EPA、DHA对脂多糖刺激大鼠系膜细胞保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     通过制备脂多糖(LPS)致大鼠肾小球系膜细胞(GMCs)损伤模型,研究二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)对炎症状态下GMCs表达基质金属蛋白酶(MMPs)及其抑制剂金属蛋白酶组织抑制因子(TIMPs)、过氧化物酶体增殖物激活受体γ(PPARγ)、单核细胞趋化蛋白-1(MCP-1)、转化生长因子-β1(TGF-β1)的影响,探讨EPA、DHA对损伤的GMCs可能的保护机制。
     方法与结果
     1.实时定量PCR方法检测EPA、DHA对LPS刺激GMCs MMP-2/TIMP-2 mRNA的表达
     体外培养大鼠GMCs,取第4代细胞计数后按1×105细胞/孔浓度接种于6孔培养板,实验分六组:正常对照组;LPS刺激组(LPS终浓度为10μg·mL-1)EPA(终浓度10μmol·L-1、100μmol·L-1)组;DHA(终浓度10μmol·L-1、100μmol·L-1)组。培养48h后,实时定量PCR方法检测MMP-2、TIMP-2mRNA表达。
     结果显示:LPS刺激能够使GMCs表达MMP-2 mRNA及MMP-2/TIMP-2比值明显降低、TIMP-2 mRNA明显增高(P<0.01)。EPA、DHA显示出了对MMP-2、TIMP-2 mRNA表达的抑制作用及对MMP-2/TIMP-2比值的促进作用。2.实时定量PCR方法检测EPA、DHA对LPS刺激GMCs MMP-9/TIMP-1 mRNA的表达
     取第4代细胞计数后按1×105细胞/孔浓度接种于6孔培养板,实验分组同上。培养48h后,实时定量PCR方法检测MMP-9、TIMP-1mRNA表达。
     结果显示:LPS刺激能够使GMCs表达MMP-9 mRNA及MMP-9/TIMP-1比值明显降低、TIMP-1 mRNA明显增高(P<0.01)。EPA、DHA显示出了对MMP-9、TIMP-1mRNA表达的抑制作用及对MMP-9/TIMP-1比值的促进作用。
     3.实时定量PCR方法检测EPA、DHA对LPS刺激GMCs PPARy mRNA的表达
     细胞计数后按1×105细胞/孔浓度接种于6孔培养板,实验分组同上。分别培养24h、48h、72h后,实时定量PCR方法检测PPARy mRNA表达。结果显示:LPS刺激GMCs后,细胞表达PPARy mRNA明显减少(P<0.01)。EPA、DHA能促进GMCs PPARy mRNA的表达。
     4.实时定量PCR方法检测EPA、DHA对LPS刺激GMCs MCP-1、TGF-β1 mRNA的表达
     细胞计数后按1×105细胞/孔浓度接种于6孔培养板,实验分组同上。分别培养24h、48h、72h后,实时定量PCR方法检测MCP-1、TGF-β1 mRNA表达。结果显示:LPS刺激GMCs后,细胞表达MCP-1、TGF-β1 mRNA明显增加(P<0.01)。EPA、DHA能抑制GMCs MCP-1、TGF-β1 mRNA的表达。
     5.免疫细胞化学方法检测EPA、DHA对LPS刺激GMCs PPARγ、TGF-β1蛋白的表达
     细胞计数后按1×104细胞/孔浓度接种于24孔培养板,实验分组同上。培养48h后,免疫细胞化学方法检测PPARγ、TGF-β1蛋白。结果显示:LPS刺激GMCs后,细胞分泌PPARy蛋白明显减少、TGF-β1蛋白明显增加(P<0.05)。正常组细胞的胞浆区染色低,LPS组的细胞则可见明显的黄染。EPA、DHA显示出了对PPARγ蛋白分泌的促进作用及对TGF-β1蛋白分泌的抑制作用。
     结论
     1 EPA、DHA能抑制LPS刺激的GMCs表达MMP-2、MMP-9、TIMP-1、TIMP-2mRNA,提高MMP-2/TIMP-2、MMP-9/TIMP-1比值。
     2 EPA、DHA能促进LPS刺激的GMCs PPARy mRNA及蛋白的表达。
     3 EPA、DHA能抑制LPS刺激的GMCs MCP-1 mRNA的表达。
     4 EPA、DHA能抑制LPS刺激的GMCs TGF-β1 mRNA及蛋白的表达。
Objective
     To investigate the effects of eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) on matrix metalloproteinases(MMPs)、tissue inhibitors of metalloprotein-ases(TIMPs)、peroxisome proliferator-activated receptor gamma(PPARy)、monocyte chemoattractant protein-1(MCP-1)、transforming growth factor beta 1(TGF-β1) on rat glomerular mesangial cells(GMCs) stimulated by lipopolysaccharide(LPS), and explore the possible protective mechanism of EPA and DHA to impaired GMCs.
     Methods and Results
     1. Effect of EPA and DHA on the expression of MMP-2/TIMP-2 mRNA on GMCs stimulated by LPS by real-time PCR
     GMCs were cultured in vitro. Count the 4th generation cell at a 1×105per well to the kind of 6-well plates, and then divided into six groups:control group; LPS group(with LPS final concentration of 10μg-mL-1); EPA group(with EPA final concentration of 10μmol·L-1 and 100μmol·L-1); DHA group(with DHA final concentration of 10μmol·L-1 and 100μmol·L-1). The expression of MMP-2 and TIMP-2 mRNA of GMCs was measured by real-time PCR after incubated 48h.
     The result showed that the level of MMP-2 mRNA and the ratio of MMP-2/TIMP-2 were significantly attenuated, TIMP-2 mRNA significantly increased when stimulated by LPS(P<0.01). EPA and DHA could decrease the level of MMP-2 and TIMP-2 mRNA, increase the ratio of MMP-2/TIMP-2.
     2. Effect of EPA and DHA on the expression of MMP-9/TIMP-1 mRNA on GMCs stimulated by LPS by real-time PCR
     Count the 4th generation cell at a 1×105per well to the kind of 6-well plates, and then divided into the same six groups. The expression of MMP-9 and TIMP-1 mRNA of GMCs was measured by real-time PCR after incubated 48h.
     The result showed that the level of MMP-9 mRNA and the ratio of MMP-9/TIMP-1 were significantly attenuated, TIMP-1 mRNA significantly increased when stimulated by LPS(P<0.01). EPA and DHA could decrease the level of MMP-9 and TIMP-1 mRNA, increase the ratio of MMP-9/TIMP-1.
     3. Effect of EPA and DHA on the expression of PPARy mRNA on GMCs stimulated by LPS by real-time PCR
     GMCs were cultured for 24h、48h、72h, respectively. The expression of PPARy mRNA of GMCs was measured by real-time PCR. The result showed that the level of PPARγmRNA was significantly attenuated when stimulated by LPS(P<0.01). EPA and DHA could increase the level of PPARy mRNA.
     4. Effect of EPA and DHA on the expression of MCP-1、TGF-β1 mRNA on GMCs stimulated by LPS by real-time PCR
     GMCs were cultured for 24h、48h、72h, respectively. The expression of MCP-1、TGF-β1 mRNA of GMCs was measured by real-time PCR. The result showed that the level of MCP-1、TGF-β1 mRNA was significantly increased when stimulated by LPS(P<0.01). EPA and DHA could decrease the level of MCP-1、TGF-β1 mRNA.
     5. Effect of EPA and DHA on the level of PPARγ、TGF-β1 protein on GMCs stimulated by LPS by immunocytochemistry
     Count the cell at a 1×104per well to the kind of 24-well plates, and then divided into the same six groups. The expression of PPARγ、TGF-β1 protein of GMCs was detected by immunocytochemistry after incubated 48h. The result showed that the level of PPARy protein was significantly attenuated and TGF-β1 protein significantly increased when stimulated by LPS(P<0.05). EPA and DHA could increase the level of PPARy mRNA and decrease the level of TGF-β1 mRNA.
     Conclusion
     1. EPA and DHA can decrease the level of MMP-2、MMP-9、TIMP-1、TIMP-2 mRNA of GMCs stimulated by LPS, increase the ratio of MMP-2/TIMP-2、MMP-9/TIMP-1.
     2. EPA and DHA can increase the level of PPARy mRNA and protein of GMCs stimulated by LPS.
     3. EPA and DHA can decrease the level of MCP-1 mRNA of GMCs stimulated by LPS.
     4. EPA and DHA can decrease the level of TGF-β1 mRNA and protein of GMCs stimulated by LPS.
引文
1.黎磊石,侯凡凡.肾脏病研究进展[J].中华内科志,1986,44(4):232-238.
    2.中华医学会儿科学会肾脏病学组.我国小儿肾小球疾病肾组织病理改变:2315例肾活检材料的综合分析[J].中华儿科杂志,1996,34(5):319-323.
    3.王海燕.肾脏病学[M].第三版.北京:人民卫生出版社,2008.1016.
    4. Stockand JD, Sansom SC. Glomerular mesangial cells:electrophysiology and regulation of contraction[J]. Physiol Rev,1998,78(3):723-44.
    5.查锡良.糖蛋白、蛋白聚糖和细胞外基质.周爱儒主编.生物化学[M].第五版.北京:人民卫生出版社,2001,400-413.
    6. Gavin J. Becker and Tim D. Hewitson. Molecular Developments in the Treatment of Renal Fibrosis. Medical Intelligence Unit, Fibrogenesis:Cellular and Molecular Basis,2005,6:61-76.
    7. Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies[J]. Am J Physiol Renal Physiol,2007,292(3):F905-11.
    8. Gomez DE, Alonso DF, Yoshiji H, et al. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions[J]. Eur J Cell Biol,1997, 74(2):111-22.
    9. Nicholas SB, Kawano Y, Wakino S, et al. Expression and function of peroxisome proliferator-activated receptor-gamma in mesangial cells[J].Hypertension,2001, 37(2 Part 2):722-7.
    10. Asano T, Wakisaka M, Yoshinari M, et al. Peroxisome proliferator-activated receptor gammal (PPARgammal) expresses in rat mesangial cells and PPARgamma agonists modulate its differentiation[J]. Biochim Biophys Acta, 2000,1497(1):148-54.
    11. Sato K, Sugawara A, Kudo M, et al. Expression of peroxisome proliferator-activated receptor isoform proteins in the rat kidney [J]. Hypertens Res,2004, 27(6):417-25.
    12. Routh RE, Johnson JH, McCarthy KJ. Troglitazone suppresses the secretion of type I collagen by mesangial cells in vitro[J]. Kidney Int,2002,61(4):1365-76.
    13. Yamate J, Kuribayashi M, Kuwamura M, et al. Differential immunoexpressions of cytoskeletons in renal epithelial and interstitial cells in rat and canine fibrotic kidneys,and in kidney-related cell lines under fibrogenic stimuli[J]. Exp Toxicol Pathol,2005,57(2):135-147.
    14.王海燕.肾脏病学[M].第三版.北京:人民卫生出版社,2008.993.
    15. Muso E, Yoshida H, Takeuchi E, et al. Enhanced production of glomerular extracellular matrix in a new mouse strain of high serum IgA ddY mice[J]. Kidney Int,1996,50(6):1946-57.
    16. Yoshimura H, Ito M, Kuwahara Y, et al. Downregulated expression in high IgA (HIGA) mice and the renal protective role of meprinbeta[J]. Life Sci, 2008,82(15-16):899-908.
    17.薛超,李幼姬,李彩霞,等.基于家庭的TGF β1基因-509C/T多态性与IgA肾病相关性研究[J].中国病理生理杂志,2005,21(3):422-426.
    18.汤颖,娄探奇,成彩联,等.Leflunomide对实验性IgA肾病大鼠肾脏TGF-β1、MCP-1表达的影响[J].中国病理生理杂志,2007,23(3):604-605.
    19. Grande JP, Walker HJ, Holub BJ, et al. Suppressive effects of fish oil on mesangial cell proliferation in vitro and in vivo[J]. Kidney Int,2000,57(3):1027-40.
    20. Vibet S, Goupille C, Bougnoux P, et al. Sen-sitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response[J]. Free Radic Biol Med,2008,44(7):1483-91.
    21. Yin H, Liu W, Goleniewska K, et al. Dietary supplementation of omega-3 fatty acid-containing fish oil suppresses F2-isoprostanes but enhances inflammatory cytokine response in a mouse model of ovalbumin-induced allergic lung inflammation[J]. Free Radic Biol Med,2009,47(5):622-8.
    22. Donadio JV Jr. Use of fish oil to treat patients with immunoglobulin a nephropathy[J]. Am J Clin Nutr,2000,71(1 Suppl):373S-5S.
    23. Donadio JV Jr, Larson TS, Bergstralh EJ, et al. A randomized trial of high-dose
    compared with low-dose omega-3 fatty acids in severe IgA nephropathy [J]. J Am Soc Nephrol,2001,12(4):791-9.
    24. Alexopoulos E, Stangou M, Pantzaki A, et al. Treatment of severe IgA nephropathy with omega-3 fatty acids:the effect of a "very low dose" regimen[J]. Ren Fail,2004,26(4):453-9.
    25. Hogg RJ, Fitzgibbons L, Atkins C, et al. Efficacy of omega-3 fatty acids in children and adults with IgA nephropathy is dosage-and size-dependent[J]. Clin J Am Soc Nephrol,2006,1(6):1167-1172.
    26. Dillon JJ. Treating IgA nephropathy [J]. J Am Soc Nephrol,2001,12(4):846-7.
    27. Shi Y, Pestka JJ. Attenuation of mycotoxin-induced IgA nephropathy by eicosapentaenoic acid in the mouse:dose response and relation to IL-6 expression[J]. J Nutr Biochem,2006,17(10):697-706.
    28.耿文静,柳方娥,焦波,等.EPA、 DHA对脂多糖诱导的大鼠系膜细胞增殖及凋亡的影响[J].山东大学学报(医学版),2008,46(1):57-59.
    29. Rambausek M, Rauterberg EW, Waldherr R, et al. Evolution of IgA glomerulonephritis:relation to morphology, immunogenetics, and BP[J]. Semin Nephrol,1987,7(4):370-3.
    30. Simon P, Ramee MP, Autuly V, et al. Epidemiology of primary glomerular diseases in a French region.Variations according to period and age[J]. Kidney Int, 1994,46(4):1192-8.
    31. D' Amico G. The commonest glomerulonephritis in the world:IgA nephropathy [J]. Q J Med,1987,64(245):709-27.
    32. Donadio JV, Grande JP. IgA nephropathy[J]. N Engl J Med,2002,347(10): 738-48.
    33.刘刚,马序竹,邹万忠,等.肾活检患者肾脏病构成十年对比分析[J].临床内科杂志,2004,21(12):834-8.
    34.陈香美,谢院生.重视延缓IgA肾病进展的基础和临床研究[J].中华肾脏病杂志,2004,20(4):235-237.
    35. Block K, Ricono JM, Lee DY, et al. Arachidonic acid-dependent activation of a p22(phox)-based NAD(P)H oxidase mediates angiotensin Ⅱ-induced mesangial
    cell protein synthesis and fibronectin expression via Akt/PKB[J].Antioxid Redox Signal,2006,8(9-10):1497-1508.
    36. Yusufi AN, Cheng J, Thompson MA, et al. Differential effects of low-dose docosahexaenoic acid and eicosapentaenoic acid on the regulation of mitogenic signaling pathways in mesangial cells[J]. J Lab Clin Med,2003,141(5):318-29.
    37. DonadioJV. The emerging role of omega-3 polyunsaturated fatty acids in the management of patients with IgA nephropathy[J]. J Ren Nutr,2001,11(3):122-8.
    38. Branten AJ, Klasen IS, Wetzels JF. Short-term effects of fish oil treatment on urinary excretion of high-and low-molecular weight proteins in patients with IgA nephropathy[J].Clin Nephrol,2002,58(4):267-274.
    39. Holman RT, Johnson SB, Bibus D, et al. Essential fatty acid deficiency profiles in idiopathic immunoglobulin A nephropathy[J]. Am J Kidney Dis,1994, 23(5):648-54.
    40. Lenz O, Elliot SJ, Stetler-Stevenson WG. Matrix metalloproteinases in renal development and disease[J], J Am Soc Nephrol.2000,11(3):574-81.
    41. Akiyama K, Shikata K, Sugimoto H, et al. Changes in serum concentrations of matrix metalloproteinases, tissue inhibitors of metalloproteinases and type IV collagen in patients with various types of glomerulonephritis[J]. Res Commun Mol Pathol Pharmacol,1997,95(2):115-28.
    42. Bauvois B, Mothu N, Nguyen J, et al. Specific changes in plasma concentrations of matrix metalloproteinase-2 and-9, TIMP-1 and TGF-betal in patients with distinct types of primary glomerulonephritis[J]. Nephrol Dial Transplant,2007, 22(4):1115-22.
    43. Urushihara M, Kagami S, Kuhara T, et al. Glomerular distribution and gelatinolytic activity of matrix metalloproteinases in human glomerulonephritis[J]. Nephrol Dial Transplant,2002,17(7):1189-96.
    44. Endo T, Nakabayashi K, Sekiuchi M, et al. Matrix metalloproteinase-2, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in the peripheral blood of patients with various glomerular diseases and their implication in pathogenetic lesions:study based on an enzyme-linked assay and immunohistochemical staining[J]. Clin Exp Nephrol,2006,10(4):253-61.
    45. Tomita M, Koike H, Han GD, et al. Decreased collagen-degrading activity could be a marker of prolonged mesangial matrix expansion[J]. Clin Exp Nephrol,2004, 8(1):17-26.
    46.傅思莹,陶瑜.IgA肾病进展中MMP-2、TIMP-2与VEGF的表达变化[J].临床与实验病理学杂志,2008,24(5):573-576.
    47.于力,郝志宏,王丽娜,等.脂多糖诱导大鼠肾小球系膜细胞增殖和分泌细胞外基质的研究[J].中国全科医学,2007,10(18):1499-1501.
    48. Guan Y, Zhang Y, Davis L, et al. Expression of peroxisome proliferator-activated receptors in urinary tract of rabbits and humans[J]. Am J Physiol,1997,273(6 Pt 2):F1013-22.
    49. Yang T, Michele DE, Park J, et al. Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney[J]. Am J Physiol,1999,277(6 Pt 2):F966-73.
    50. Zafiriou S, Stanners SR, Saad S, et al. Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts[J]. Am Soc Nephrol,2005, 16(3):638-45.
    51. Li H, Ruan XZ, Powis SH,et al. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells:evidence for a PPAR-gamma-dependent mechanism[J]. Kidney Int,2005,67(3):867-74.
    52. Ohga S, Shikata K, Yozai K, et al. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation[J]. Am J Physiol Renal Physiol,2007, 292(4):F1141-50.
    53. Chan WL, Leung JC, Chan LY, et al. BMP-7 protects mesangial cells from injury by polymeric IgA[J]. Kidney Int,2008,74(8):1026-39.
    54. Xiao J, Leung JC, Chan LY, et al. Protective effect of peroxisome proliferator-activated receptor-gamma agonists on activated renal proximal tubular epithelial cells in IgAnephropathy[J]. Nephrol Dial Transplant,2009,24(7):2067-77.
    55. Xiao J, Leung JC, Chan LY, et al. Crosstalk between peroxisome proliferator-
    activated receptor-gamma and angiotensin II in renal tubular epithelial cells in IgA nephropathy[J]. Clin Immunol,2009,132(2):266-76.
    56. Itoh T, Murota I, Yoshikai K, et al. Synthesis of docosahexaenoic acid derivatives designed as novel PPARgamma agonists and antidiabetic agents [J]. Bioorg Med Chem,2006,14(1):98-108.
    57. Novak TE, Babcock TA, Jho DH, et al. NF-kappa B inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription[J].Am J Physiol Lung Cell Mol Physiol,2003,284(1):L84-L89.
    58. Zhao Y, Joshi-Barve S, Barve S, et al. Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation[J]. J Am Coll Nutr,2004,23(1):71-78.
    59. Nohe B, Ruoff H, Johannes T, et al. A fish oil emulsion used for parenteral nutrition attenuates monocyte-endothelial interactions under flow[J]. Shock,2002, 18(3):217-222.
    60. Mayer K, Merfels M, Muhly-Reinholz M, et al. Omega-3 fatty acids suppress monocyte adhesion to human endothelial cells:role of endothelial PAF generation[J]. Am J Physiol Heart Circ Physiol,2002,283(2):H811-8.
    61. Mayer K, Schmidt R, Muhly-Reinholz M, et al. In vitro mimicry of essential fatty acid deficiency in human endothelial cells by TNFalpha impact of omega-3 versus omega-6 fatty acids[J]. J Lipid Res,2002,43(6):944-951.
    62. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines[J]. Nature,1998,391(6662):82-6.
    63. Prodjosudjadi W, Gerritsma JS, van Es LA, et al. Monocyte chemoattractant protein-1 in normal and diseased human kidneys:an immunohistochemical analysis[J]. Clin Nephrol,1995,44(3):148-55.
    64.张新萍.MCP-1及其受体CCR2在肾脏疾病中的作用[J].国外医学泌尿系统分册,2004,24(4):499-502.
    65. Wang SN, LaPage J, Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy[J]. Kidney Int, 2000,57(3):1002-14.
    66. Viedt C, Dechend R, Fei J, et al. MCP-1 induces inflammatory activation of human tubular epithelial cells:involvement of the transcription factors,nuclear factor-KB and activating protein-1[J].J Am Soc Nephrol,2002,13(6):1534-1547.
    67. Viedt C, Vogel J, Athanasiou T, et al. Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-KB and activator protein-1[J].Arterioscler Thromb Vasc Biol,2002,22(5-Dechend R):914-920.
    68.Wada T, YokoyamaH, Furuichi K, et al. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1) [J]. FASEB J,1996,10(12):1418-1425.
    69. Wang Y, Chen J, Chen L, et al. Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein[J]. J Am Soc Nephrol, 1997,8(10):1537-1545.
    70. Marta R, Carmen B, Miguel A, et al. Angiotensin II participates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-κB activation and monocyte chemoattractant protein-1 synthesis[J].J.Immunol,1998,161(1):430-439.
    71. Sun Y, Yuan S, Xu X. Expression of MCP-1 in renal tissues of patients with IgA nephropathy[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2009,34(10):1023-8.
    72. Phillips A.The role of proximal tubular cells in interstitial fibrosis:understanding TGF-betal[J].Chang Gung Med J.2007,30(1):2-6.
    73.董德长.实用肾脏病学[M].上海:上海科学技术出版社,1999.409-451.
    74. Ihn H.Pathogenesis of fibrosis:role of TGF-beta and CTGF[J]. Current Opin Rheumatol.2002,14(6):681-685.
    75. Yamamoto T, Noble NA, Cohen AH, et al. Expression of transforming growth factor-beta isoforms in human glomerular diseases[J]. Kidney Int,1996, 49(2):461-9.
    76. Chan W, Krieg RJ Jr, Norkus EP, et al. alpha-Tocopherol reduces proteinuria, oxidative stress, and expression of transforming growth factor beta 1 in IgA nephropathy in the rat[J]. Mol Genet Metab,1998,63(3):224-9.
    77. Taniguchi Y, Yorioka N, Masaki T, et al. Localization of transforming growth
    factors betal and beta2 and epidermal growth factor in IgAnephropathy[J]. Scand J Urol Nephrol,1999,33(4):243-7.
    78. Haramaki R, Tamaki K, Fujisawa M, et al. Steroid therapy and urinary transforming growth factor-beta 1 in IgA nephropathy[J]. Am J Kidney Dis,2001, 38(6):1191-8.
    79. Shin GT, Kim SJ, Ma KA, et al. ACE inhibitors attenuate expression of renal transforming growth factor-betal in humans[J]. Am J Kidney Dis,2000, 36(5):894-902.
    80. Oyama A, Muso E, Ono T, et al. Up-regulated TGF-beta mRNA expression in splenic T cells of high IgA-prone mice:a murine model of IgA nephropathy with glomerulosclerosis[J]. Nephron,2001,88(4):368-75.
    81. Wu W, Jiang XY, Zhang QL, et al. Expression and significance of TGF-beta1/ Smad signaling pathway in children with IgA nephropathy [J]. Word J Pediatr,2009, 5(3):211-5.
    82. Zhang X, Wang JM, Gong WH, et al. Differential regulation of chemokine gene expression by 15-deoxy-delta 12,14 prostaglandin J2[J]. J Immunol,2001, 166(12):7104-7111.
    83. Yin R, Huang H, Zhang J, et al. Dietary n-3 fatty acids attenuate cardiac allograft vasculopathy via activating peroxisome proliferator-activated receptor-gamma[J]. Pediatr Transplant,2008,12(5):550-556.
    84. Thienprasert A, Samuhaseneetoo S, Popplestone K, et al. Fish oil n-3 polyunsaturated fatty acids selectively affect plasma cytokines and decrease illness in Thai schoolchildren:a randomized, double-blind, placebo-controlled intervention trial[J]. J Pediatr,2009,154(3):391-395.
    85. Gercek A, Yildirim O, Konya D, et al. Effects of parenteral fish-oil emulsion (Omegaven) on cutaneous wound healing in rats treated with dexamethasone[J]. JPEN J Parenter Enteral Nutr,2007,31(3):161-166.
    86.Shimojo N, Jesmin S, Zaedi S, et al. Eicosapentaenoic acid prevents endothelin-1-induced cardiomyocyte hypertrophy in vitro through the suppression of TGF-beta 1 and phosphorylated JNK[J]. Am J Physiol Heart Circ Physiol,2006, 291(2):H835-845.
    87.Merzouk SA, Saker M, Reguig KB,et al. N-3 polyunsaturated fatty acids modulate in-vitro T cell function in type I diabetic patients[J].Lipids,2008,43(6):485-497.
    88.Weatherill AR, Lee JY, Zhao L, et al. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4[J]. J Immunol,2005,174(9):5390-5397.
    89.Brown SA, Brown CA, Crowell WA, et al. Beneficial ffects. of chronic administration of dietary omega-3 polyunsaturated fatty acids in dogs with renal insufficiency [J]. J Lab Clin Med,1998,131(5):447-55.
    90.Brown SA, Brown CA, Crowell WA, et al. Effects of dietary polyunsaturated fatty acid supplementation in early renal insufficiency in dogs[J].J Lab Clin Med, 2000,135(3):275-86.
    91. Branten AJ, Klasen IS, Wetzels JF. Short-term effects of fish oil treatment on urinary excretion of high-and low-molecular weight proteins in patients with IgA nephropathy[J].Clin Nephrol,2002,58(4):267-74.
    [1]Razzaque MS, Taguchi T. Cellular and molecular events leading to renal tubulointerstitial fibrosis. Med Electron Miscrosc,2002,35(2):68-80.
    [2]Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol,2007,292(3):905-11.
    [3]Duarte AS, Pereira AO, Cabrita AM, et al. The characterisation of the collagenolytic activity of cardosin a demonstrates its potential application for extracellular matrix degradative processes. Curr Drug Discov Technol,2005, 2(1):37-44.
    [4]Ohtake Y, Tojo H, Seiki M. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci,2006, 119(Pt18):3822-32.
    [5]Gomez DE, Alonso DF, Yoshiji H, et al. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol,1997,74(2):111-22.
    [6]Ishiguro N, Ito T, Oguchi T, et al. Relationships of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover and inflammation as revealed by analyses of synovial fluids from patients with rheumatoid arthritis. Arthritis Rheum,2001,44 (11):2503-11.
    [7]Ogata Y, M iura K, Ohkita A, et al. Imbalance between matrix metalloproteinase 9 and tissue inhibitor of metalloproteinases 1 expression by tumor cells implicated in liver metastasis from colorectal carcinoma. Kurume Med J,2001,48(3):211-8.
    [8]Piedagnel R, Murphy G, Ronco PM, et al. Matrix metalloproteinase 2 (MMP2) and MMP9 are produced by kidney collecting duct principal cells but are differentially regulated by SV40 large-T, arginine vasopressin, and epidermal growth factor. J Biol Chem,1999,274(3):1614-20.
    [9]Ogbureke KU, Fisher LW. Renal expression of SIBLING proteins and their
    partner matrix metalloproteinases (MMPs). Kidney Int,2005,68(1):155-66.
    [10]Tomita M, Koike H, Han GD, et al. Decreased collagen-degrading activity could be a marker of prolonged mesangial matrix expansion. Clin Exp Nephrol,2004, 8(1):17-26.
    [11]Inkinen KA, Soots AP, Krogerus LA, et al. Fibrosis and matrix metalloproteinases in rat renal allografts. Transpl Int,2005,18(5):506-12.
    [12]Suzuki D, Yagame M, Kim Y, et al. Renal in situ hybridization studies of extracellular matrix related molecules in type 1 diabetes mellitus. Nephron,2002, 92(3):564-72.
    [13]Han SY, Jee YH, Han KH, et al. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy. Nephrol Dial Transplant,2006, 21(9):2406-16.
    [14]Thrailkill KM, Bunn RC, Moreau CS, et al. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care,2007,30(9):2321-6.
    [15]Portik-Dobos V, Harris AK, Song W, et al. Endothelin antagonism prevents early EGFR transactivation but not increased matrix metalloproteinase activity in diabetes. Am J Physiol Regul Integr Comp Physiol,2006,290(2):R435-41.
    [16]Tashiro K, Koyanagi I, Ohara I, et al. Levels of urinary matrix metalloproteinase-9 (MMP-9) and renal injuries in patients with type 2 diabetic nephropathy. J Clin Lab Anal,2004,18(3):206-10.
    [17]Rysz J, Banach M, Stolarek RA, et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J Nephrol,2007,20(4):444-52.
    [18]Sherief MH, Low SH, Miura M, et al. Matrix metalloproteinase activity in urine of patients with renal cell carcinoma leads to degradation of extracellular matrix proteins:possible use as a screening assay. J Urol,2003,169(4):1530-4.
    [19]Cho NH, Shim HS, Rha SY, et al. Increased expression of matrix metalloproteinase 9 correlates with poor prognostic variables in renal cell carcinoma. Eur Urol,2003,44(5):560-6.
    [20]Kawata N, Nagane Y, Igarashi T, et al. Strong significant correlation between MMP-9 and systemic symptoms in patients with localized renal cell carcinoma. Urology,2006,68(3):523-7.
    [21]Abdel-Wahed MM, Asaad NY, Aleskandarany M. Expression of matrix metalloproteinase-2 in renal cell carcinoma. J Egypt Natl Canc Inst,2004, 16(3):168-77.
    [22]Bhuvarahamhy V, Kristiansen GO, Johannsen M, et al. In situ gene expression and localization of metalloproteinases MMP1, MMP2, MMP3, MMP9, and their inhibitors TIMP1 and TIMP2 in human renal cell carcinoma. Oncol Rep,2006, 15(5):1379-84.
    [23]Nakamura T, Ushiyama C, Suzuki S, et al. Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am J Nephrol,2000,20(1):32-6.
    [24]Takagi H, Umemoto T. Matrix metalloproteinases synthesized in autosomal dominant polycystic kidney disease play a role in development of a concurrent abdominal aortic aneurysm. Med Hypotheses,2005,64(4):778-81.
    [25]Berthier CC, Wahl PR, Le Hir M, et al. Sirolimus ameliorates the enhanced expression of metalloproteinases in a rat model of autosomal dominant polycystic kidney disease.Nephrol Dial Transplant,2008,23(3):880-9.
    [26]Tomita M, Koike H, Han GD, et al. Decreased collagen-degrading activity could be a marker of prolonged mesangial matrix expansion. Clin Exp Nephrol,2004, 8(1):17-26.
    [27]Bolbrinker J, Markovic S, Wehland M, et al. Expression and response to angiotensin-converting enzyme inhibition of matrix metalloproteinases 2 and 9 in renal glomerular damage in young transgenic rats with renin-dependent hypertension. J Pharmacol Exp Ther,2006,316(1):8-16.
    [28]Nishida M, Okumura Y, Ozawa S, et al. MMP-2 inhibition reduces renal macrophage infiltration with increased fibrosis in UUO. Biochem Biophys Res Commun,2007,354 (1):133-9.
    [29]Endo T, Nakabayashi K, Sekiuchi M, et al. Matrix metalloproteinase-2, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in the peripheral blood of patients with various glomerular diseases and their implication in pathogenetic lesions:study based on an enzyme-linked assay and immunohistochemical staining. Clin Exp Nephrol,2006,10(4):253-61.
    [30]Bauvois B, Mothu N, Nguyen J, et al. Specific changes in plasma concentrations of matrix metalloproteinase-2 and-9, TIMP-1 and TGF-betal in patients with distinct types of primary glomerulonephritis. Nephrol Dial Transplant,2007, 22(4):1115-22.
    [31]Zhang ZG, Liu XG, Chen GP, et al. Significance of MMP-2 and TIMP-2 mRNA expressions on glomerular cells in the development of glomerulosclerosis. Chin Med Sci J,2004,19(2):84-8.
    [32]Tveita AA, Rekvig OP, Zykova SN. Increased glomerular matrix metalloproteinase activity in murine lupus nephritis. Kidney Int,2008, 74(9):1150-8.
    [33]Jiang Z, Sui T, Wang B. Relationships between MMP-2, MMP-9, TIMP-1 and TIMP-2 levels and their pathogenesis in patients with lupus nephritis. Rheumatol Int,2009.
    [34]Wornle M, Roeder M, Sauter M, et al. Role of matrix metalloproteinases in viral-associated glomerulonephritis. Nephrol Dial Transplant,2009,24(4): 1113-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700