TP2铜管退火过程组织演变的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空调、冰箱及制冷行业的迅猛发展,铜管需求量逐年递增,对铜管质量的要求也越来越高,不仅要求铜管细径化、薄壁化、高效传热、高清洁度,而且对铜管的微观组织与力学性能也提出严格的技术标准。在铜管生产中,退火处理控制着铜管产品的微观组织及其力学性能,对其进行研究具有重要的生产指导意义。
     本文以TP2铜管退火过程为研究对象,结合传热学理论,建立了TP2铜盘管Junker炉退火过程的传热模型,利用有限元软件MSC.Marc对于P2铜盘管的温度场进行计算机模拟,确定了影响铜盘管温度场分布的主要因素。基于物理冶金学理论,通过铜管退火实验建立了退火组织演变的数学模型,利用有限元软件MSC.Marc强大的二次开发功能编制了退火组织演变的子程序,对内螺纹管及铜盘管退火过程中的组织演变进行数值模拟,分析了退火王艺参数对铜管及铜盘管组织演变的影响。
     在模拟分析中,得出了铜盘管温度场、再结晶体积分数、晶粒尺寸、及残余应变的分布规律。退火过程中,铜盘管温度场分布是不均匀的,出现表面“热点”和中心“冷点”,在退火时间上,“冷点”比“热点”有一段时间的滞后。对流换热系数和铜盘管的等效热导率是影响铜盘管温度场分布不均的主要因素。温度场分布不均导致铜盘管各部分组织演变不同步,芯部铜管温度较低,再结晶进行不彻底,退火后残余应力未被完全消除,最终晶粒尺寸较小。残余应力的存在和晶粒尺寸的差异导致铜盘管各部分力学性能不一致,生产中可以利用“热点”与“冷点”的温差来选择合适的冷却时机,使铜盘管各部分的组织和力学性能趋于均匀。
With the rapid development of the air-conditioners, refrigerators and the refrigerating industry, the output of copper robe requirement is increasing year after year. The quality requirement is also more and more high. Not only the minimized diameter, thin wall and high cleanliness are required, but also a strict technical criterion of the microstructure and mechanical property is proposed. As the microstructure and mechanical property of copper tube products are controlled by the annealing process in production, it has an important guiding meaning to study the annealing process.
     In this paper, the annealing process of TP2 copper tube is investigated. Combined with the theory of heat transfer, the heat transfer model of copper tube coil during annealing in Junker furnace is established. The temperature field of copper tube coil is simulated by using the FEA software MSC.Marc. Main factors that influence the temperature distribution of copper tube coil are analyzed. Based on the theory of physical metallurgy, the mathematical model of the annealing microstructure evolution is established by the annealing experiment of copper tube. The subroutine of annealing microstructure evolution is compiled by using the strong secondary development function of the FEA software MSC.Marc. The annealing microstmcture evolution of the inner groove copper tube is simulated. The influence of annealing process parameters on microstructure evolution of the copper tube is analyzed.
     Using simulation analyzing, distribution of temperature, recrystallization volume fraction, grain size and residual strain are obtained distinctly. The temperature distribution of copper tube coil is not uniform, surface hot point and inner cold point appear during annealing. The cold point lags some time than the hot point in annealing time. Main factors that influence the temperature distribution of copper tube coil are convection heat transfer coefficient and equivalent conductivity. The non-uniform temperature distribution results in microstructure evolution asynchronous. Due to lower temperature of the inner tubes, recrystallization of the inner tubes is incomplete, the residual stress is removed incompletely and the final grain size is smaller after annealing, Existence of residual stress and difference of grain size result in non-uniform mechanical property of copper tube coil. The appropriate cooling time is selected by using the temperature difference of hot point and cold point in production, which can make the microstructure and mechanical property of copper tube coil tend to be uniform.
引文
[1] 王可定.计算机模拟及其应用.南京:东南大学出版社.1997:1-7.
    [2] T. Senuma, M. Suehiro, H. Yada. Mathematical models for predicting microstructural evolution and mechanical properties of hot strips. ISIJ International, 1992, 32(3): 423-432.
    [3] C. M. Sellars, J. A. Whiteman. Recrystallization and grain growth in hot rolling. Metall Science, 1979 (3): 187-194.
    [4] C. M. Sellars. Modeling microstructural development during hot rolling. Material Science and Technology, 1990, 16 (11): 1072-1081.
    [5] H. Yada, T. Senuma. Resistance to hot deformation of steel. Journal of Japan Society of Technology Plasticity, 1986 (27): 34-44.
    [6] Yong-soon Jang. Application of the finite element method to predict microstructure evolution in the hot forging of steel. Journal of Materials Processing Technology, 2000, 101: 85-94.
    [7] J. C. Herman, B. Donnay, A. Schmitz, et al. Computer assisted modeling of metallurgical aspects of hot deformation and transformation of steels(Phase2). European Commission EUR 18790, Luxembourg, 1999.
    [8] P. C. Campbell, E. B. Hawbolt, J. K. Brimacombe. Microstructure engineering applied to the controlled cooling of steel wire rod: Part Ⅱ Microstructural evolution and mechanical properties correlations. Metallurgical Transaction A, Vol. 22A, November: 1991.
    [9] J. H. Beynon, C. M. Sellars. Modeling microstructure and its effects during multipass hot roling. ISIJ International, 1992, 32: 359-367.
    [10] T. Gladman. The physical metallurgy of microalloyed steels. The Institute of Materials, London, 1997.
    [11] 王碧文,陈连英.中国铜加工业技术创新——兼论中国潜流式连铸技术及产业化.中国铜加工技术创新文集.2006:6-18.
    [12] 王碧文.我国精密铜管加工技术的重大进展.有色金属工业.2005(9):64-65.
    [13] 潘家柱.在中国国际精密铜管技术年会上的致词.有色金属工业.2003(10):11-12.
    [14] 王碧文.中国铜加工业技术现状及发展.世界有色金属.2005(7):16-20.
    [15] 郭照相.从高新张铜的崛起看我国铜管业的方向.有色金属工业.2005(10):40-43.
    [16] K. J. Irvine, F. B. Pickering. ISIJ International, 1957, Vol. 187: 292.
    [17] T. Siwecki. Modeling of microstructure evolution during recrystallization controlled rolling. ISIJ International, 1992, 32 (3): 368-376.
    [18] M. Pietrzyk, C. Roucoules. P. H. Hodgson. Modeling the thermomechanical and microstructural evolution during rolling of a Nb HSIA steel. ISIJ International, 1995, 35 (5): 531-541.
    [19] D. J. Srolovitz, M. P. Anderson, G. S. Grest, et al. Scripta Metall., 1983, 17:241-246.
    [20] M. P. Anderson, D. J. Srolovitz, G. S. Grest, et al. Computer simulation of grain growth I. kinetics. Acta Metall, 1984, 32:783-791.
    
    [21] M. P. Anderson, D. J. Srolovitz, G. S. Grest, et al. Computer simulation of grain growth II. Grain size distribution, topology and local dynamics. Acta Metall, 1984,32:793-802.
    [22] M. P. Anderson, D.J. Srolovitz, G.S. Grest, et al. Computer simulation of grain growth III. Influence of a particle dispersion. Acta Metall, 1984, 32:1429-1438.
    
    [23] D. J. Srolovitz, G.S. Grest, M.P. Anderson. Computer simulation of grain growth IV. the anisotropic grain boundary energy. Acta Metall, 1985, 33:509-520.
    
    [24] D. J. Srolovitz, G. S. Grest, M. P. Anderson. Computer simulation of recrystallization I. Homogeneous nucleation and grain growth. Acta Metall., 1986, 34:1833-1845.
    
    [25] B. Radhakrishnan, T. Zacharia. Simulation of curvature driven grain growth by using a modified Monte Carlo algorithm. Metall. Mater. Trans. A,1995, 26 (A):167-180.
    
    [26] R. Kopp, R. Karnhausen. M.M. Souza. Numerical simulation method for designing thermomechanical treatment, Illustrated by bar rolling scand. Journal of Metallurgy, 1991, 20:351-360.
    
    [27] S. P. Timothy, H. L Yiu, J.M. Fine, et al. Mater Sci. Technology, 1991, 7:255-261.
    
    [28] J. Hirsch. Modeling of microstructures and properties for industrial sheet production. Lecture held at the department of materials and engineering. CSUT, 1999.
    
    [29] G. S. Shen, S.L. Semiatin, R. Shivpuri. Modeling microstructural development development during the forging of Waspaloy. Metallurgical and Materials Transactions, 1995, 26A:1795-1803.
    
    [30] Y. Satio. Modeling of microstructural evolution in thermomechanical processing of structural steels. Materials Science and Engineering, 1997, A223:134-145.
    
    [31] S. C. Medeiros, Y.V. R. K. Prasad, W.G. Frazier, et al. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Materials Science and Engineering, 2000, A293:198-207.
    
    [32] S. G. Xu, Q. X. Cao. Numerical simulation of the microstructure in the ring rolling of hot steel. Journal of Materials Processing Technology, 1994, 43:221-235.
    
    [23] T. Ishikawa. Modeling the microstructural evolution and mechanical properties of forged parts, Casting, Forging and Heat Treatment, 1995:29-35 (in Japanese).
    
    [34] W. T. Kwak, K. J. Lee, O. J. Kwon, et al. Prediction of recrystallization behaviors in hot forging by the FEM. J. Korean Soc. Technol. Plasticity, 1996, 5:305-319 (in Korean).
    
    [35] M. Rappaz, J. L. Desbiollles, G. A. Grandin. Modeling of solidification microstructures. Materials Science Forum, 2000 (329-330):389-396.
    
    [36] V. Marx, F.R. Reher, G. Gottstein. Simulation of primary recrystallization using a modified three dimensional cellular automation. Acta Materialia,1999, 47 (4):1219-1230.
    [37] VAIQ Strip, VOEST-ALPINE Industrieanlagenbau Gmbh, Automation Department, Linz, Austria.
    [38] J.Andofer,王建伟译,周积智校.《冶金工业技术新进展国际会议论文集》,德国,1999:133.
    [39] Wung Yong CHOO, Chang Sun LEE, Se Don CHOO. Development of quality prediction and monitoring system for plate production. European Rolling Conference, Vasteras, Sweden, May 24-26, 2000.
    [40] A. J. Troesdale, J. P. Tunstall, K. Randerson, et al. British Steel Plc, Modeling of Metal Rolling Processes3, 1999: 12-21.
    [41] H. U. Loffler, R. Doll. Siemens Microstructure: Commerical application of microstructure modeling in hot strip mills, Recrystallization and Grain Growth Proceedings of the First Joint International Conference Eds. G. Gottstein and D. A. Molodov, Spring-Veriag, 2001.
    [42] 王国栋,刘振宇.高强度低合金钢的控制轧制和控制冷却.北京:冶金工业出版社,1992.
    [43] 许思广,曹起镶.金属成形中晶粒度变化的计算机模拟.清华大学学报.1994,35:61-68.
    [44] L. Wang, Q. Cao, Z. Liu. Numerical simulation and experimental verification of microstructure evolution in a 3-dimensional hot upsetting process. Journal of Materials Processing Technology, 1996, 58 (2-3): 331-336.
    [45] 陈惠琴,刘建生,郭会光.Mn18Cr18N钢热成形晶粒变化的模拟研究.金属学报,1999,35:53-56.
    [46] 窦晓峰,鹿守理,赵辉.Q235低碳钢静态再结晶模型的建立.北京科技大学学报,1999,21(1):20-22.
    [47] 彭大暑,张辉,杨立斌,等.铝合金热轧过程中显微组织演变的模拟研究.材料导报,2000,14(12):9-11.
    [48] 孙剑雷,白宏哲,张剑平.基于神经网络的微合金钢热轧奥氏体晶粒尺寸预报模型.哈尔滨工业大学学报,2002,34(1):40-44.
    [49] 熊爱明,薛善坤,李淼泉.TC4钛合金高温变形时微观组织变化的计算.塑性工程学报,2002,9(1):14-16.
    [50] 姜寿文,赵国群,关小军,等.冷轧薄钢板退火过程组织演变的Monte Carlo模拟.钢铁研究学报,2002,14(5):53-57.
    [51] 佟铭明,莫春立,李殿中,等.用Monte Carlo法模拟纯铜的静态再结晶.材料研究学报,2002,16(5):485-489.
    [52] 许庆彦,柳百成.采用Cellular Automation法模拟铝合金的微观组织.中国机械工程,2001,12(3):328-331.
    [53] 詹志东.带钢卷取后的传热、组织模拟与实验验证.中国科学院金属研究所硕士学位论文,2003.
    [54] 曲周德.板材热精轧微观组织数值模拟及力学性能预报.中国科学院金属研究所博士学位论文,2005.
    [55] 曲锦波.HSLA钢板热轧组织性能控制及预测模型.东北大学博士学位论文,1998.
    [56] 赵辉.低碳钢轧后显微组织变化的计算机模拟与性能预测.北京科技大学博士学位论文,1998.
    [57] 李巍.铜合金冷凝管光亮退火影响因素的初步研究.上海冶金设计,1992,3:28-32.
    [58] 廖南练,张小青,周志平.高清洁度铜管退火内吹扫工艺研究.世界有色金属,2002,5:46-48.
    [59] 朱茂祥.在井式炉上通过退火工序控制版硬态铜管的工艺探讨.铜加工,2004,1:21-23.
    [60] 刘占海,盖洪涛.在线连续感应退火技术在内螺纹铜管生产中的应用.中国铜加工技术创新文集,2006:70-75.
    [61] 李耀群,易茵菲.现代铜盘管生产技术.北京:冶金工业出版社.2005.
    [62] Hansjorg Hoppe.用于铜加工的光亮退火炉.中国铜加工技术创新文集.2006:489-498.
    [63] 杨世铭,陶文铨,传热学.第3版.北京:高等教育出版社.1998.
    [64] 毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社.1994.
    [65] S.S.葛列里克著,仝健民译.金属和合金的再结晶.北京:机械工业出版社.1985.
    [66] 胡赓祥,蔡珣.材料科学基础.上海:上海交通大学出版社.2000.
    [67] 俞铭华,吴剑国,王林.有限元法与C程序设计.第1版.北京:科学出版社.1998.
    [68] 陈火红,于军泉,席源山.MSC.Marc/Mentat2003基础与应用实例.北京:科学出版社.2004.
    [69] 陈火红.Marc有限元实例分析教程.北京:机械工业出版社.2002.
    [70] A. R. Perrin, R. I. L. Guthrie, B. C. Stonehill. The process technology of batch annealing. Iron and Steel Making, 1988 (10): 27-33.
    [71] 杨建平,祁卫东,陈光,等.退火钢卷辐射换热及对流换热的讨论.安徽工业大学学报,2004,21(4):273-277.
    [72] Frank Kreith, Mark S. Bohn. Principles of heat transfer. Happer & Row, Publishers, New York, 1973: 670.
    [73] 田荣璋,王祝堂.铜合金及其加工手册.中南大学出版社,2002.
    [74] P. D. Hodgson, R. K. Gibbs, Mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels, ISIJ International, 1992, 32 (12): 1329-1338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700