GFAP及hTERT双启动子靶向性表达hNIS基因引导放射性碘治疗胶质瘤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的放射性碘治疗甲状腺癌是临床常用方法。非甲状腺来源肿瘤通过转染hNIS基因也能摄取碘,端粒酶(human telomerase reverse transcriptase, hTERT)和神经胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)启动子都是肿瘤特异性启动子,对于靶向性治疗胶质瘤有潜在的研究价值。
     方法先扩增GFAP、hTERT启动子等基因,并保存于相应质粒中。并测定各启动子的启动效率,然后构建了hTERT启动子引导腺病毒早起蛋白(early region1A, E1A)基因同时GFAP启动子引导钠碘转运体(human sodium iodide symporter, hNIS)基因的条件复制腺病毒。胶质瘤细胞被腺病毒转染后,利用病毒空斑形成实验检测条件复制腺病毒的复制能力。进行Western blots实验,1251内流及外流实验并进行1311细胞克隆实验,来评估细胞摄碘情况。最后,在细胞实验的基础上,构建胶质瘤荷瘤裸鼠模型,进行动物体内放射性碘治疗实验。结果成功扩增了相应基因并保存。实验证明GFAP启动子启动效率能达到SV40启动子的60%左右,hTERT启动子启动效率能达到SV40启动子的43%左右。成功构建了条件复制腺病毒Ad-Tp-E1A-Gp-NIS,并感染胶质瘤细胞。Western blot实验显示43、70、49、120、70、110kDa的条带,分别对应着β-acting、GFAP、 hTERT、hNIS和hTPO蛋白。病毒复制实验证明了Ad-Tp-E1A-Gp-NIS的有效性,hTERT启动子能成功的限制腺病毒在肿瘤细胞内的复制。摄1251实验证明GFAP启动子能成功引导hNIS基因表达并摄取碘。细胞克隆实验中显示感染Ad-Tp-E1A-Gp-NIS后肿瘤细胞能成功的被1311杀死。成功构建了U87荷瘤裸鼠模型了,感染Ad-Tp-E1A-Gp-NIS并进行放射性碘治疗后裸鼠生存周期延长,肿瘤生长被抑制,核素显像显示荷瘤裸鼠肿瘤部位能靶向性摄取放射性核素。
     结论实验证明感染条件复制腺病毒Ad-Tp-E1A-Gp-NIS后,细胞实验及动物实验均证明,胶质瘤细胞系表现出肿瘤特异性的碘摄取,并引导针对胶质瘤的放射性碘治疗。
Objective Radioiodine is a routine therapy for differentiated thyroid cancers. The non-thyroid cancers can be treated with radioiodine following transfection with the human sodium iodide symporter (hNIS) gene. The human telomerase reverse transcriptase (hTERT) promoter and the glial fibrillary acidic protein(GFAP) promoter are the effective tumor-specific promoter of gene expression and thus may be useful in targeted gene therapy of Malignant glioma.
     Methods The hTERT promoter, the adenoviral early region1A (E1A),the GFAP promoter and the NIS gene were amplified by PCR or DNA replication. Detected the transcriptional activity of the hTERT and GFAP gene promoter. The GFAP promoter and hNIS gene segments,the hTERT promoter and E1A gene were ligated, respectively,and package the recombinant adenovirus Ad-Tp-E1A-Gp-NIS. The U87and U251glioma cells was tranfected by Ad-Tp-ElA-Gp-NIS, then the selective replication ability of the conditionally replicative adenovirus was evaluated by plaque forming assay, and proceeded western blots,125I uptake and exflux, clonogenecity following131I treatment.At last, on the basis of the cells-level experimental data, we had established U87tumor xenografts in nude mice and proceeded radioiodine therapy in U87tumors nude mice.
     Results Genes had cloned into plasmids. The activity of GFAP promoter and hTERT promoter had reached to as much as about60%and43%of SV40promoter,respectively. The recombined adenovirus Ad-Tp-E1A-Gp-NIS was constructed successfully and tranfected the glioma cells. The western blots revealed bands of approximately43,70,120,49,110kDa, consistent with the β-acting, GFAP, hTERT,hNIS and hTPO proteins. The adenovirus selective-eplication experiment was proved the efficiency of Ad-Tp-E1A-Gp-NIS and the hTERT promoter could controled the eplication of Ad-Tp-E1A-Gp-NIS in the cell-lines. After transfection with the hNIS gene, the cells could intake125I-iodide. In clonogenic assay, transfected cells were killed, compared to control cells (transfected with Ad-CMV-EGFP) after incubated with131I. The U87tumor nude mice was evaluated. After treatment with131I and injection of Ad-Tp-E1A-Gp-NIS, the survival period of U87tumor loading nude mice were prolonged and the growth of tumor in mice was inhibited. Rude mice harboring xenografts after injection of Ad-Tp-E1A-Gp-NIS, could taken the99mTc.
     Conclusions The experiments demonstrated that after transfected replication-selective adeno viruses Ad-Tp-E1A-Gp-NIS, the therapy of131I was achieved effectively in malignant glioma cell lines following induction of tumor-specific iodide uptake activity by GFAP promoters directed hNIS gene expression in vitro and in vivo.
引文
[1]. Zawrocki A, Biernat W. Epidermal growth factor receptor in glioblastoma[J]. Folia Neuropathol,2005,43 (3):123-132.
    [2]. Chen L, Altmann A, Mier W et al. Radioiodine therapy of hepatoma using targeted transfer of the human sodium/iodide symporter gene[J]. J Nucl Med, 2006,47 (5):854-862.
    [3]. Boland A, Magnon C, Filetti S et al. Transposition of the thyroid iodide uptake and organification system in nonthyroid tumor cells by adenoviral vector-mediated gene transfers[J]. Thyroid,2002,12 (1):19-26.
    [4]. Li W, Tan J, Wang P et al. Cotransfected sodium iodide symporter and human tyroperoxidase genes following human telomerase reverse transcriptase promoter for targeted radioiodine therapy of malignant glioma cells[J]. Cancer Biother Radiopharm,2011,26 (4):443-451.
    [5]. Gu J, Kagawa S, Takakura M et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers[J]. Cancer Res 2000,60 (19):5359-5364.
    [6]. Brenner M, Kisseberth WC, Su Y et al. GFAP promoter directs astrocyte-specific expression in transgenic mice[J]. J Neurosci,1994,14 (3 Pt 1):1030-1037.
    [7]. Nolte C, Matyash M, Pivneva T et al. GFAP promoter-controlled EGFP-expressing transgenic mice:a tool to visualize astrocytes and astrogliosis in living brain tissue[J]. Glia,2001,33 (1):72-86.
    [8]. Besnard F, Brenner M, Nakatani Y et al. Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein[J], J Biol Chem,1991,266 (28):18877-18883.
    [9]. Rowe WP, Huebner RJ, Gilmore LK et al. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture[J]. Proc Soc Exp Biol Med,1953,84 (3):570-573.
    [10]. Boldrini L, Pistolesi S, Gisfredi S et al. Telomerase activity and hTERT mRNA expression in glial tumors[J]. Int J Oncol,2006,28 (6):1555-1560.
    [11]. Bilsland AE, Merron A, Vassaux G et al. Modulation of telomerase promoter tumor selectivity in the context of oncolytic adenoviruses[J]. Cancer Res, 2007,67 (3):1299-1307.
    [12]. Haeussler DJ, Evangelista AM, Burgoyne JR. et al. Checkpoints in adenoviral production:cross-contamination and E1A[J]. PLoS One,2011,6 (8):e23160.
    [13]. 卢圣栋:现代分子生物实验技术hL中国:高等教育出版社;2007.
    [14]. Song JS. Activity of the human telomerase catalytic subunit (hTERT) gene promoter could be increased by the SV40 enhancer[J]. Biosci Biotechnol Biochem,2004,68 (8):1634-1639.
    [15]. Ma J, Li M, Mei L et al. Double suicide genes driven by kinase domain insert containing receptor promoter selectively kill human lung cancer cells[J]. Genet Vaccines Ther,2011,9:6.
    [16]. Kyo S, Takakura M, Taira T et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT)[J]. Nucleic Acids Res,2000,28 (3):669-677.
    [17]. Oh S, Song YH, Yim J et al. Identification of Mad as a repressor of the human telomerase (hTERT) gene[J]. Oncogene,2000,19 (11):1485-1490.
    [18]. Kyo S, Takakura M, Kanaya T et al. Estrogen activates telomerase[J]. Cancer Res,1999,59 (23):5917-5921.
    [19]. Ikeda N, Uemura H, Ishiguro H et al. Combination treatment with lalpha,25-dihydroxyvitamin D3 and 9-cis-retinoic acid directly inhibits human telomerase reverse transcriptase transcription in prostate cancer cells[J]. Mol Cancer Ther,2003,2 (8):739-746.
    [20]. Huang J, Gao J, Lv X et al. Target gene therapy of glioma:overexpression of BAX gene under the control of both tissue-specific promoter and hypoxia-inducible element[J]. Acta Biochim Biophys Sin (Shanghai),2010, 42 (4):274-280.
    [21]. de Leeuw B, Su M, ter Horst M et al. Increased glia-specific transgene expression with glial fibrillary acidic protein promoters containing multiple enhancer elements[J]. J Neurosci Res,2006,83 (5):744-753.
    [22]. Horst M, Brouwer E, Verwijnen S et al. Targeting malignant gliomas with a glial fibrillary acidic protein (GFAP)-selective oncolytic adenovirus[J]. J Gene Med,2007,9 (12):1071-1079.
    [23]. Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-betal to treat liver fibrosis[J]. Pharm Res,2011,28 (4):752-761.
    [24]. Giralt A, Friedman HC, Caneda-Ferron B et al. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease[J]. Gene Ther,2010,17 (10):1294-1308.
    [25]. Wang CY, Li F, Yang Y et al. Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy [J]. Cancer Res,2006,66 (11):5798-5806.
    [26]. Wang CY, Wang S. Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter [J]. Gene Ther,2006,13 (20):1447-1456.
    [27]. Dohan O, Carrasco N. Advances in Na(+)/I(-) symporter (NIS) research in the thyroid and beyond[J]. Mol Cell Endocrinol,2003,213 (1):59-70.
    [28]. Lee YJ, Chung JK, Shin JH et al. In vitro and in vivo properties of a human anaplastic thyroid carcinoma cell line transfected with the sodium iodide symporter gene[J]. Thyroid,2004,14 (11):889-895.
    [29]. Dohan O, De la Vieja A, Paroder V et al. The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance [J]. Endocr Rev,2003, 24 (1):48-77.
    [30]. Haberkorn U, Altmann A, Eisenhut M. Functional genomics and proteomics-the role of nuclear medicine [J]. Eur J Nucl Med Mol Imaging, 2002,29(1):115-132.
    [31]. Wenzel A, Upadhyay G, Schmitt T et al. Iodination of proteins in TPO transfected thyroid cancer cells is independent of NIS.[J]. Mol Cell Endocrinol,2003,213(1):99-108.
    [32]. Huang M, Batra R, Kogai T et al. Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer.[J]. Cancer Gene Ther 2001,8 (8):612-618.
    [33]. Xiong AS, Yao QH, Peng RH et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences[J]. Nucleic Acids Res,2004,32 (12):e98.
    [34]. Wu G, Wolf JB, Ibrahim AF et al. Simplified gene synthesis:a one-step approach to PCR-based gene construction[J]. J Biotechnol,2006,124 (3):496-503.
    [35]. Ying SY. Complementary DNA libraries:an overview[J]. Mol Biotechnol, 2004,27 (3):245-252.
    [36]. van Gaal EV, Oosting RS, van Eijk R et al. DNA nuclear targeting sequences for non-viral gene delivery[J]. Pharm Res,2011,28 (7):1707-1722.
    [37]. Dwyer RM, Bergert ER, O'Connor MK et al. Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice[J]. Gene Ther,2006,13 (1):60-66.
    [38]. Ng P, Cummings DT, Evelegh CM et al. Yeast recombinase FLP functions effectively in human cells for construction of adenovirus vectors[J]. Biotechniques,2000,29 (3):524-526,528.
    [39]. Lieto LD, Borrego F, You CH et al. Human CD94 gene expression:dual promoters differing in responsiveness to IL-2 or IL-15[J]. J Immunol,2003, 171 (10):5277-5286.
    [40]. Chen QY, Jackson N. Human CD1D gene has TATA boxless dual promoters: an SP1-binding element determines the function of the proximal promoter[J]. J Immunol,2004,172 (9):5512-5521.
    [41]. Yu X, Zhan X, D'Costa J et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells[J]. Mol Ther,2003,7 (6):827-838.
    [42]. Li Y, Idamakanti N, Arroyo T et al. Dual promoter-controlled oncolytic adenovirus CG5757 has strong tumor selectivity and significant antitumor efficacy in preclinical models[J]. Clin Cancer Res,2005,11 (24 Pt 1):8845-8855.
    [43]. Ryan PC, Jakubczak JL, Stewart DA et al. Antitumor efficacy and tumor-selective replication with a single intravenous injection of OAS403, an oncolytic adenovirus dependent on two prevalent alterations in human cancer[J]. Cancer Gene Ther,2004,11 (8):555-569.
    [44]. Doloff JC, Jounaidi Y, Waxman DJ. Dual E1A oncolytic adenovirus:targeting tumor heterogeneity with two independent cancer-specific promoter elements, DF3/MUC1 and hTERT[J]. Cancer Gene Ther,2011,18 (3):153-166.
    [45]. Silva AC, Peixoto C, Lucas T et al. Adenovirus vector production and purification[J]. Curr Gene Ther,2010,10 (6):437-455.
    [46]. 李育阳.:基因表达技术.北京:科学出版社;2001.
    [47]. Mitani K, Kubo S. Adenovirus as an integrating vector[J]. Curr Gene Ther, 2002,2(2):135-144.
    [48]. Buchsbaum DJ, Chaudhuri TR, Zinn KR. Radiotargeted gene therapy[J]. J Nucl Med,2005,46 Suppl 1:179S-186S.
    [49]. Mandell RB, Mandell LZ, Link CJ, Jr. Radioisotope concentrator gene therapy using the sodium/iodide symporter gene[J]. Cancer Res,1999,59 (3):661-668.
    [50]. Petrich T, Knapp WH, Potter E. Functional activity of human sodium/iodide symporter in tumor cell lines[J]. Nuklearmedizin,2003,42 (1):15-18.
    [51]. Kogai T, Endo T, Saito T et al. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells[J]. Endocrinology,1997,138(6):2227-2232.
    [52]. Boland A, Ricard M, Opolon P et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy.[J]. Cancer Res,2000 60 (13):3484-3492.
    [53]. Schipper M, Weber A, Behe M et al. Radioiodide treatment after sodium iodide symporter gene transfer is a highly effective therapy in neuroendocrine tumor cells.[J]. Cancer Res,2003,63 (6):1333-1338.
    [54]. Avgeropoulos NG, Batchelor TT. New treatment strategies for malignant gliomas[J]. Oncologist,1999,4 (3):209-224.
    [55]. Weller M. Novel diagnostic and therapeutic approaches to malignant glioma[J]. Swiss Med Wkly,141:w13210.
    [56]. Schneider T, Mawrin C, Scherlach C et al. Gliomas in adults[J]. Dtsch Arztebl Int,2010,107 (45):799-807; quiz 808.
    [57]. Castro MG, Candolfi M, Kroeger K et al. Gene therapy and targeted toxins for glioma[J]. Curr Gene Ther,2011,11 (3):155-180.
    [58]. Grossman SA, Ye X, Piantadosi S et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States[J]. Clin Cancer Res,2010,16 (8):2443-2449.
    [59]. Beltinger C, Fulda S, Kammertoens T et al. Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases[J]. Proc Natl Acad Sci U S A, 1999,96(15):8699-8704.
    [60]. Osborne R. Ark floats gene therapy's boat, for now[J]. Nat Biotechnol,2008, 26 (10):1057-1059.
    [61]. Wykosky J, Gibo DM, Stanton C et al. Interleukin-13 receptor alpha 2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy [J]. Clin Cancer Res,2008,14(1):199-208.
    [62]. Han ZQ, Assenberg M, Liu BL et al. Development of a second-generation oncolytic Herpes simplex virus expressing TNFalpha for cancer therapy [J]. J Gene Med,2007,9 (2):99-106.
    [63]. Manuelidis EE, Pond AR. Continuous cultivation of cells arising from human case of glioblastoma multiforme (glioma T.C.178)[J]. Proc Soc Exp Biol Med, 1959,102:693-695.
    [64]. Westermark B, Ponten J, Hugosson R. Determinants for the establishment of permanent tissue culture lines from human gliomas[J]. Acta Pathol Microbiol Scand A,1973,81 (6):791-805.
    [65]. Ponten J, Macintyre EH. Long term culture of normal and neoplastic human glia[J]. Acta Pathol Microbiol Scand,1968,74 (4):465-486.
    [66]. Nakamoto Y, Saga T, Misaki T et al. Establishment and characterization of a breast cancer cell line expressing Na+/I-symporters for radioiodide concentrator gene therapy[J]. J Nucl Med,2000,41 (11):1898-1904.
    [67]. 鄂征:组织培养和分子细胞学技术.北京:北京出版社;1995.
    [68]. Spitzweg C, O'Connor MK, Bergert ER et al. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter[J]. Cancer Res,2000,60 (22):6526-6530.
    [69]. Smit JW, Schroder-van der Elst JP, Karperien M et al. Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma[J]. Exp Clin Endocrinol Diabetes,2001,109 (1):52-55.
    [70]. Flanagan SP. 'Nude', a new hairless gene with pleiotropic effects in the mouse[J]. Genet Res,1966,8 (3):295-309.
    [71]. Pantelouris EM. Absence of thymus in a mouse mutant[J]. Nature,1968,217 (5126):370-371.
    [72]. Ramos-Vara JA. Technical aspects of immunohistochemistry[J]. Vet Pathol, 2005,42 (4):405-426.
    [73]. Montero C. The Antigen-Antibody Reaction in Immunohistochemistry[J]. The Journal of Histochemistry & Cytochemistry,2003,51 (1):1-4.
    [74]. Ramos-Vara JA, Kiupel M, Baszler T et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories[J]. J Vet Diagn Invest,2008,20 (4):393-413.
    [75]. Shi SR, Cote RJ, Taylor CR. Antigen retrieval immunohistochemistry:past, present, and future[J]. J Histochem Cytochem,1997,45 (3):327-343.
    [1]. Nettelbeck DM, Jerome V, Muller R. Gene therapy:designer promoters for tumour targeting[J]. Trends Genet,2000,16 (4):174-181.
    [2]. Matthews QL, Sibley DA, Wu H et al. Genetic incorporation of a herpes simplex virus type 1 thymidine kinase and firefly luciferase fusion into the adenovirus protein IX for functional display on the virion[J]. Mol Imaging, 2006,5 (4):510-519.
    [3]. Choi KY, Chang K, Pickel JM et al. Expression of the metabotropic glutamate receptor 5 (mGluR5) induces melanoma in transgenic mice[J]. Proc Natl Acad Sci U S A,2011,108(37):15219-15224.
    [4]. Beermann F. The tyrosinase related protein-1 (Tyrpl) promoter in transgenic experiments:targeted expression to the retinal pigment epithelium[J]. Cell Mol Biol (Noisy-le-grand),1999,45 (7):961-968.
    [5]. Lai J, Kedda MA, Hinze K et al. PSA/KLK3 AREI promoter polymorphism alters androgen receptor binding and is associated with prostate cancer susceptibility[J]. Carcinogenesis,2007,28 (5):1032-1039.
    [6]. Spitzweg C, Zhang S, Bergert ER et al. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines[J]. Cancer Res,1999,59 (9):2136-2141.
    [7]. Heard JM, Herbomel P, Ott MO et al. Determinants of rat albumin promoter tissue specificity analyzed by an improved transient expression system[J]. Mol Cell Biol,1987,7 (7):2425-2434.
    [8]. Pastore L, Morral N, Zhou H et al. Use of a liver-specific promoter reduces immune response to the transgene in adeno viral vectors [J]. Hum Gene Ther, 1999,10 (11):1773-1781.
    [9]. Lam PY, Sia KC, Khong JH et al. An efficient and safe herpes simplex virus type 1 amplicon vector for transcriptionally targeted therapy of human hepatocellular carcinomas[J]. Mol Ther,2007,15 (6):1129-1136.
    [10]. Tai PW, Fisher-Aylor KI, Himeda CL et al. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer[J]. Skelet Muscle,2011,1:25.
    [11]. Takeshita F, Takase K, Tozuka M et al. Muscle creatine kinase/SV40 hybrid promoter for muscle-targeted long-term transgene expression[J]. Int J Mol Med,2007,19(2):309-315.
    [12]. Luzi P, Zaka M, Rao HZ et al. Generation of transgenic mice expressing insulin-like growth factor-1 under the control of the myelin basic protein promoter:increased myelination and potential for studies on the effects of increased IGF-1 on experimentally and genetically induced demyelination[J]. Neurochem Res,2004,29 (5):881-889.
    [13]. Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-betal to treat liver fibrosis[J]. Pharm Res,2011,28 (4):752-761.
    [14]. Giralt A, Friedman HC, Caneda-Ferron B et al. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease[J]. Gene Ther,2010,17 (10):1294-1308.
    [15]. Huang J, Gao J, Lv X et al. Target gene therapy of glioma:overexpression of BAX gene under the control of both tissue-specific promoter and hypoxia-inducible element[J]. Acta Biochim Biophys Sin (Shanghai),2010, 42 (4):274-280.
    [16]. Radovanovic I, Braun N, Giger OT et al. Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC[J]. J Neurosci,2005, 25 (19):4879-4888.
    [17]. Ma J, Li M, Mei L et al. Double suicide genes driven by kinase domain insert containing receptor promoter selectively kill human lung cancer cells [J]. Genet Vaccines Ther,2011,9:6.
    [18]. Araki M, Araki K, Miyazaki Y et al. E-selectin binding promotes neutrophil activation in vivo in E-selectin transgenic mice[J]. Biochem Biophys Res Commun,1996,224 (3):825-830.
    [19]. Klutz K, Willhauck MJ, Wunderlich N et al. Sodium iodide symporter (NIS)-mediated radionuclide ((131)1, (188)Re) therapy of liver cancer after transcriptionally targeted intratumoral in vivo NIS gene delivery[J]. Hum Gene Ther,2011,22 (11):1403-1412.
    [20]. Cao X, Yang M, Wei RC et al. Cancer targeting Gene-Viro-Therapy of liver carcinoma by dual-regulated oncolytic adenovirus armed with TRAIL gene[J]. Gene Ther,2011,18 (8):765-777.
    [21]. Gao P, Wang R, Shen JJ et al. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells[J]. Cancer Sci, 2008,99(11):2209-2217.
    [22]. Qiu Y, Peng GL, Liu QC et al. Selective killing of lung cancer cells using carcinoembryonic antigen promoter and double suicide genes, thymidine kinase and cytosine deaminase (pCEA-TK/CD)[J]. Cancer Lett,2011,316 (1):31-38.
    [23]. Spitzweg C, Baker CH, Bergert ER et al. Image-guided radioiodide therapy of medullary thyroid cancer after carcinoembryonic antigen promoter-targeted sodium iodide symporter gene expression[J]. Hum Gene Ther,2007,18 (10):916-924.
    [24]. Chiavarina B, Whitaker-Menezes D, Migneco G et al. HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells:Autophagy drives compartment-specific oncogenesis[J]. Cell Cycle,2010,9 (17):3534-3551.
    [25]. Ring CJ, Harris JD, Hurst HC et al. Suicide gene expression induced in tumour cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ERBB2 promoter[J]. Gene Ther,1996,3 (12):1094-1103.
    [26]. Doloff JC, Jounaidi Y, Waxman DJ. Dual E1A oncolytic adenovirus:targeting tumor heterogeneity with two independent cancer-specific promoter elements, DF3/MUC1 and hTERT[J]. Cancer Gene Ther,2011,18 (3):153-166.
    [27]. Trujillo MA, Oneal MJ, Davydova J et al. Construction of an MUC-1 promoter driven, conditionally replicating adenovirus that expresses the sodium iodide symporter for gene therapy of breast cancer[J]. Breast Cancer Res,2009,11 (4):R53.
    [28]. Won YS, Lee SW. Cancer-Specific Induction of Adenoviral E1A Expression by Group I Intron-Based Trans-Splicing RibozymefJ]. J Microbiol Biotechnol, 2012,22(3):431-435.
    [29]. Rajecki M, Sarparanta M, Hakkarainen T et al. SPECT/CT Imaging of hNIS-Expression after Intravenous Delivery of an Oncolytic Adenovirus and I[J]. PLoS One,2012,7 (3):e32871.
    [30]. Matsubara S, Wada Y, Gardner TA et al. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis[J]. Cancer Res,2001,61 (16):6012-6019.
    [31]. Chen J, Yang B, Zhang S et al. Antitumor potential of SLPI promoter controlled recombinant caspase-3 expression in laryngeal carcinoma[J]. Cancer Gene Ther,2012.
    [32]. Maemondo M, Saijo Y, Narumi K et al. Gene therapy with secretory leukoprotease inhibitor promoter-controlled replication-competent adenovirus for non-small cell lung cancer[J]. Cancer Res,2004,64 (13):4611-4620.
    [33]. Barker SD, Coolidge CJ, Kanerva A et al. The secretory leukoprotease inhibitor (SLPI) promoter for ovarian cancer gene therapy[J]. J Gene Med, 2003,5(4):300-310.
    [34]. Derdak Z, Villegas KA, Wands JR. Early growth response-1 transcription factor promotes hepatic fibrosis and steatosis in long-term ethanol-fed Long-Evans rats[J]. Liver Int,2012,32 (5):761-770.
    [35]. Lutterbach B, Sun D, Schuetz J et al. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein[J]. Mol Cell Biol,1998,18 (6):3604-3611.
    [36]. Rojas JJ, Cascallo M, Guedan S et al. A modified E2F-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses[J]. Gene Ther,2009,16 (12):1441-1451.
    [37]. Majem M, Cascallo M, Bayo-Puxan N et al. Control of E1A under an E2F-1 promoter insulated with the myotonic dystrophy locus insulator reduces the toxicity of oncolytic adenovirus Ad-Delta24RGD[J]. Cancer Gene Ther,2006, 13 (7):696-705.
    [38]. Li Y, Idamakanti N, Arroyo T et al. Dual promoter-controlled oncolytic adenovirus CG5757 has strong tumor selectivity and significant antitumor efficacy in preclinical models[J]. Clin Cancer Res,2005,11 (24 Pt 1):8845-8855.
    [39]. Ryan PC, Jakubczak JL, Stewart DA et al. Antitumor efficacy and tumor-selective replication with a single intravenous injection of OAS403, an oncolytic adenovirus dependent on two prevalent alterations in human cancer[J]. Cancer Gene Ther,2004,11(8):555-569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700