacMillan D. W. C. The Importance of Iminium Geometry Control in Enamine Catalysis: Identification of a New Catalyst Architecture for Aldehyde–Aldehyde Couplings. Angew. Chem. Int. Ed. 2004, 43: 6722–6724.
    [51] Mase N., Tanaka F., Barbas III C. F. Synthesis ofβ-Hydroxyaldehydes withStereogenic Quaternary Carbon Centers by Direct Organocatalytic Asymmetric Aldol Reactions. Angew. Chem. Int. Ed. 2004, 43: 2420–2423.
    [52] Peng Y. Y., Ding Q. P., Cheng J. P., et al Proline Catalyzed Aldol Reactions in Aqueous Micelles:an Environmentally Friendly Reaction System. Tetrahedron Lett. 2003, 44: 3871–3875.
    [53] Cordova A., Wolfgang N., Barbas III C. F., et al Direct Organocatalytic Aldol Reactions in Buffered Aqueous Media. Chem. Commun. 2002, 24: 3024-3025.
    [54] Mase N., Takabe K., Barbas III C. F., et al Organocatalytic Direct Asymmetric Aldol Reactions in Water. J. Am. Chem. Soc. 2006, 128: 734-735.
    [55] Hayashi Y., Sumiya T., Takahashi J., et al Highly Diastereo- and Enantioselective Direct Aldol Reactions in Water. Angew. Chem. Int. Ed. 2006, 45: 958–961.
    [56] Hayashi Y., Aratake S., Okano T., et al Combined Proline–Surfactant Organocatalyst for the Highly Diastereo- and Enantioselective Aqueous Direct Cross Aldol Reaction of Aldehydes. Angew. Chem. Int. Ed. 2006, 45: 5527–5529。
    [57] Guizzetti S., Benaglia M., Raimondi L., et al Enantioselective Direct Aldol Reaction“on Water”Promoted by Chiral Organic Catalysts. Org. Lett. 2007, 9: 1247-1250.
    [58] Ramasastry S. S. V., Zhang H. L., Barbas, III C. F., et al Direct Catalytic Asymmetric Synthesis of anti-1,2-Amino Alcohols and syn-1,2-Diols through Organocatalytic anti-Mannich and syn-Aldol Reactions. J. Am. Chem. Soc. 2007, 129: 288-289.
    [59] Ramasastry S. S. V., Albertshofer K., Barbas, III C. F., et al Mimicking Fructose and Rhamnulose Aldolases: Organocatalytic syn-Aldol Reactions with Unprotected Dihydroxyacetone. Angew. Chem. Int. Ed. 2007, 46: 5572–5575.
    [60] Luo S. Z., Xu H., Cheng J. P., et al A Simple Primary-Tertiary Diamine-Br?nsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones. J. Am. Chem. Soc. 2007, 129: 3074-3075.
    [61] Kano T., Yamaguchi Y., Maruoka K., et al syn-Selective and Enantioselective DirectCross Aldol Reactions between Aldehydes Catalyzed by an Axially Chiral Amino Sulfonamide. Angew. Chem. Int. Ed. 2007, 46: 1738–1740.
    [62] Martin J. H., List B. Mining Sequence Space for Asymmetric Aminocatalysis: N-Terminal Prolyl-Peptides Efficiently Catalyze Enantioselective Aldol and Michael Reactions. Synlett. 2003, 12: 1901–1902.
    [63] Tang Z., Yang Z. H., Gong L. Z., et al Small Peptides Catalyze Highly Enantioselective Direct Aldol Reactions of Aldehydes with Hydroxyacetone: Unprecedented Regiocontrol in Aqueous Media. Org. Lett. 2004, 6: 2285-2287.
    [64] Cordova A., Zou W. B., Dziedzic P., et al Direct Asymmetric Intermolecular Aldol Reactions Catalyzed by Amino Acids and Small Peptides. Chem. Eur. J. 2006, 12: 5383– 5397.
    [65] Tsogoeva S. B., Wei S. (S)-Histidine-based Dipeptides as Organic Catalysts for Direct Asymmetric Aldol Reactions. Tetrahedron: Asymmetry 2005, 16: 1947–1951.
    [66] Krattiger P., Kovasy R., Wennemers H., et al Increased Structural Complexity Leads to Higher Activity: Peptides as Efficient and Versatile Catalysts for Asymmetric Aldol Reactions. Org. Lett. 2005, 7: 1101-1103.
    [67] Denmark S. E., Stavenger R. A. Asymmetric Catalysis of Aldol Reactions with Chiral Lewis Bases. Acc. Chem. Res. 2000, 33: 432-440.
    [68] Denmark S. E., Stavenger R. A. The Chemistry of Trichlorosilyl Enolates. Aldol Addition Reactions of Methyl Ketones. J. Am. Chem. Soc. 2000, 122: 8837-8847.
    [69] Denmark S. E., Fan Y. Catalytic, Enantioselective Aldol Additions to Ketones. J. Am. Chem. Soc. 2002, 124: 4233-4235.
    [70] Denmark S. E., Bui T. Mechanistic Insights into the Chiral Phosphoramide Catalyzed, Enantioselective Crossed-Aldol Reactions of Aldehydes. J. Org. Chem. 2005, 70: 10393-10399.
    [71] Jiang B., Si Y. G. The First Highly Enantioselective Alkynylation of Chloral: A Practical and Efficient Pathway to Chiral Trichloromethyl Propargyl Alcohols. Adv.Synth. Catal. 2004, 346: 669-674.
    [72] Khrimian A. P., Oliver J. E., Waters R. M., et al Enantioselective Synthesis of 2-Fluoro Carboxylic Acids from Trichloromethyl Carbinols: an Efficient Approach to Chiral Fluorine Introduction into Insect Sex Pheromones. Tetrahedron: Asymmetry, 1996, 7: 37-40.
    [73] Wang Z., Campagna S., Yang K., et al A Practical Preparation of Terminal Alkynes from Aldehydes. J. Org. Chem. 2000, 65: 1889-1891.
    [74] Faller J. W., Liu X. Efficient Chiral Poisoning of Racemic Titanium Catalysts for the Asymmetric Chloral-ene Reaction. Tetrahedron Lett. 1996, 37: 3449-3452.
    [75] Funabiki K., Honma N., Matsui M., et al Practical Asymmetric Synthesis ofβ-Trichloromethyl-β-hydroxy Ketones by the Reaction of Chloral or Chloral Hydrate with Chiral Imines. Org. Lett. 2003, 5: 2059-2061.
    [76] Lerm M., Gais H. J., Cheng K., et al Asymmetric Synthesis of the Highly Potent Anti-Metastatic Prostacyclin Analogue Cicaprost and Its Isomer Isocicaprost. J. Am. Chem. Soc. 2003, 125: 9653-9667.
    [77] Michellys P. Y., Ardecky R. J., J. H. Chen., et al Novel (2E,4E,6Z)-7-(2-Alkoxy-3,5-dialkylbenzene)-3-methylocta-2,4,6-trienoic Acid Retinoid X Receptor Modulators Are Active in Models of Type 2 Diabetes. J. Med. Chem. 2003, 46: 2683-2696.
    [78] Bender T., Grond S., Zezschwitz P., et al Comprehensive Study of Okaspirodiol: Characterization, Total Synthesis, and Biosynthesis of a New Metabolite from Streptomyces. J. Org. Chem. 2006, 71: 7125-7132.
    [79] Pirrung M. C., Han H., Nunn D. S. Kinetic Mechanism and Reaction Pathway of Thermus thermophilus Isopropylmalate Dehydrogenase. J. Org. Chem. 1994,59: 2423-2429.
    [80] Geiger C., Kreitmeier P., Reiser O. Cobalt(II)-Azabis(oxazoline)-Catalyzed ConjugateReduction ofα,β-Unsaturated Carbonyl Compounds. Adv. Synth. Catal. 2005, 347: 249–254.
    [81] Huang Y. K., Zhang F. L., Gong Y. F. A Convenient Approach to (S)-2-ethylhexan-1-ol mediated by Baker’s Yeast. Tetrahedron Letters 2005, 46: 7217–7219.
    [82]李宁.面包酵母催化还原2-烷基-4,4,4-三氯-2-丁烯醛的研究:硕士学位论文.华中科技大学图书馆, 2007.
    [83] Ma J.A., Cahard D. Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chem. Rev. 2004, 104: 6119-6146.
    [84] Takagi Y., Nakai K., Tsuchiya T., et al A 5’-(Trifluoromethyl)anthracycline Glycoside: Synthesis of Antitumor-Active 7-O-(2,6-Dideoxy-6,6,6-trifluoro-α-L- lyxo-hexopyranosyl)adriamycinone. J. Med. Chem. 1996, 39: 1582-1588.
    [85] Geitmann M., Unge T., Danielson U. H. Interaction Kinetic Characterization of HIV-1 Reverse Transcriptase Non-nucleoside InhibitorResistance. J. Med. Chem. 2006, 49: 2375-2387.
    [86] Wu W.D., Sigmond J., Borch R. F., et al Synthesis and Biological Activity of a Gemcitabine Phosphoramidate Prodrug. J. Med. Chem. 2007, 50: 3743-3746.
    [87] Shibata N., Suzuki E., Takeuchi Y. A Fundamentally New Approach to Enantioselective Fluorination Based on Cinchona Alkaloid Derivatives/Selectfluor Combination. J. Am. Chem. Soc. 2000, 122: 10728-10729.
    [88] Cahard D., Audouard C., Plaquevent J. C., et al Design, Synthesis, and Evaluation of a Novel Class of Enantioselective Electrophilic Fluorinating Agents: N-Fluoro Ammonium Salts of cinchona Alkaloids (F-CA-BF4). Org. Lett. 2000, 2: 3699-3701.
    [89] Beeson T. D., MacMillan D. W. C. Enantioselective Organocatalyticα-Fluorination of Aldehydes. J. Am. Chem. Soc. 2005, 127: 8826-8828.
    [90] Marigo M., Fielenbach D., J?rgensen K. A., et al Enantioselective Formation ofStereogenic Carbon–Fluorine Centers by a Simple Catalytic Method. Angew. Chem. Int. Ed. 2005, 44: 3703–3706.
    [91] Enders D., Huttl M. R. M. Direect Organocatalyticα-Fluorination of Aldehydes and Ketones. Synlett. 2005, 6: 991-993.
    [92] Steiner D. D., Mase N., BarbasIII C. F. Direct Asymmetricα-Fluorination of Aldehydes. Angew. Chem. Int. Ed. 2005, 44: 3706–3710.
    [93] Brandes S., Niess B., J?rgensen K. A., et al Non-Biaryl Atropisomers in Organocatalysis. Chem. Eur. J. 2006, 12: 6039-6052.
    [94] Huang Y., Walji A. M., MacMillan D. W. C., et al Enantioselective Organo-Cascade Catalysis. J. Am. Chem. Soc. 2005, 127: 15051-15053.
    [95] Torok B., Abid M., Prakash G. K. S., et al Highly Enantioselective Organocatalytic Hydroxyalkylation of Indoles with Ethyl Trifluoropyruvate. Angew. Chem. Int. Ed. 2005, 44: 3086–3089.
    [96] Fustero S., Jimenez D., Cervera J. F. S., Highly Enantioselective Synthesis of Fluorinatedγ-Amino Alcohols through Proline-Catalyzed Cross-Mannich Reaction. Org. Lett. 2005, 7: 3433-3436.
    [97] Wang X. J., Zhao Y., Liu J. T. Regiospecific Organocatalytic Asymmetric Aldol Reaction of Methyl Ketones andα,β-Unsaturated Trifluoromethyl Ketones. Org. Lett. 2007, 9: 1343-1345.
    [98] Jiang Z. X., Qin Y. Y., Qing F. L. Asymmetric Synthesis of Both Enantiomers of anti-4,4,4-Trifluorothreonine and 2-Amino-4,4,4-trifluorobutanoic Acid. J. Org. Chem. 2003, 68: 7544-7547.
    [99] Yuan Y., Zhang X., Ding K. L. Quasi Solvent-Free Enantioselective Carbonyl-Ene Reaction with Extremely Low Catalyst Loading. Angew. Chem. Int. Ed. 2003, 42: 5478–5480.
    [100] Cho C. W., Krische M. J.α-Hydroxy Esters via EnantioselectiveHydrogen-Mediated C-C Coupling: Regiocontrolled Reactions of Silyl Substituted 1,3-Diynes. Org. Lett. 2006, 8: 3873-3876.
    [101] Evans D. A., Tregay S. W., Burgey C. S., et al C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids. Catalytic Enantioselective Carbonyl-Ene Reactions with Glyoxylate and Pyruvate Esters. J. Am. Chem. Soc. 2000, 122: 7936-7943.
    [102] Gathergood N., Zhuang W., J?rgensen K. A. Catalytic Enantioselective Friedel-Crafts Reactions of Aromatic Compounds with Glyoxylate: A Simple Procedure for the Synthesis of Optically Active Aromatic Mandelic Acid Esters. J. Am. Chem. Soc. 2000, 122: 12517-12522.
    [103] Evans D.A., MacMillan D. W. C., Ca mpos K. R. C2-Symmetric Tin(II) Complexes as Chiral Lewis Acids. Catalytic Enantioselective Anti Aldol Additions of Enolsilanes to Glyoxylate and Pyruvate Esters. J. Am. Chem. Soc. 1997, 119: 10859-10860.
    [104] Matsubara R., Nakamura Y., Kobayashi S. Highly Diastereo- and Enantioselective Reactions of Enecarbamates with Ethyl Glyoxylate To Give Optically Active syn and anti a-Alkyl-b-Hydroxy Imines and Ketones. Angew. Chem. Int. Ed. 2004, 43: 3258–3260.
    [105] Zhong G. F., Fana J., Barbas III C. F. Amino Alcohol Catalyzed Direct Asymmetric Aldol Reactions: Enantioselective Synthesis of anti-α-fluoro-β-hydroxy ketones. Tetrahedron Lett. 2004, 45: 5681–5684.
    [106] Dodda R., Zhao C. G. Organocatalytic Enantioselective Synthesis of Secondaryα-Hydroxy-carboxylates. Synlett 2007, 10: 1605-1609.
    [107] Pansare S. V., Jain R. P. Enantioselective Synthesis of (S)-(+)-Pantolactone. Org. Lett. 2000, 2: 175-177.
    [108] Camps P., P6rez F., Soldevilla N. Enantioselective Synthesis of Both Enantiomers of 3-Hydroxy-4,4-dimethyl-1-phenyl-2-pyrrolidinone, Tetrahedron Lett. 1999, 40: 6853-6856.
    [109] Mishra P. K., Drueckhammer D. G. Coenzyme A Analogues and Derivatives: Synthesis and Applications as Mechanistic Probes of Coenzyme A Ester-Utilizing Enzymes. Chemical Reviews, 2000, 100: 3283-3311.
    [110] Barrett D. G., Catalano J. G., Deaton D. N., et al Novel, Potent P2–P3 Pyrrolidine Derivatives of Ketoamide-based Cathepsin K Inhibitors, Bioorganic & Medicinal Chemistry Letters 2006, 16: 1735–1739.
    [111] Barbaud C., Guerrouache M., Guerin P. Synthesis of Novel Trisubstitutedβ-lactones. Tetrahedron Lett. 2002, 43: 9513–9515.
    [112] Shirakawa S. Maruoka K. Synthetic Utility of Bowl-shaped Tris(2,6-diphenyl benzyl)silyl Glyoxylate as a Stable Glyoxylate: Application to Highly Diastereoselective Aldol Reactions. Tetrahedron Lett. 2003, 44: 281–284.
    [113] Bishop J. E., Oconnell J. F., Rapoport H. The Reaction of Thioimides with Phosphorus Ylides. J. Org. Chem. 1991,56: 5079-5091.
    [114] Tang Z., Jiang F., Gong L. Z., et al Asymmetric Catalysis Special Feature Part II: Enantioselective Direct Aldol Reactions Catalyzed by L-prolinamide derivatives. PNAS, 2004, 101: 5755–5760.
    [115] Boschi F., Camps P., Franchini M. C., et al A synthesis of Levetiracetam Based on (S)-N-phenylpantolactam as a Chiral Auxiliary. Tetrahedron: Asymmetry 2005, 16: 3739–3745.
    [116] Akkari R., Calmes M., Martinez J. Toward Diels-Alder Reactions on a Solid Support Using Polymer Bound N-Substituted 3-Hydroxy-4,4-dimethyl-2-pyrroli dinone Acrylate Derivatives, Eur. J. Org. Chem. 2004, 2004: 2441-2450.
    [117] Toyooka N., Okumura M., Nemoto H. Stereodivergent Process for the Synthesis of the Decahydroquinoline Type of Dendrobatid Alkaloids. J. Org. Chem. 2002, 67: 6078-6081.
    [118] Daly J. W., Spande T. F., Garraffo H. M. Alkaloids from Amphibian Skin: ATabulation of Over Eight-Hundred Compounds. J. Nat. Prod. 2005, 68: 1556-1575.
    [119] Pu X. T., Ma D. W.Facile Entry to Substituted Decahydroquinoline Alkaloids. Total Synthesis of Lepadins A-E and H. J. Org. Chem. 2006, 71: 6562-6572.
    [120] Aron Z. D., Overman L. E. Stereocontrolled Synthesis of Angularly Substituted 1-Azabicyclic Rings by Cationic 2-Aza-Cope Rearrangements. Org. Lett. 2005, 7: 913-916.
    [121] Reggelin M., Junker B., Heinrich T., et al Asymmetric Synthesis of Highly Substituted Azapolycyclic Compounds via 2-Alkenyl Sulfoximines: Potential Scaffolds for Peptide Mimetics. J. Am. Chem. Soc. 2006, 128: 4023-4034.
    [122] Simonsen K. B., Ayida B. K., Vourloumis D., et al Piperidine Glycosides Targeting the Ribosomal Decoding Site. ChemBioChem 2003, 4: 886-890.
    [123] Uhle F. C. Reaction of Diosgenin Acetate with Hydrogen Chloride in Acetic Anhydride. J. Org. Chem. 1962, 27: 656-658.
    [124] Osby J. O., Martin M. G., Ganem B. An Exceptionalty Mild Deprotection of Phthalimides. Tetrahedron Lett. 1984, 25: 2093-2096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700