hTERT启动子调控hNIS和hTPO基因联合转染胶质瘤细胞介导放射性碘治疗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     基因治疗技术是当前肿瘤研究中的热点,但面临着如何提高治疗基因的疗效和解决其靶向性表达的问题,而放射性碘对分化型甲状腺癌细胞则具有着高效、特异性的杀伤效果,其摄碘和贮碘的分子基础在于细胞膜上存在着人钠碘转运体(hNIS)和人甲状腺过氧化物酶(hTPO)。
     因此,本研究拟构建并应用重组腺病毒作为基因转移载体,将hNIS和hTPO基因联合转染入胶质瘤细胞,评估转染后细胞的摄碘能力,以及放射性碘在细胞内的代谢动力学变化,并进一步评价放射性碘对胶质瘤细胞的杀伤效果。同时在腺病毒载体中引入人端粒酶逆转录酶(hTERT)启动子,通过实验分析其靶向性引导hNIS在胶质瘤细胞中特异性表达的作用。
     方法
     1、使用RT-PCR和荧光定量PCR检测多种肿瘤及正常细胞中的hTERT表达活性;通过PCR及pMD-18T质粒载体对hTERT核心启动子进行扩增和克隆;以pGL3-Basic为载体构建含hTERT启动子和hNIS基因的重组质粒,并通过荧光素酶活性实验检测hTERT启动子在不同细胞中的启动效率
     2、应用Adeasy系统构建含目的基因的重组腺病毒载体,并对病毒进行滴度测定和转染细胞后表达产物的鉴定。
     3、使用重组腺病毒Ad-hTERT-hNIS单独转染,及与Ad-CMV-hTPO联合转染胶质瘤细胞U251和U87,确定最适感染复数;进行摄125Ⅰ实验、125Ⅰ内、外流实验分析放射性碘在胶质瘤细胞内的代谢动力学变化;通过NaC104抑制实验和有机化测定实验验证hNIS和hTPO的作用;并进行克隆形成实验评估放射性131Ⅰ对不同转染组的细胞的杀伤效果。
     结果
     1、RT-PCR的结果显示在H460、U251、U87、ARO及FRO等细胞中均存在hTERT mRNA的表达,只是活性的高低不一;而在正常细胞MRC-5中无表达。荧光定量PCR的结果显示在胶质瘤细胞U251和U87内存在hTERT的高活性表达,与内参基因β-actin对照,其相对含量分别为0.18%和0.12%。
     2、成功构建并鉴定了含3种不同长度hTERT启动子序列(260 bp、456 bp及1453bp)的pMD-18T和pGL3重组质粒,并成功构建并鉴定了含260 bp hTERT启动子及hNIS基因的重组质粒pGL3-hNIS。
     3、荧光素酶活性实验结果显示,在上述肿瘤细胞中,3种hTERT启动子片段均可诱导荧光蛋白的表达,但其启动效率存在差异,其中pGL3-204中的启动子片段(260 bp)在FRO、H460和U251中启动效率最强,可以达到SV40启动子的80%。
     4、构建并纯化了重组腺病毒Ad-CMV-hTPO,空斑形成实验测定其滴度约为1.0×109pfu/ml,感染293细胞后行Western blot结果显示在110 kD处可见阳性反应条带,为表达的hTPO目的蛋白。
     5、摄碘实验结果显示,单独转染组(Ad-hTERT-hNIS)的胶质瘤细胞U251和U87均具有了较强的摄碘能力,分别提高了30.76倍和29.66倍;而联合转染组(Ad-hTERT-hNIS/Ad-CMV-hTPO)的摄碘能力又均有轻度增高,分别为35.55倍和32.88倍。
     6、125Ⅰ的内、外流实验显示单独转染组的胶质瘤细胞能够快速的摄碘,峰值均出现在约40 mmin时;但碘的流出也较迅速,Te约为11-12 min;而联合转染组则可以在一定程度上延缓125Ⅰ的外流,Te约为18-20 mmin。
     7、过氯酸盐抑制实验结果显示,不同浓度的NaC104均可抑制转染后胶质瘤细胞对125Ⅰ的摄取,抑制率约为93.50-94.48%。有机化测定实验结果显示,联合转染组细胞内与蛋白结合的125Ⅰ量高于单独转染组,约为后者的3倍。
     8、克隆形成实验结果显示经131Ⅰ治疗后,联合转染组的克隆形成率降低得最为明显,U251和U87分别降低了11.37和14.52倍;其次为单独转染组,分别降低了5.52和6.05倍(P均<0.01)。
     结论
     1、在胶质瘤U251和U87等多种肿瘤细胞中均存在hTERT不同活性的表达,因此可以应用hTERT启动子引导治疗基因在胶质瘤细胞中的特异性表达。而且hTERT核心启动子具有较高的启动效率,可以替代全长启动子引导hNIS基因表达。
     2、携带hTERT启动子和hNIS基因,hTPO基因的重组质粒及腺病毒载体构建成功,应用Ad-hTERT-hNIS单独转染胶质瘤细胞后可以使其获得较强的摄碘能力,从而能够介导放射性碘杀伤肿瘤细胞。
     3、在单独转染hNIS基因的胶质瘤细胞中碘会快速的外流,与Ad-CMV-hTPO联合转染后可以增加与蛋白结合的碘量,使碘在细胞内的停留时间有所延长,从而提高放射性碘对胶质瘤细胞的杀伤效果。
Background and objectives
     Gene therapy is currently one of the major focuses in cancer research. Yet gene therapy is faced with the problems of how to improve its efficacy and to enhance targeted gene product expressions. Radioiodine therapy on differentiated thyroid cancers (DTC) exhibits high efficiency and specificity. The molecular basis of radioiodine uptake and storage by DTC cells is the cellular membrane expression of human sodium iodide symporter (hNIS) and human thyroid peroxidase (hTPO) in DTC cells.
     Therefore, this study aimed to construct and utilize recombinant adenovirus (as a gene transfer vector), then to transfect hNIS and hTPO genes into glioma cells. And we also intended to assess the iodine uptake abilities of the transfected cells, to investigate the radioiodine metabolism dynamics in the cells, and to further evaluate the anti-tumor activities of radioiodine on the transfected cells. We then planned to introduce human telomerase reverse transcriptase (hTERT) in adenovirus vector, afterwards hNIS expression changes were analyzed in the transfected glioma cells.
     Methods
     1. Using RT-PCR and real-time fluorescent quantitative PCR (FQ-PCR, or qPCR) to detect the expression of hTERT of a variety of tumor cell lines and normal cells. By using PCR and pMD-18T vector to amplify and clone the hTERT core promoter. To construct recombinant plasmid containing the hTERT promoter and hNIS gene with pGL3-Basic vector, and to detect promoting efficiency of hTERT promoter with luciferase activity test.
     2. By using Adeasy System to build recombinant adenovirus vector containing the target genes, and the virus titer and the expression of targeted genes in transfected cells were analyzed.
     3. Using recombinant adenovirus Ad-hTERT-hNIS single transfected and Ad-hTERT-hNIS plus Ad-CMV-hTPO co-transfected U251 and U87 glioma cells to determine the optimal multiplicity of infection (MOI). Metabolism dynamic changes in the glioma cells were tested by 125I uptake,125I influx and efflux experiments. The effectiveness of hNIS and hTPO were tested by NaC104 inhibition experiment and organic measurement experiment. And then clonogenic assay was adopted to determine the anti-tumor activities of 131I on differently transfected cell groups.
     Results
     1. RT-PCR results showed that the expressions of hTERT mRNA existed in H460, U251, U87, ARO and FRO cells, yet their levels of activities were different. But in normal cells of MRC-5 no expression of hTERT mRNA was found. FQ-PCR results showed that in U251 and U87 glioma cells the expressions of hTERT were very high, their relative concentrations were 0.18% and 0.12% compared with the internal reference ofβ-actin.
     2. Successfully constructed and identified plasmids pMD-18T and the pGL3 with 3 different length hTERT promoter sequences (260 bp,456 bp and 1453 bp). And successfully constructed and identified plasmid pGL3-hNIS with 260 bp hTERT promoter and hNIS as well.
     3. Luciferase activity assay showed that, in the above tumor cells, all three kinds of hTERT promoter fragments could induce the expression of fluorescent proteins, but differences existed in their efficiencies. Promoter fragment (260 bp) of pGL3-204 in FRO, H460 and U251 cells possessed the strongest efficiencies, which could reach 80% of the SV40 promoter.
     4. Construction and purification of the recombinant adenovirus Ad-CMV-hTPO. Measured by plaque formation assay, its titer was shown as approximately 1.0×109 pfu/ml. After infection of 293 cells, Western blot was performed to demonstrate a positive band at 110 kD, which was the target gene expression of protein hTPO.
     5. Iodine uptake experiment demonstrated that U251 and U87 glioma cells in single transfection group (Ad-hTERT-hNIS) had enhanced iodine uptake abilities of 30.76 fold and 29.66 fold. And in co-transfection group (Ad-hTERT-hNIS/Ad-CMV-hTPO), the iodine uptake abilities were increased further to 35.55 fold and 32.88 fold, respectively.
     6.125I influx and efflux experiments showed that in single transfected glioma cells iodine uptake was rapid, the peak was about 40 minutes. But a rapid efflux of iodine was also observed with Te about 11-12 minutes. However, the co-transfection group could delay the efflux of 125I to a Te of about 18-20 minutes.
     7. Perchlorate inhibition test showed that different concentrations of NaC104 could inhibit transfected glioma cells to uptake 125I, the inhibition rate was about 93.50-94.48%. Organic measurement experiment showed that the co-transfected cells possessed higher 125I binding ability (about 3 times) by intracellular proteins than single transfection group.
     8. Clonogenic assay demonstrated that after 131I treatment the co-transfection group had the lowest rate of colony formation, with U251 and U87 reduced by 11.37 and 14.52 folds. And the co-transfection group was followed by single transfection group, the reductions were 5.52 and 6.05 folds (P<0.01).
     Conclusion
     1. In U251 and U87 glioma cells and other tumor cells different expressions and activities of hTERT existed, so the hTERT promoter could be used to guide therapeutic genes to specific expressions in glioma cells. HTERT core promoter had high promoting efficiency, and could be used as a replace of the full length promoter to guide hNIS gene expression.
     2. Recombinant plasmid and adenovirus vector containing HTERT promoter, hNIS gene and hTPO gene were constructed successfully. Single transfected glioma cells with Ad-hTERT-hNIS alone could enable the tumor cells to acquire a strong iodine uptake ability, which could mediate the radioiodine treatment on tumor cells.
     3. In single transfection glioma cells of hNIS gene, iodine efflux happened very quickly. And the co-transfection with Ad-CMV-hTPO could increase protein binding of iodine, prolong entrapment of iodine in the cells, and to improve radioiodine therapy on glioma cells.
引文
[1]Zawrocki A, Biernat W. Epidermal growth factor receptor in glioblastoma. Folia Neuropathol [J].2005,43(3):123-132.
    [2]Rutka JT, Taylor M, Maintize T, et al. Molecular biology and neurosurgery in the third millennium [J]. Neurosurgery,2000,46(5):1034-1051.
    [3]Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma:a randomised controlled multicentre phase Ⅲ trial [J]. Lancet Oncol,2006,7(5):392-401.
    [4]Stummer W, Reulen HJ, Meinel T, et al. Extent of resection and survival in glioblastoma multiforme:identification of and adjustment for bias [J]. Neurosurgery,2008,62(3):564-576.
    [5]Van Nostrand D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer [J]. Thyroid,2009,19(12):1381-1391.
    [6]Lupoli GA, Fonderico F, Colarusso S, et al. Current management of differentiated thyroid carcinoma [J]. Med Sci Monit.2005, 11(12):RA368-373.
    [7]Dohan O, De la Vieja A, Carrasco N. Molecular study of the sodium-iodide symporter (NIS):a new field in thyroidology [J]. Trends Endocrinol Metab, 2000,11(3):99-105.
    [8]Smanik PA, Liu Q, Furminger TL, et al. Cloning of the human sodium iodide symporter [J]. Biochem Biophys Res Commun,1996,226(2):339-345.
    [9]Libo C, Annette Al, Walter M, et al. Radioiodine Therapy of Hepatoma Using Targeted Transfer of the Human Sodium/Iodide Symporter Gene [J]. J Nucl Med,2006,47(5):854-862.
    [10]Uwe H, Petra B, Wolfgang K, et al. Iodide Kinetics and Dosimetry In Vivo After Transfer of the Human Sodium Iodide Symporter Gene in Rat Thyroid Carcinoma Cells [J]. J Nucl Med,2004,45(5):827-833.
    [11]谭建,李玮,刘晓华,等.人钠/碘同向转运体基因转染胶质瘤细胞介导放射性碘治疗的研究[J].中华核医学杂志,2008,28(2):79-83.
    [12]Wenzel A, Upadhyay G, Schmitt TL, et al. Iodination of proteins in TPO transfected thyroid cancer cells is independent of NIS [J]. Mol Cell Endocrinol, 2003,213(1):99-108.
    [13]Huang M, Batra RK, Kogai T, et al. Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer [J]. Cancer Gene Ther,2001,8(8): 612-618.
    [14]Boland A, Magnon C, Filetti S, et al. Transposition of the thyroid iodide uptake and organification system in nonthyroid tumor cells by adenoviral vector-mediated gene transfers [J]. Thyroid,2002,12(1):19-26.
    [15]Lai J, KM, Hinze K, et al. PSA/KLK3 AREI promoter polymorphism alters androgen receptor binding and is associated with prostate cancer susceptibility [J]. Carcinogenesis,2007,28(5):1032-1039.
    [16]akeda T, Inaba H, Yamazaki M, et al. Tumor-specific gene therapy for undifferentiated thyroid carcinoma utilizing the telomerase reverse transcriptase promoter [J]. J Clin Endocrinol Metab,2003,88(8):3531-3538.
    [17]Dwyer RM, Bergert ER, O'connor MK, et al. In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven expression of the sodium iodide symporter [J]. Clin Cancer Res,2005,11(4):1483-1489.
    [18]Cengic N, Baker CH, Schutz M, et al. A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy following tissue-specific sodium iodide symporter gene expression [J]. J Clin Endocrinol Metab,2005, 90(8):4457-4464.
    [19]Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase [J]. Science,1995,269(5228):1236-1241.
    [20]Choi E, Kim Y, Kim K. The combination of TRAIL treatment and cancer cell selective expression of TRAIL-death receptor DR4 induces cell death in TRAIL-resistant cancer cells [J]. Yonsei Med J,2006,47(1):55-62.
    [21]Jacob D, Schumacher G, Bahra M, et al. Fiber-modified adenoviral vector expressing the tumor necrosis factor-related apoptosis-inducing ligand gene from the human telomerase reverse transcriptase promoter induces apoptosis in human hepatocellular carcinoma cells [J]. World J Gastroenterol,2005,11(17): 2552-2526.
    [22]Majumdar AS, Hughes DE, Lichtsteiner SP, et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters [J]. Gene Ther,2001,8(7):568-578.
    [23]Kawashima T, Kagawa S, Kobayashi N, et al. Telomerase-specific replication-selective virotherapy for human cancer [J]. Clin Cancer Res,2004, 10(1 Pt 1):285-292.
    [24]Lanson NA Jr, Friedlander PL, Schwarzenberger P, et al. Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis [J]. Cancer Res,2003,63(22): 7936-7941.
    [25]Huang SL, Wu Y, Yu H, et al. Inhibition of Bcl-2 expression by a novel tumor-specific RNA interference system increases chemosensitivity to 5-fluorouracil in Hela cells [J]. Acta Pharmacol Sin,2006,27(2):242-248.
    [26]戴益民.靶向化疗:基因治疗研究的新热点.世界华人消化杂志,1999,7(06):469-472.
    [27]Soder AI, Hoare SF, Muir S, et al. Amplification,increased dosage and in situ expression of the telomerase RNA gene in human cancer [J]. Oncogene,1997, 14(9):1013-1021.
    [28]Xu D, Dwyer J, Li H, et al. Ets2 Maintains hTERT Gene Expression and Breast Cancer Cell Proliferation by Interacting with c-Myc [J]. J Biol Chem,2008, 283(35):23567-23580.
    [29]Song JS. Activity of the human telomerase catalytic subunlt(hTERT) gene promoter could be increased by the SV40 enhancer [J]. Biosei Biotechnol Bioehem,2004,68(8):1634-1639.
    [30]akakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells [J]. Cancer Res,1999,59(3):551-557.
    [31]Komata T, Kondo Y, Kanzawa T, et al. Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter [J]. Cancer Res,2001,61(15):5796-5802.
    [32]Woo HJ, Choi YH. Growth inhabition of A549 human lung carcinoma cells by β-lapachone through induction of apoptosis and inhabition of telomerase activity [J]. Int J Oncol,2005,26(4):1017-1023.
    [33]Wirth T, Khnel F, Kubicka S. Telomerase-dependent gene therapy [J]. Curr Mol Med,2005,5(2):243-251.
    [34]Ribeiro-Silva A, Becker de Moura H, Ribero do Vale F, et al. The differential regulation of human telomerase reverse transcriptase and vascular endothelial growth factor may contribute to the clinically more aggressive behavior of p63-positive breast carcinomas [J]. Int J Biol Markers,2005,20(4):227-234.
    [35]Horikawa I, Cable PL, Afshari C, et al. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene [J]. Cancer Res,1999,59(4):826-830.
    [36]Kyo S, Takakura M, Taira T, et al. Spl cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT) [J]. Nucleic Acids Res,2000,28(3):669-677.
    [37]Oh S, Song YH, Yim J, et al. Identification of Mad as a repressor of the human telomerase (hTERT) gene [J]. Oncogene,2000,19(11):1485-1490.
    [38]Kyo S, Takakura M, Kanaya T, et al. Estrogen activates telomerase [J]. Cancer Res,1999,59(23):5917-5921.
    [39]Goueli BS, Janknecht R. Upregulation of the Catalytic Telomerase Subunit by the Transcription Factor ER81 and Oncogenic HER2/Neu, Ras, or Raf [J]. Mol Cell Biol,2004,24(1):25-35.
    [40]Ikeda N, Uemura H, Ishiguro H, et al. Combination treatment with la, 25-dihydro xyvitamin D3 and 9-cis-retinoic acid directly inhibit s human telomerase reverse transcriptase t ranscription in prostate cancer cells [J]. Mol Cancer Ther,2003,2(8):739-746.
    [41]Avilion AA, Piatyszek MA, Cupta J, et al. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues [J]. Cancer Res, 1996,56(3):645-650.
    [42]Ito H, Kanzawa T, Miyoshi T, et al. Therapeutic efficacy of PUMA for malignant glioma cells regardless of p53 status [J]. Hum Gene Ther,2005, 16(6):685-698.
    [43]Horikawa I, Cable PL, Afshari C, et al. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene [J]. Cancer Res,1999,59(4):826-830.
    [44]Takakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells [J]. Cancer Res,1999,59(3):551-7.
    [45]Painter RG, Lanson NA Jr, Jin Z, et al. Conditional expression of a suicide gene by the telomere reverse transcriptase promoter for potential post-therapeutic deletion of tumorigenesis [J]. Cancer Sci,2005,96(9):607-613.
    [46]Bilsland AE, Anderson CJ, Fletcher-Monaghan AJ, et al. Selective ablation of human cancer cells by telomerase-specific adenoviral suicide gene therapy vectors expressing bacterial nitroreductase [J]. Oncogene,2003,22(3): 370-380.
    [47]Persano L, Crescenzi M, Indraccolo S. Anti-angiogenic gene therapy of cancer:current status and future prospects [J]. Mol Aspects Med,2007,28(1): 87-114.
    [48]Li GC, Yang JM, Nie MM, et al. Potent antitumoral effects of a novel gene-viral therapeutic system CNHK300-mEn-dostatin in hepatocellular carcinoma [J]. Chin Med J(Engl),2005,118(3):179-185.
    [49]Bustos M, Sangro B, Alzuguren P, et al. Liver damage using suicide genes. A model for oval cell activation [J]. Am J Pathol,2000,157(2):549-559.
    [50]Spitzweg C, Dietz AB, O'Connor MK, et al. In vivo sodium iodide symporter gene therapy of prostate cancer [J]. Gene Ther,2001,8(20):1524-1531.
    [51]Kitazono M, Chuman Y, Aikou T, et al. Construction of gene therapy vectors targeting thyroid cells:enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the cyclic adenosine 3', 5'-monophosphate pathway and demonstration of activity in follicular and anaplastic thyroid carcinoma cells [J]. J Clin Endocrinol Metab,2001,86(2): 834-840.
    [52]Trujillo MA, Oneal MJ, Davydova J, et al. Construction of an MUC-1 promoter driven, conditionally replicating adenovirus that expresses the sodium iodide symporter for gene therapy of breast cancer [J]. Breast Cancer Res,2009,11(4): R53.
    [53]Kitazono M, Chuman Y, Aikou T, et al. Calcitonin-Specific Transcription and Splicing Targets Gene-Directed Enzyme Prodrug Therapy to Medullary Thyroid Carcinoma Cells [J]. J Clin Endocrinol Metab,2003,88(3): 1310-1318.
    [54]Gu J, Kagawa S, Takakura M, et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeuticeffects of the Bax gene to cancers [J]. Cancer Res,2000,60(19): 5359-5364.
    [55]Hideaki I, Hiroshi A, Florian K, et al. Autophagic Cell Death of Malignant Glioma Cells Induced by a Conditionally Replicating Adenovirus [J]. J Natl Cancer Inst,2006,98(9):625-636.
    [56]Jian G, Shunsuke K, Masahiro T, et al. Tumor-specific Transgene Expression from the Human Telomerase Reverse Transcriptase Promoter Enables Targeting of the Therapeutic Effects of the Bax Gene to Cancers [J]. Cancer Res,2000, 60(19):5359-5364.
    [57]Tadashi K, Yasuko K, Takao K, et al. Treatment of Malignant Glioma Cells with the Transfer of Constitutively Active Caspase-6 Using the Human Telomerase Catalytic Subunit (Human Telomerase Reverse Transcriptase) Gene Promoter [J]. Cancer Res,2001,61(15):5796-5802.
    [58]Cho JY, Xing S, Liu X, et al. Expression and activity of human Na+/I" symporter in human glioma cells by adenovirus-mediated gene delivery [J]. Gene Ther,2000,7(9):740-749.
    [59]Cho JY, Shen DH, Yang W, et al. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas [J]. Gene Ther,2002,9(17):1139-1145.
    [60]Miller AD. Cationic liposomes for gene therapy [J]. Angew Chem Int Ed Engl, 1998,37(11):1768-1785.
    [61]Guo X, Huang L. A novel cationic liposome reagent for efficient transfection of mammlian cells [J]. Biochem Biophys Res Comm,1991,17(2):280-285.
    [62]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,2002:107.
    [63]张阳德,蔡索娜,廖允军.阳离子脂质体及其在基因转移和基因治疗中的应用[J].中国现代医学杂志,2001,11(7):28-30.
    [64]许英梅,张树彪,韩双,等.阳离子脂质体在基因治疗中的应用[J].大连民族学院学报,2005,7(5):46-48.
    [65]Okayama R, NOji M, Nakanishi M. Cationic cholesterol with a hydroxyethylamino head group promotes significantly liposome-mediated gene transfection [J]. FEBS Lett,1977,408(2):232-234.
    [66]Huang Z, Li W, Mackay JA, et al. Thioeholesterol-based lipids for ordered assembly of bioresponsive gene carriers [J]. Mol Ther,2005,11(3):409-417.
    [67]Zelphati O, Francis C Szoka. Liposome as a carrier for intracellular delivery of antisense oligonucleotides:a real or magic bullet? [J]. J Control Rel,1996, 41(1):99-119.
    [68]Zabner J, Fashender AJ, Moninger T, et al. Cellular and molecular barrier to gene transfer by a cationic lipid [J]. J Biol Chem,1995,270(32):18997-19007.
    [69]ZhangWW. Development and application of adenoviral vectors of gene therapy of cancer [J]. Cancer Gene Ther,1999,6(2):113-38.
    [70]St Geogre JA. Gene therapy Progress and prospects:adenoviral vectors [J]. Gene Ther,2003,10(14):1135-41.
    [71]He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses [J]. Proc Natl A cad Sci USA,1998,95(5): 2509-2514.
    [72]Harrington KJ, Bateman AR, Meleher AA, et al. Cancer gene therapy: Part1.Veetor development and regulation of gene expression [J]. Clin Oneol (R Coll Radiol),2002,14(1):3-16.
    [73]李育阳.基因表达技术[M].北京:科学出版社,2001:199-201.
    [74]Mitani K, Kubo S. Adenovirus as an integrating vector [J]. Curr Gene Ther, 2002,2(2):135-144.
    [75]Cao B, Mytinger JR, Huard J. Adenovirus mediated gene transfer to skeletal muscle [J]. Microscopy Research and Technique,2002,58(1):45-51.
    [76]Berkner KL. Development of adenovirus vectors for the expression of heterologous genes [J]. Biotechniques,1988,6(7):616-629.
    [77]Graham FL, Prevec L. Methods for construction of adenovirus vectors [J]. Mol Biothecnol,1995,3(3):207-220.
    [78]Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system of reonstruction of adenovirus vectors with insertions or deletions in early regions 1 and 3 [J]. Proc Natl Acad Sci USA,1994,91(19):8802-8806.
    [79]Simmons NL. A cultured human renal epithelioid cell line responsive to vasoactive intestinal peptide [J]. Exp Physiol,1990,75(3):309-319.
    [80]Becker TC, Noel RJ, Coats WS, et al. Use of recombinant adenovirus for metabolic engineering of mammalian cells [J]. Methods Cell Biol,1994,43(Pt A):161-189.
    [81]Mittal SK, McDermott MR, Johnson DC, et al. Monitoring foreign gene expression by a human adenovirus-based vector using the firefly luciferase gene as a reporter [J]. Virus Res,1993,28(1):67-90.
    [82]Ballay A, Levrero M, Buendia MA, et al. In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses [J]. EMBO J,1985, 4(13B):3861-3865.
    [83]Rosenfeld MA, Siegfried W, Yoshimura K. Adenovirus-mediated transfer of a recombinant a 1-antitrypsin gene to the lung epithelium in vivo [J]. Science, 1991,252(5004):431-434.
    [84]袁仕善,周智广.阳离子脂质体与基因转移[J].生理科学进展,1997,28(2):69-71.
    [85]Gilgen M, Germann D, Luthy J, et al. Three-step isolation method for sensitive detection of enterovirus,rotavirus,hepatitis A virus,and small round structured viruses in water samples [J]. Int J Food Microbiol,1997,37(2-3):189-199.
    [86]Nilsson J, Stahl S, Lundeberg J, et al. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins [J]. Protein Expr Purif, 1997,11(1):1-16.
    [87]Chao H, Bautista DL, Litowski J, et al. Use of a heterodimeric coiled-coil system for biosensor application and affinity purification [J]. J Chromatogr B Biomed Sci Appl,1998,715(1):307-329.
    [88]Flaschel E, Friehs K. Improvement of downstream processing of recombinant proteins by means of genetic engineering methods [J]. Biotechnol Adv,1993, 11(1):31-37.
    [89]Ford CF, Suominen I, Glatz CE. Fusion tails for the recovery and purification of recombinant proteins [J]. Protein Expr Purif,1991,2(2-3):95-107.
    [90]LaVallie ER, McCo JM. Gene fusion expression systems in Escherichia coli [J]. Curr Opin Biotechnol,1995,6(5):501-506.
    [91]Terpe K. Overview of tag protein fusions:from molecular and biochemical fundamentals to commercial systems [J]. Appl Microbiol Biotechnol,2003, 60(5):523-533.
    [92]Hearn MT, Acosta D. Applications of novel affinity cassette methods:use of peptide fusion handles for the purification of recombinant proteins [J]. J Mol Recognit,2001,14(6):323-369.
    [93]Dohan O, De la Vieja A, Carrasco N. Molecular study of the sodium-iodide symporter (NIS):a new field in thyroidology [J]. Trends Endocrinol Metab, 2000,11(3):99-105.
    [94]Carlin S, Akabani G, Zalutsky MR, et al. In vitro cytotoxicity of 211At-Astatide and 131I-iodide to glioma tumor cells expressing the sodium/iodide symporter [J]. J Nul Med,2003,44(11):1827-1838.
    [95]Cho JY, Shen DH, Yang W, et al. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas [J]. Nucl Med Biol,2002,29(7):729-739.
    [96]Spitzweg C, O'Connor MK, Bergert ER, et al. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter [J]. Cancer Res,2000,60(22):6526-6530.
    [97]Boland A, Ricard M, Opolon P, et al. Adenovirus-mediated Transfer of the Thyroid Sodium/Iodide Symporter Gene into Tumors for a Targets Radiotherapy [J]. Cancer Reseach,2000,60(13):3484-3492.
    [98]Rober B, Leisa Z, Charles J. Radioisotope Concentrator Gene Therapy Using the Sodium/Iodide Symporter Gene [J]. Cancer Research,1999,59(3): 661-668.
    [99]Boland A, Ricard M, Opolon P, et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy [J]. Cancer Research,2000,60(13):3484-3492.
    [100]Petrich T, Knapp WH, Potter E. Functional activity of human sodium/iodide symporter in tumor cell lines [J]. Nuklearmedizin,2003,42(1):8-15.
    [101]Petrich T, Helmeke HJ, Meyer GJ, et al. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter [J]. Eur J Nucl Med Mol Imaging,2002,29(7): 842-854.
    [102]Dwyer RM, Bergert ER, O'Connor MK, et al. Sodium iodide symporter mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice [J]. Gene Ther,2006,13(1):60-66.
    [103]Lee YJ, Chung JK, Shin JH, et al. In vitro and in vivo properties of a human anaplastic thyroid carcinoma cell line transfected with the sodium iodide symporter gene [J]. Thyroid,2004,14(11):889-895.
    [104]Mandell RB, Mandell LZ, Link CJ Jr, et al. Radioisotope concentrator gene therapy using the sodium iodide symporter gene [J]. Cancer research,1999, 59(3):661-668.
    [105]Dwyer RM, Bergert ER, O'Connor MK, et al. Adenovirus-mediated and targeted expression of the sodium-iodide symporter permits in vivo radioiodide imaging and therapy of pancreatic tumors [J]. Hum Gene Ther,2006,17(6): 661-668.
    [106]Chen L, Altmann A, Mier W, et al. Radioiodine therapy of hepatoma using targeted transfer of the human sodium/iodide symporter gene [J]. J Nucl Med. 2006,47(5):854-862.
    [107], Petrich T, Quintanilla-Martinez L, Korkmaz Z, et al. Effective cancer therapy with the a-particle emitter 211At-astatine in a mouse model of genetically modified sodium/iodide symporter-expressing tumors [J]. Clin Cancer Res,2006,12(4):1342-1348.
    [108]Buchsbaum DJ, Chaudhuri TR, Zinn KR. Radiotargeted gene therapy [J]. J Nucl Med,2005,46(Suppl 1):179-186.
    [109]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Res,2001,29(9):e45.
    [110]Fleige S, Walf V, Huch S, et al. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR [J]. Biotechnol Lett,2006,28(19):1601-1613.
    [111]Chervoneva I, Li Y, Iglewicz B, et al. Relative quantification based on logistic models for individual polymerase chain reactions [J]. Stat Med,2007, 26(30):5596-5611.
    [112]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT Method [J]. Methods,2001,25(4): 402-428.
    [113]中华医学会神经外科分会肿瘤转业组.中国中枢神经系统恶性胶质瘤诊断和治疗共识[J].中华医学杂志,2009,89(4):3028-3030.
    [114]Davis FG, Kupelian V, Freels S, et al. Prevalence estimates for primary brain tumors in the United States by behavior and major histology groups [J]. Neurooncology,2001,3(3):152-158.
    [115]Fisher JL, Schwartzbaum JA, Wrensch M, et al. Epidemiology of brain tumors [J]. Neurol Clin,2007,25(4):867-890.
    [116]Fueyo J, Gomez-Manzano C, Yung WK, et al. Targeting in Gene Therapy for Gliomas [J]. Arch Neurol,1999,56(4):445-448.
    [117]Sasaki M, Plate KH. Gene therapy of malignant glioma:Recent advances in experimental and clinical studies [J]. Ann. Onc,1998,9(11):1155-1166.
    [118]Chen SH, Shine HD, Goodman JC, et al. Gene Therapy for Brain Tumors: Regression of Experimental Gliomas by Adenovirus-Mediated Gene Transfer in vivo [J]. Proc Natl Acad Sci U S A,1994,91(8):3054-3057.
    [119]Lupoli GA, Fonderico F, Colarusso S,et al. Current management of differentiated thyroid carcinoma [J]. Med Sci Monit,2005,11(12):RA368-373.
    [120]Dohan 0, De la Vieja A, Carrasco N. Molecular study of the sodium-iodide symporter (NIS):a new field in thyroidology [J]. Trends Endocrinol Metab, 2000,11(3):99-105.
    [121]Dohan O, De La Vieja A, Paroder V, et al. The sodium/iodide symporter (NIS):characterization, regulation, and medical significance [J]. Endocr Rev, 2003,24(1):48-77.
    [122]Boland A, Magnon C, Filetti S, et al. Transposition of the thyroid iodide uptake and organification system in nonthyroid tumor cells by adenoviral vector-mediated gene transfers [J]. Thyroid,2002,12(1):19-26.
    [123]Carrasco N. Iodide transport in the thyroid gland [J]. Biochem Biophys Acta, 1993,1154(1):65-82.
    [124]Smanik PA, Ryu KY, Theil KS, et al. Expression, exon-intron organization and chromosome mappings of the human sodium/iodide symporter [J]. Endocrinology,1997,138(8):3555-3558.
    [125]Nunez. Iodination and thyroid hormone synthesis [A]. In:De Visscher M. The Thyroid Gland [M]. New York:Ravan Press,1980:39-59.
    [126]Edelhoch H, Robbins J. Thyroglobulin:Chemistry and biosynthesis [A]. In: Ingbar SH, Braverman LE. The Thyroid [M]. Philadelphia:JB Lippincott Co, 1986:98-115.
    [127]Taurog A. Hormone Synthesis:Thyroid iodine Metabolism [A]. In: Braverman LE, Utiger RD. The Thyroid [M]. Philadelphia:JB Lippincott Co, 1991:51-97.
    [128]Gentile F, Di Lauro R, Salvatore G. Biosynthesis and secretion of thyroid hormones [A]. In:DeGroot LJ, Besser M, Burger HG, et al. Endocrinology [M]. Philadelphia:WB Saunders Co,1995:vol 1:517-542.
    [129]Ferrand M, Le Fourn V, Franc JL. Increasing diversity of human thyroperoxidase generated by alternative splicing. Characterized by molecular cloning of new transcripts with single-and multispliced mRNAs [J]. J Biol Chem,2003,278(6):3793-3800.
    [130]Gerard CM, Lefort A, Christophe D, et al. Distinct transcriptional effects of cAMP on 2 thyroid specific genes:thyroperoxidase and thyroglobulin [J]. Horm Metab Res Suppl,1990,23:38-43.
    [131]Napolitano G, Montani V, Giuliani C, et al. Transforming growth factor-β1 down-regulation of major histocompatibility complex class Ⅰ in thyrocytes: coordinate regulation of two separate elements by thyroid-specific as well as ubiquitous transcription factors [J]. Mol Endocrinol,2000,14(4):486-505.
    [132]Miyazaki A, Shimura H, Endo T, et al. Tumor necrosis factor-alpha and interferon-gamma suppress both gene expression and deoxyribonucleic acid-binding of TTF-2 in FRTL-5 cells [J]. Endocrinology,1999,140(9): 4214-4220.
    [133]Ortiz L, Zannini M, Di Lauro R, et al. Transcriptional control of the forkhead thyroid transcription factor TTF-2 by thyrotropin, insulin, and insulin-like growth factorⅠ[J]. J Biol Chem,1997,272(37):23334-23339.
    [134]Libo C, Annette Al, Walter M, et al. Radioiodine Therapy of Hepatoma Using Targeted Transfer of the Human Sodium/Iodide Symporter Gene [J]. J Nucl Med,2006,47(5):854-862.
    [135]Uwe H, Petra B, Wolfgang K, et al. Iodide Kinetics and Dosimetry In Vivo After Transfer of the Human Sodium Iodide Symporter Gene in Rat Thyroid Carcinoma Cells [J]. J Nucl Med,2004,45(5):827-833.
    [136]Manuelidis EE, Pond AR. Continuous cultivation of cells arising from human case of glioblastoma multiforme (glioma T.C.178) [J]. Proc Soc Exp Biol Med,1959,102(4):693-695.
    [137]Westermark B, Ponten J, Hugosson R. Determination for the establishment of permanent tissue culture from human gliomas [J], Acta Pathol Microbiol Scand A,1973,81(6):791-805.
    [138]Ponten J, Westermark B. Properties of human malignant glioma cells in vitro [J]. Med Biol,1978,56(4):184-193.
    [139]Ponten J, Macintyre EH. Long term culture of normal and neoplastic human glia [J]. Acta Pathol Microbiol Scand,1968,74(4):465-486.
    [140]Weiss SJ, Philip NJ, Grollmann EF. Iodine transport in a continous line of cultured cells from rat thyroid [J]. Endocrinology,1984,114(4):1090-1098.
    [141]Boland A, Mganon C, Filetti S, et al. Transposition of the thyroid iodide uptake and ogranification systerm in nonthyroid tumor cells by adenoviral vector mediated gene transfers [J]. Thyroid,2002,12(1):19-26.
    [142]Dingli D, Diaz RM, Bergert ER, et al. Genetically targeted radiotherapy for multiple myeloma [J]. Blood,2003,102(2):489-496.
    [143]Scholz IV, Cengic N, Baker CH, et al. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer [J]. Gene Ther, 2005,12(3):272-280.
    [144]Dwyer RM, Bergert ER, O'Connor MK, et al. Adenovirus-mediated and targeted expression of the sodium-iodide symporter permits in vivo radioiodide imaging and therapy of pancreatic tumors [J]. Hum Gene Ther,2006,17(6): 661-668.
    [145]Dwyer RM, Bergert ER, O'Connor MK, et al. Sodium iodide symporter mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice [J]. Gene Ther,2006,13(1):60-66.
    [1]Baumann E. Uber den Jodgehalt der Schilddrusen Von Menchen und Tieren [J]. Hoppe Seylers Z Physiol Chem,1896,22(1):1-17.
    [2]Wolff J, Chaikoff IL. Plasma inorganic iodide as a homeostatic regulator of thyroid function [J]. J Biol Chem,1948,174(2):555-564.
    [3]Cardoso LC, Martins DC, Campos DV, et al. Effect of iodine or iopanoic acid on thyroid Ca2+/NADPH-dependent H2O2-generating activity and thyroperoxidase in toxic diffuse goiters [J]. Eur J Endocrinol,2002,147(3):293-298.
    [4]Heufelder AE, Morgenthaler N, Schipper ML, et al. Sodium iodide symporter-based strategies for diagnosis and treatment of thyroidal and nonthyroidal malignancies [J]. Thyroid,2001,11(9):839-847.
    [5]Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter [J]. Nature,1996,379(6564):485-460.
    [6]Smanik PA, Liu Q, Furminger TL, et al. Cloning of the human sodium iodide symporter [J]. Biochem Biophys Res Commun,1996,226(2):339-345.
    [7]Eskandari S, Loo DDF, Dai G, et al. Thyroid Na+/I- Symporter-mechanism, stoichiometry, and specificity [J]. J Biol Chem,1997,272(27):230-238.
    [8]Scott DA, Wang R, Kreman TM, et al. The Pendred syndrome gene encodes a chloride-iodide transport protein [J]. Nat Genet,1999,21(4):440-443.
    [9]van den Hove MF, Croizet-Berger K, Jouret F, et al. The loss of the chloride channel, C1C-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland [J]. Endocrinology,2006,147(3):1287-1296.
    [10]Taurog A. Hormone synthesis:Thyroid iodine metabolism [A]. In:Braverman LE, Utiger RD. The Thyroid:A Fundamental and Clinical Text.8th ed [M]. Philadelphia:Lippincott Williams & Wilkins,2000:61-85.
    [11]Dohan O, De la Vieja A, Paroder V, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance [J]. Endocr Rev,2003, 24(1):48-77.
    [12]Dohan O, Baloch Z, Banrevi Z, et al. Rapid communication:predominant intracellular overexpression of the Na+/I- symporter (NIS) in a large sampling of thyroid cancer cases [J].J Clin Endocrinol Metab,2001,86(6):2697-2700.
    [13]Dohan 0, Carrasco N. Advances in Na+/I- symporter (NIS) research in the thyroid and beyond [J]. Mol Cell Endocrinol,2003,213(1):59-70.
    [14]Riedel C, Levy O, Carrasco N. Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin [J]. J Biol Chem,2001,276(24): 21458-21463.
    [15]Riesco-Eizaguirre G, Santisteban P. A perspective view of sodium iodide symporter research and its clinical implications [J]. Eur J Endocrinol,2006, 155(4):495-512.
    [16]Spitzweg C, Morris JC. Approaches to gene therapy with sodium/iodide symporter [J]. Exp Clin Endocrinol,2001,109(1):56-59.
    [17]Reizer J, Reizer A, Saier MH Jr. A functional superfamily of sodium/solute symporters [J]. Biochim Biophys Acta,1994,1197(2):133-166.
    [18]Smanik PA, Ryu KY, Theil KS, et al. Expression, exon-intron organization, and chromosome mapping of the human sodium iodide symporter [J]. Endocrinology, 1997,138(8):3555-3558.
    [19]Levy O, Dai G, Riedel C, et al. Characterization of the thyroid Na+/I- symporter with an anti-COOH terminus antibody [J]. Proc Natl Acad Sci USA,1997, 94(11):5568-5573.
    [20]Levy O, De la Vieja A, Ginter CS, et al. N-linked glycosylation of the thyroid Na+/I" symporter (NIS). Implications for its secondary structure model [J]. J Biol Chem,1998,273(35):22657-22663.
    [21]Fujiwara H, Tatsumi K, Miki K, et al. Recurrent T354P mutation of the Na+/I-symporter in patients with iodide transport defect [J]. J Clin Endocrinol Metab, 1998,83(8):2940-2943.
    [22]Dohan O, Gavrielides MV, Ginter C, et al. Na+/I- symporter activity requires a small and uncharged amino acid residue at position 395 [J]. Mol Endocrinol, 2002,16(8):1893-1902.
    [23]Kaminsky SM, Levy O, Salvador C, et al. Na+/I- symport activity is present in membrane vesicles from thyrotropin-deprived non-I- transporting cultured thyroid cells [J]. Proc Natl Acad Sci USA,1994,91(9):3789-3793.
    [24]Ohno M, Zannini M, Levy O, et al. The paired-domain transcription factor Pax8 binds to the upstream enhancer of the rat sodium/iodide symporter gene and participates in both thyroid-specific and cyclic-AMP-dependent transcription [J]. Mol Cell Biol,1999,19(3):2051-2060.
    [25]Tonacchera M, Viacava P, Agretti P, et al. Benign nonfunctioning thyroid adenomas are characterized by a defective targeting to cell membrane or a reduced expression of the sodium iodide symporter protein [J]. J Clin Endocrinol Metab,2002,87(1):352-357.
    [26]Ferreira AC, Lima LP, Araujo RL, et al. Rapid regulation of thyroid sodium-iodide symporter activity by thyrotrophin and iodine [J]. J Endocrinol, 2005,184(1):69-76.
    [27]Braverman LE, Ingbar SH. Changes in thyroidal function during adaptation to large doses of iodide [J]. J Clin Invest,1963,42(8):1216-1231.
    [28]Eng PHK, Cardona GR, Fang SL, et al. Escape from the acute Wolff-Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein [J]. Endocrinology,1999,140(8): 3404-3410.
    [29]Grollman EF, Smolar A, Ommaya A, et al. Iodine suppression of iodide uptake in FRTL-5 thyroid cells [J]. Endocrinology,1986,118(6):2477-2482.
    [30]Pisarev MA. Thyroid autoregulation [J]. J Endocrinol Invest,1985,8(5): 475-484.
    [31]Pereira A, Braekman JC, Dumont JE, et al. Identification of a major iodolipid from the horse thyroid gland as 2-iodohexadecanal [J]. J Biol Chem,1990, 265(28):17018-17025.
    [32]Fukuda H, Greer M, Roberts L, et al. Nyctohemeral and sex-related variations in plasma thyrotropin, thyroxinne, and triiodotironine [J]. Endocrinology,1975, 97(6):1424-1430.
    [33]Urban RJ. Neuroendocrinology of aging in the male and female [J]. Endocrinol Metab Clin North Am,1992,21 (4):921-931.
    [34]Chen HJ, Walfish PG. Effects of age and ovarian function on the pituitary-thyroid system in female rats [J]. J Endocrinol,1978,78(2):225-232.
    [35]Christianson D, Roti E, Vagenakis AG, et al. The sex-related difference in serum thyrotropin concentration is androgen mediated [J]. Endocrinology,1981,108(2): 529-535.
    [36]Fisher JS, DAngelo SA. Stimulatory and inhibitory action of estradiol on TSH secretion [J]. Endocrinology,1971,88(3):687-691.
    [37]Lisboa PC, Curty FH, Moreira RM, et al. Effects of estradiol benzoate on 5-iodotironine deiodinase activities in female rat anterior pituitary gland, liver and thyroid gland [J]. Braz J Med Biol Res,1997,30(12):1479-1484.
    [38]Furlanetto TW, Nguyen LQ, Jameson JL. Estrogen increases proliferation and down-regulates the sodium/iodide symporter gene in FRTL-5 [J]. Endocrinology, 1999,140(12):5705-5711.
    [39]Boccabella AV, Alger EA. Influence of estradiol on thyroid:serum radioiodide concentration ratios of gonadectomized and hypophysectomized rats [J]. Endocrinology,1964,74(5):680-688.
    [40]Hiasa Y, Kitahori Y, Yane K, et al. Establishment of estrogen receptor-positive transplantable rat thyroid tumor cell lines in vivo [J]. Cancer Res,1993,53(18): 4408-4412.
    [41]Banu SK, Govindarajulu P, Aruldhas MM. Testosterone and estradiol up-regulate androgen and estrogen receptors in immature and adult rat thyroid glands in vivo [J]. Steroids,2002,67(13-14):1007-1014.
    [42]Lima LP, Barros IA, Lisboa PC, et al. Estrogen effects on thyroid iodide uptake and thyroperoxidase activity in normal and ovariectomized rats [J]. Steroids, 2006,71(8):653-659.
    [43]Marcus M, Coulton AM. Fat-soluble vitamins A, K, E [A]. In:Hadman JG, Limbird LE, Gilman AG. Goodman and Gilmamns The Pharmacologic Basis of Therapeutics [M]. Mc Graw Hill,2000:1773-1792.
    [44]Kurebayashi J, Tanaka K, Otsuki T, et al. All-trans-retinoic acid modulates expression levels of thyroglobulin and cytokines in a human poorly differentiated papillary thyroid carcinoma cell line, KTC-1 [J]. J Clin Endocrinol Metab,2000,85(8):2889-2896.
    [45]Schmutzler C, Winzer R, Maissner-Weigl J, et al. Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of function symporter in nontransformed FRTL-5 rat thyroid cells [J]. Biochem Biophys Res Commun,1997,240(3):832-838.
    [46]Schreck R, Schnieders F, Schmutzler C, ea al. Retinoids stimulate type Ⅰ iodothyronine 5-deiodinase activity in human follicular thyroid carcinoma cell lines [J]. J Clin Endocrinol Metab,1994,79(3):791-798.
    [47]Schmutzler C, Brtko J, Bienert K, ea al. Effects of retinoids and role of retinoic receptor in human thyroid carcinomas and cell lines derived there from [J]. Exp Clin Endocrinol Diabetes,1996,104(suppl 4):16-19.
    [48]Van Herle AJ, Agatep ML, Padua DN, et al. Effects of 13-cis-retinoic acid on growth and differentiation of human follicular carcinoma cells (UCLA R0 82 W-1) in vitro [J]. J Clin Endocrinol Metab,1990,71(3):755-763.
    [49]Simon D, Kohrle J, Schmutzler C, et al. Redifferentiation therapy of differentiated thyroid carcinoma with retinoic acid:basics and first clinical results [J]. Exp Clin Endocrinol Diabetes,1996,104(suppl 4):13-15.
    [50]Simon D, Koehrle J, Reiners C, et al. Redifferentiation therapy with retinoids: therapeutic option for advanced follicular and papillary thyroid carcinoma [J]. World J Surg,1998,22(6):569-574.
    [51]Grunwald F, Menzel C, Bender H, et al. Redifferentiation therapy-induced radioiodine uptake in thyroid cancer [J]. J Nucl Med,1998,39(11):1903-1906.
    [52]Schmutzler C, Kohrle J. Retinoic acid redifferentiation therapy for thyroid cancer [J]. Thyroid,2000,10(5):393-405.
    [53]Simon D, Korber C, Krausch M, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer:final results of a pilot study [J]. Eur J Nucl Med,2002,29(6):775-782.
    [54]Gruning T, Tiepolts C, Zophel K, et al. Retinoic acid for redifferentiation of thyroid cancer-does it hold its promise [J]? Eur J Endocrinol,2003,148(4): 395-402.
    [55]Coelho SM, Corbo R, Buescu A, et al. Retinoic acid in patients with radioiodine non-responsive thyroid carcinoma [J]. J Endocrinol Invest,2004,27(4): 334-339.
    [56]Coelho SM, Vaisman M, Carvalho DP. Tumour re-differentiation effect of retinoic acid:a novel therapeutic approach for advanced thyroid cancer [J]. Curr Pharm Des,2005,11(19):2525-2531.
    [57]Monzani F, Caraccio N, Casolaro A, et al. Long-term interferon β-1b therapy for MS:is routine thyroid assessment always useful [J]? Neurology,2000,55(4): 549-552.
    [58]Rotondi M, Mazziotti G, Biondi B, et al. Long-term treatment with interferon-beta therapy for multiple sclerosis and occurrence of Graves disease [J]. J Endocrinol Invest,2000,23(5):321-324.
    [59]Durelli L, Ferrero B, Oggero A, et al. Thyroid function and autoimmunity during interferon b-lb treatment:a multicenter prospective study [J]. J Clin Endocrinol Metab,2001,86(8):3525-3532.
    [60]Caraccio N, Giannini R, Cuccato S, et al. Type I interferons modulate the expression of thyroid peroxidase, sodium/iodide symporter, and thyroglobulin genes in primary human thyrocyte cultures [J]. J Clin Endocrinol Metab,2005, 90(2):1156-1162.
    [61]Ajjan RA, Watson PF, Findlay C, et al. The sodium iodide symporter gene and its regulation by cytokines found in autoimmunity [J]. J Endocrinol,1998,158(3): 351-358.
    [62]Spitzweg C, Joba W, Morris JC, et al. Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells [J]. Thyroid,1999,9(8):821-830.
    [63]Grunstein M. Histone acetylation in chromatin structure and transcription [J]. Nature,1997,389(6649):349-352.
    [64]Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation [J]. Bioessays,1998,20(8):615-626.
    [65]Katan-Khaykovich Y, Struhl K. Dynamics of global histone acetylation and deacetylation in vivo:rapid restoration of normal histone acetylation status upon removal of activators and repressors [J]. Genes Dev,2002,16(6):743-752.
    [66]Davie JR. MSK1 and MSK2 mediate mitogen- and stress-induced phosphorylation of histone H3:a controversy resolved [J]. Sci STKE,2003, 12(195):PE33.
    [67]Kitazono M, Robey R, Zhan Z, et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na+/I-symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells [J]. J Clin Endocrinol Metab,2001,86(7):3430-3435.
    [68]Zarnegar R, Brunaud L, Kanauchi H, et al. Increasing the effectiveness of radioactive iodine therapy in the treatment of thyroid cancer using Trichostatin A, a histone deacetylase inhibitor [J]. Surgery,2002,132(6):984-990.
    [69]Furuya F, Shimura H, Suzuki H, et al. Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin [J]. Endocrinology,2004,145(6):2865-2875.
    [70]Fortunati N, Catalano MG, Arena K, et al. Valproic acid induces the expression of the Na+/I- symporter and iodine uptake in poorly differentiated thyroid cancer cells [J]. J Clin Endocrinol Metab,2004,89(2):1006-1009.
    [71]Kitazono M, Chuman Y, Aikou T, et al. Construction of gene therapy vectors targeting thyroid cells:enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the cyclic adenosine 3,5-monophosphate pathway and demonstration of activity in follicular and anaplastic thyroid carcinoma cells [J]. J Clin Endocrinol Metab,2001,86(2): 834-840.
    [72]Puppin C, DAurizio F, DElia AV, et al. Effects of histone acetylation on sodium iodide symporter promoter and expression of thyroid-specific transcription factors [J]. Endocrinology,2005,146(9):3967-3974.
    [73]Schmitt TL, Espinoza CR, Loos U. Transcriptional regulation of the human sodium/iodide symporter gene by Pax8 and TTF-1 [J]. Exp Clin Endocrinol Diabetes,2001,109(1):27-31.
    [74]Taki K, Kogai T, Kanamoto Y, et al. A thyroid-specific far-upstream enhancer in the human sodium/iodide symporter gene requires Pax-8 binding and cyclic adenosine 3,5-monophosphate response element-like sequence binding proteins for full activity and is differentially regulated in normal and thyroid cancer cells [J]. Mol Endocrinol,2002,16(10):2266-2282.
    [75]Puppin C, Presta I, DElia AV, et al. Functional interaction among thyroid-specific transcription factors:Pax8 regulates the activity of Hex promoter [J]. Mol Cell Endocrinol,2004,214(1-2):117-125.
    [76]Fabbro D, Di Loreto C, Beltrami CA, et al. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms [J]. Cancer Res,1994,54(17):4744-4749.
    [77]Pasca di Magliano M, Di Lauro R, Tannini M. PAX8 has a key role in thyroid cell differentiation [J]. Proc Natl Acad Sci USA,2000,97(24):13144-13149.
    [78]Presta I, Arturi F, Ferretti E, et al. Recovery of NIS expression in thyroid cancer cells by overexpression of Pax8 gene [J]. BMC Cancer,2005,5(1):80.
    [79]Suzuki K, Lavaroni S, Mori A, et al. Autoregulation of thyroid-specific gene transcription by thyroglobulin [J]. Proc Natl Acad Sci USA,1998,95(14): 8251-8256.
    [80]Dohan O, De la Vieja A, Carrasco N. Hydrocortisone and purinergic signaling stimulate sodium/iodide symporter (NIS)-mediated iodide transport in breast cancer cells [J]. Mol Endocrinol,2006,20(5):1121-1137.
    [81]Schneider AB, Ron E. Carcinoma of follicular epithelium [A]. In:Braverman LE, Utiger R. The thyroid:a fundamental and clinical text.8th ed [M]. Philadelphia: Lippincott Williams & Wilkins,2000:875-886.
    [82]Mazzaferri EL, Kloos RT. Clinical review 128:current approaches to primary therapy for papillary and follicular thyroid cancer [J]. J Clin Endocrinol Metab, 2001,86(4):1447-1463.
    [83]Schlumberger MJ. Papillary and follicular thyroid carcinoma [J]. N Engl J Med, 1998,338(5):297-306.
    [84]Cengic N, Baker CH, Schutz M, et al. A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy following tissue-specific sodium iodide symporter gene expression [J]. J Clin Endocrinol Metab,2005,90(8): 4457.4464.
    [85]Dohan O, Baloch Z, Banrevi Z, et al. Rapid communication:predominant intracellular overexpression of the Na+/I- symporter (NIS) in a large sampling of thyroid cancer cases [J]. J Clin Endocrinol Metab,2001,86(6):2697-2700.
    [86]Kogai T, Taki K, Brent GA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer [J]. Endocr Relat Cancer,2006,13(3): 797-826.
    [87]Riesco-Eizaguirre G, Santisteban P. A perspective view of sodium iodide symporter research and its clinical implications [J]. Eur J Endocrinol,2006, 155(4):495-512.
    [88]Schmutzler C, Winzer R, Meissner-Weigl J, et al. Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells [J]. Biochem Biophys Res Commun,1997,240(3):832-838.
    [89]Simon D, Korber C, Krausch M, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer:final results of a pilot study [J]. Eur J Nucl Med Mol Imaging,2002,29(6):775-782.
    [90]Venkataraman GM, Yatin M, Marcinek R, et al. Restoration of iodide uptake in dedifferentiated thyroid carcinoma:relationship to human Na+/I- symporter gene methylation status [J]. J Clin Endocrinol Metab,1999,84(7):2449-2457.
    [91]张兰胜.全反式维甲酸对甲状腺癌细胞NIS基因表达及吸碘能力影响的实验研究[J].现代肿瘤医学,2007,15(7):904-906.
    [92]Kitazono M, Robery R, Zhan Z, et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide(FR901228), increase expression of the Na+/I-symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells [J]. J CIin Endocrinol Metab,2001,86(7):3430-3435.
    [93]Zarnegar R, Brunaud L, Kanauchi H, el al. Increasing the effectiveness of radioacaivc iodine Iherapy in the treatment of thyroid cancer using Tricaioslalin A, a histone deacetylase inhibitor [J]. Surgery,2002,132(6):984-990.
    [94]Patel A, Jhiang S, Dogra S, et al. Differentiated thyroid carcinoma that express sodium iodide symporter have a lower risk of recurrence for children and adolescents [J]. Pediatr Res,2002,52(5):737-744.
    [95]Furuya F, Shimura H, Miyazaki A, et al. Adenovirus-mediated transfer of thyroid transcription factor-1 induces radioiodide organification and retention in thyroid cancer cells [J]. Endocrinology,2004,145(11):5397-5405.
    [96]Elisei R, Vivaldi A, Ciampi R, et al. Treatment with drugs able to reduce iodine efflux significantly increases the intracellular retention time in thyroid cancer cells stably transfected with sodium iodide symporter complementary deoxyribonucleic acid [J]. J Clin Endocrinol Metab,2006,91(6):2389-2395.
    [97]Fan W, Wang GH, Yang MT, et al. Experimental study of bio-distribution and tumor imaging of 131I in nude mice bearing human breast cancer [J]. Ai Zheng, 2004,23(7):808-811.
    [98]Tazebay UH, Wapnir IL, Levy O, et al. The mammary gland iodide transporter is expressed during lactation and in breast cancer [J]. Nat Med,2000,6(8): 871-878.
    [99]Wapnir IL, van de Rijn M, Nowels K, et al. Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections [J]. J Clin Endocrinol Metab,2003,88(4):1880-1888.
    [100]Moon DH, Lee SJ, Park KY, et al. Correlation between 99mTc-pertechnetate uptakes and expressions of human sodium iodide symporter gene in breast tumor tissues [J]. Nucl Med Biol,2001,28(7):829-834.
    [101]Wapnir IL, Goris M, Yudd A, et al. The Na+/I- symporter mediates iodide uptake in breast cancer metastases and can be selectively down-regulated in thyroid [J]. Clin Cancer Res,2004,10(4):4294-4302.
    [102]Cho JY, Leveille R, Kao R, et al. Hormonal regulation of radioiodide uptake activity and Na+/I- symporter expression in mammary glands [J]. J Clin Endocrinol Metab,2000,85(8):2936-2943.
    [103]Arturi F, Ferretti E, Presta I, et al. Regulation of iodide uptake and sodium/iodide symporter expression in the mcf-7 human breast cancer cell line [J]. J Clin Endocrinol Metab,2005,90(4):2321-2326.
    [104]Unterholzner S, Willhauck MJ, Cengic N, et al. Dexamethasone stimulation of retinoic acid-induced sodium iodide symporter expression and cytotoxicity of 131-1 in breast cancer cells [J]. J Clin Endocrinol Metab,2006,91(1):69-78.
    [105]Kogai T, Schultz JJ, Johnson LS, et al. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line [J]. Proc Natl Acad Sci USA,2000,97(15):8519-8524.
    [106]Kogai T, Kanamoto Y, Li AI, et al. Differential regulation of sodium/iodide symporter gene expression by nuclear receptor ligands in MCF-7 breast cancer cells [J]. Endocrinology,2005,146(7):3059-3069.
    [107]Puppin C, D'Aurizio F, D'Elia AV, et al. Effects of histone acetylation on sodium iodide symporter promoter and expression of thyroid-specific transcription factors [J]. Endocrinology,2005,146(9):3967-3974.
    [108]Dwyer RM, Bergert ER, O'connor MK, et al. In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven expression of the sodium iodide symporter [J]. Clin Cancer Res,2005,11(4):1483-1489.
    [109]Lim SJ, Paeng JC, Kim SJ, et al. Enhanced expression of adenovirus-mediated sodium iodide symporter gene in MCF-7 breast cancer cells with retinoic acid treatment [J]. J Nucl Med,2007,48(3):398-404.
    [110]Kang JH, Chung JK, Lee YJ, et al. Establishment of a human hepatocellular carcinoma cell line highly expressing sodium iodide symporter for radionuclide gene therapy [J]. J Nucl Med,2004,45(9):1571-1576.
    [111]Faivre J, Clerc J, Gerolami R, et al. Long-term radioiodine retention and regression of liver cancer after sodium iodide symporter gene transfer in wistar rats [J]. Cancer Res,2004,64(21):8045-8051.
    [112]Shimura H, Haraguchi K, Miyazaki A, et al. Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I-symporter gene [J]. Endocrinology,1997,138(10):4493-4496.
    [113]Spitzweg C, O'Connor MK, Bergert ER, et al. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter [J]. Cancer Res,2000,60(22):6526-6530.
    [114]Scholz IV, Cengic N, Baker CH, et al. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer [J]. Gene Ther, 2005,12(3):272-280.
    [115]Dwyer RM, Bergert ER, O'Connor MK, et al. Adenovirus-mediated and targeted expression of the sodium-iodide symporter permits in vivo radioiodide imaging and therapy of pancreatic tumors [J]. Hum Gene Ther,2006,17(6): 661-668.
    [116]Dwyer RM, Bergert ER, O'Connor MK, et al. Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice [J]. Gene Ther,2006,13(1):60-66.
    [117]Dwyer RM, Schatz SM, Bergert ER, et al. A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide symporter for radioiodide imaging and therapy of locally recurrent prostate cancer [J]. Mol Ther,2005, 12(5):835-841.
    [118]Goel A, Carlson SK, Classic KL, et al. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(△51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene [J]. Blood, 2007,110(7):2342-2350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700