腺病毒介导的hsp70对大鼠肝细胞氧化应激的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物在冷应激过程中,肝脏因发生氧化应激而受损。Hsp70是一种能够提高机体应激耐受的蛋白,通过腺病毒载体感染可以将外源的hsp70引入细胞中并表达。基于此,本试验采用WST-1、原位染色、实时定量反转录PCR和western blotting等方法,针对腺病毒介导的hsp70对大鼠肝细胞氧化应激的保护作用及机制展开研究:(一)利用不同浓度H_2O_2作用BRL-3A细胞,根据细胞存活率筛选最佳的H_2O_2作用浓度和时间。然后以此浓度处理细胞,检测蛋白质羰基含量,SOD、GSH-Px和CAT酶活力,并与大鼠冷应激试验中肝脏氧化损伤指标相对比,探讨建立动物冷应激过程中肝脏氧化应激损伤的细胞模型的可行性。(二)以带有标签基因的腺病毒感染BRL-3A细胞,根据感染效率初筛病毒感染的最适浓度和作用时间。然后用带有目的基因hsp70的腺病毒以初筛出的最适浓度和时间感染BRL-3A细胞,并检测hsp70的mRNA丰度,最终确定能使hsp70的mRNA丰度最高的感染浓度和作用时间。之后在蛋白水平上验证BRL-3A细胞Hsp70过表达模型是否建立成功。(三)将感染带有hsp70腺病毒的Hsp70过表达细胞、感染空载体腺病毒的细胞和未感染病毒的细胞每一组都分为应激组和无应激组,给予相应的处理后,检测各组细胞的增殖情况,SOD、CAT和GSH-Px酶活力,LDH漏出率,GSH、MDA和蛋白质羰基含量,hsp70mRNA丰度及Hsp70表达量。以此探究重组腺病毒介导的hsp70感染细胞的方法对大鼠肝细胞氧化应激的保护作用,并希望能为Hsp70在动物抗冷应激相关领域的研究奠定基础。
     研究结果如下:(一)与对照组相比,500μmol/L H_2O_2作用于BRL-3A细胞3h,可导致细胞存活率下降(P<0.01),蛋白质羰基含量升高(P<0.01),SOD(P<0.05)、GSH-Px(P<0.05)和CAT(P<0.01)酶活力均降低。结果表明,500μmol/L H_2O_2作用于BRL-3A细胞可导致氧化应激的发生,其相关指标与大鼠冷暴露后肝脏受损指标改变趋势相符。(二)通过筛选,浓度为1×107PFU/mL的病毒Ad-CMV-hsp70按MOI=20感染BRL-3A细胞48h,比其他浓度和时间组的细胞形态保持良好,感染效率高,hsp70的mRNA丰度高(P<0.01)。检测该组细胞和病毒Ad-CMV-Null处理的细胞以及无病毒处理的对照组细胞蛋白表达量,结果显示Ad-CMV-hsp70组细胞Hsp70表达量最高,与其他两组相比均差异极显著(P<0.01)。(三)与无病毒/应激组细胞相比,Ad-CMV-hsp70/应激组的增殖率高(P<0.01),LDH漏出率低(P<0.01),CAT活力高(P<0.01),GSH-Px活力低(P<0.05),GSH含量高(P>0.05),SOD活力高(P>0.05),蛋白质羰基含量高(P<0.01),hsp70mRNA丰度及Hsp70蛋白表达量均高(P<0.01)。
     结论:(一)500μmol/L H_2O_2作用于BRL-3A细胞3h可导致氧化应激的发生,并基本模拟了大鼠冷应激过程中肝脏所受的氧化应激损伤程度。(二)以浓度为1×107PFU/mL的病毒Ad-CMV-hsp70按MOI=20感染BRL-3A细胞48h,能够建立过表达Hsp70的肝细胞模型。(三)腺病毒介导的hsp70对大鼠肝细胞氧化应激有一定的保护作用。
Animal’s liver can be injured due to oxidative stress during the cold stress. Hsp70is a protein which canimprove the body’s tolerance for stressors. An exogenous hsp70can be introduced and expressed in the cellsusing an adenoviral vector. Based on this, the effect and mechanism of the protection by adenovirus-mediatedtransfer of hsp70in rat liver cells against oxidative stress were studied by using the techniques of WST-1, insitu staining, qRT-PCR and western blotting, etc. The research consisted of3parts:(I) Determining the optimalconcentration and treatment duration of H_2O_2according to the cells’ survival rates. Then treated the cells withthis concentration, detected the protein carbonyl content, SOD, GSH-Px and CAT activities, and thencompared with the indicators from cold stress rat experiments, in order to investigate the feasibility ofmimicking oxidative liver damages in vitro.(II) Transfecting the BRL-3A cells using the adenovirus vectorwith gene tags, then proceed with a preliminary screening of the optimal concentration and treatment durationfor virus transfection according to the transfection efficiency. Then the BRL-3A cells with adenovirus carryinghsp70under those concentration and treatment duration were measured the mRNA abundance of hsp70, anddetermined the optimal transfection concentration and exposure time which enabled the maximum expressionof hsp70. Finally, verified the successful establishment of the overexpression model of Hsp70in the BRL-3Acells at the protein level.(III) Dividing the Ad-CMV-hsp70cells group, the Ad-CMV-Null cells group and thenon-transfected cells group into each one another2groups: stressed and non-stressed, then treated themseparately, and detected, in each of these6groups, the proliferation of cells, the LDH leakage rate, the SOD,CAT and GSH-Px activities, the GSH, MDA and protein carbonyl contents, the hsp70mRNA abundance andthe Hsp70protein expression level. This was to study the protective effects of hsp70gene transfer using anadenoviral vector on rat liver cells against oxidative stress, and thus we hoped to lay a foundation for thefurther researches on Hsp70in animals’ resistance to cold stress.
     The results were as follows:(I) Compared with the control group, H_2O_2of500μmol/L which acted on theBRL-3A cells for3h lead to a decrease of survival rate (P<0.01), an increase of protein carbonyl content(P<0.01) and reductions of activities of SOD (P<0.05), GSH-Px (P<0.05) and CAT (P<0.01). These resultsshowed that the H_2O_2of500μmol/L acting on BRL-3A cells could generate oxidative stress, and the trendsof change on indicators were similar to those of a cold exposed and damaged rat liver.(II) It was screened outthat transfecting the BRL-3A cells with the Ad-CMV-hsp70virus at the concentration of1×107PFU/mL,MOI=20, could better keep the cell morphology than with the other concentrations and action times, and it alsobrought a higher transfection efficiency, and a higher hsp70mRNA abundance (P<0.01). Then it was found,with statistically high significance (P<0.01), that the cells in Ad-CMV-hsp70group had the highest expressionof Hsp70than the Ad-CMV-Null group and the non-transfected control group.(III) Compared with thenon-transfected/stressed group, cells in the Ad-CMV-hsp70/stressed group showed higher proliferation rate(P<0.01), lower LDH leakage rate (P<0.01), higher CAT activity (P<0.01), lower GSH-Px activity (P<0.01),higher GSH content (P>0.05), higher SOD activity (P>0.05), higher protein carbonyl content (P<0.01), higherhsp70mRNA abundance and the protein expression level (P<0.01).
     The conclusions are as follows:(A) An oxidative stress can be generated when H_2O_2is acting on BRL-3A cells for3h, and the status is similar to a real cold-exposed-and-damaged rat liver.(B) By transfecting theBRL-3A cells with the Ad-CMV-hsp70virus at the concentration of1×10~7PFU/mL, MOI=20, for48h, anHsp70-overexpressing liver cell model can be established.(C) Adenoviral transfection of Hsp70has someprotective effects for rat liver cells against oxidative stress.
引文
[1] Sies H.What is oxidative stress?[C].//Keaney JF, Jr.Oxidative Stress and Vascular Diseas.Boston:Kluwer Academic,2000,1–8.
    [2] Dausset J, et al.In vivo repopulation ability of genetically corrected bone marrow cells from Fanconianemia patients[J].PNAS,2006,103:2340–2345.
    [3] Murad F, et al.Protein Tyrosine Nitration in the Mitochondria from Diabetic Mouse Heart[J].TheJournal of Biological Chemistry,2003,278:33972–33977.
    [4] Horvitz HR, et al.C. rlegans SIR-2.1Interacts with14-3-3Proteins to Activate DAF-16and Extend LifeSpan[J].Cell,2006,125:1165–1177.
    [5] Sharp PA, et al.The Octamer Binding Transcription Factor Oct-1is a Stress Sensor[J].Cancer Res,2005,65:10750–10758.
    [6] Smith M, et al.GDNF Reduces Oxidative Stress in a6-Hydroxydopamine Model of Parkinson’sDisease[J].Neurosci. Lett,2007,412:259–263.
    [7] Ciechanover A, et al. Oxidative Stress-related increase in ubiquitination in early coronaryatherogenesis[J].The FASEB Journal,2003,17:1730–1732.
    [8] Ignarro L J, et al.The role of oxidative stress in adult critical care[J].Free Radic. Biol. Med,2006,40:398–406.
    [9] Kandel ER, et al.Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial MemoryDeficit in Mice[J].Learning Memory,2004,11:253–260.
    [10] Smithies O, et al. Bradykinin B1and B2receptors both have protective roles in renalischemia/reperfusion injury[J].PNAS,2007,104:7576–7581.
    [11] Seaver LC, Imlay JA.Are respiratory enzymes the primary sources of intracellular hydrogenperoxide?[J].J. Biol. Chem,2004,279ffff47):48742–48750.
    [12] Messner KR, Imlay JA.Mechanism of superoxide and hydrogen peroxide formation by fumaratereductase, succinate dehydrogenase, and aspartate oxidase[J].J. Biol. Chem,2002,277(45):42563–71.
    [13] Imlay JA.Pathways of oxidative damage[J].Annu. Rev. Microbiol,2003,57:395–418.
    [14] Schafer FQ, Buettner GR.Redox environment of the cell as viewed through the redox state of theglutathione disulfide/glutathione couple[J].Free Radic. Biol. Med,2001,30(11):1191–1212.
    [15] Lennon SV, Martin SJ, Cotter TG.Dose-dependent induction of apoptosis in human tumour cell linesby widely diverging stimuli[J].Cell Prolif,1991,24(2):203–214.
    [16] Valko M, Morris H, Cronin MT.Metals, toxicity and oxidative stress[J].Curr. Med. Chem,2005,12(10):1161–1208.
    [17] Evans MD, Cooke MS.Factors contributing to the outcome of oxidative damage to nucleicacids[J].Bioessays,2004,26(5):533–542.
    [18] Lelli JL, Becks LL, Dabrowska MI,et al.ATP converts necrosis to apoptosis in oxidant-injuredendothelial cells[J].Free Radic. Biol. Med,1998,25(6):694–702.
    [19] Lee YJ, Shacter E.Oxidative stress inhibits apoptosis in human lymphoma cells[J].J. Biol. Chem,1999,274(28):19792–19798.
    [20] Patel VP, Chu CT.Nuclear transport, oxidative stress, and neurodegeneration[J].Int J Clin Exp Pathol,2011,4(3):215–229.
    [21] Nunomura A, Castellani RJ, Zhu X, et al.Involvement of oxidative stress in Alzheimer disease[J].JNeuropathol Exp Neurol,2005,65(7):631–641.
    [22] Bo kovi M, Vovk T, Kores Plesni ar B, et al. Oxidative stress in schizophrenia[J]. CurrNeuropharmacol,2011,9(2):301–12.
    [23] Ramalingam M, Kim SJ.Reactive oxygen/nitrogen species and their functional correlations inneurodegenerative diseases[J].Journal of Neural Transmission,2012,119.
    [24] Devasagayam TPA, Tilac JC, Boloor KK, et al.Free Radicals and Antioxidants in Human Health:Current Status and Future Prospects[J].Journal of Association of Physicians of India,2004,52:796.
    [25] Nijs J, Meeus M, De Meirleir K.Chronic musculoskeletal pain in chronic fatigue syndrome: recentdevelopments and therapeutic implications[J].Man Ther,2006,11(3):187–191.
    [26] Larsen PL.Aging and resistance to oxidative damage in Caenorhabditis elegans[J].Proc. Natl. Acad.Sci. U.S.A,1993,90(19):8905–8909.
    [27] Helfand SL, Rogina B.Genetics of aging in the fruit fly, Drosophila melanogaster[J].Annu. Rev. Genet,2003,37:329–48.
    [28] Tapia PC.Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactiveoxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloricrestriction, intermittent fasting, exercise and dietary phytonutrients:"Mitohormesis" for health andvitality[J].Med. Hypotheses,2006,66(4):832–843.
    [29] Sohal RS, Mockett RJ, Orr WC.Mechanisms of aging: an appraisal of the oxidative stresshypothesis[J].Free Radic. Biol. Med,2002,33(5):575–586.
    [30] Sohal RS.Role of oxidative stress and protein oxidation in the aging process[J].Free Radic. Biol. Med,2002,33(1):37–44.
    [31] Rattan SI.Theories of biological aging: genes, proteins, and free radicals[J].Free Radic. Res,2006,40(12):1230–1238.
    [32] Bjelakovic G, Nikolova D, Gluud LL,et al.Mortality in randomized trials of antioxidant supplementsfor primary and secondary prevention: systematic review and meta-analysis[J].JAMA,2007,297(8):842–857.
    [33]朱作霖.疾病防治新思路——氧化应激窗口期干预假设[J].中国医药报,2007(3):1–2.
    [34]祝炳俏,吴海歌,刘媛媛,等.黑蒜抗氧化活性研究[J].食品研究与开发,2008(10):58–60.
    [35]吴兰,娄宁,周玫,等.Ebselen对阿霉素致的小鼠亚急性心、肝、肾组织损伤的保护作用[J].基础医学与临床,1996,16(1):49–52.
    [36] Sener G, Sehirli O, Ipci Y, et al.Protective effects of Taurine against Nicotine-Induced OxidativeDamage of Rat Urinary Bladder and Kidney[J].Pharmacology,2005,74:37–44.
    [37] Song LH, Cai DL, Yan HL, et al.Effects of soybean isoflavone on liver oxidative stress resulting from60Co-gamma rays[J].Acad J Sec Mil Med Univ,2005,26(2):151–154.
    [38]房丽华,王海青,刘晓萍.天然生物膜对UVA辐射无毛小鼠皮肤的保护作用[J].齐鲁医学杂志,2002,17(2):112–115.
    [39]聂继华,丁建松,曹毅,等.900MHz微波辐射对鸡胚脑组织氧化应激及出壳后小鸡自发活动的影响[J].辐射研究与辐射工艺学报,2007,(5):294–296.
    [40]幸浩洋,胡新珉,刘鸿莲,等.O3衰老小鼠模型的DNA损伤研究[J].华西医大学报,2001,32(2):229–231.
    [41]徐黻本.D-半乳糖的亚急性毒性.第二届国际衰老研究会议[R].中国:哈尔滨,1985.
    [42] Sang X, Bao m, Li D.Advanced glycation in D-galactose induced mouse aging model[J].Mech AgingDev,1999,108(3):239–251.
    [43]吴俊芳,刘少林,潘鑫鑫,等.小檗碱对氧化应激损伤中枢神经细胞的保护作用[J].中国药学杂志,1999,(08):525–529.
    [44] Brown NJ.Aldosterone and vascular inflammation[J].Hypertension,2008,15(2):161–167.
    [45]张斌,夏作理,赵晓民,等.氧化应激模型的建立及其评价[J].中国临床康复,2006(44):112–114.
    [46]郑延松,李源,张珊红,等.用低浓度过氧化氢建立心肌细胞氧化损伤模型[J].第四军医大学学报,2001,22(20):1849–1851
    [47] Burhan Ates, M Ilker Dogru, Mehmet Gul, et al.Protective role of caffeic acid phenethyl ester in theliver of rats exposed to cold stress[J].Fundam Clin Pharmacol,2006,20(3):283–289.
    [48]徐全壹,秦玉花,薛声波.寒冷应激应答研究发展的四种趋势[J].生命的化学,2010,30(3):383–386.
    [49] Chrousos GP.Stress and disorders of the stress system[J].Nat Rev Endocrinol,2009,5:373–381.
    [50]孟姗姗.冷暴露诱导肝细胞损伤及其机制初步探讨[D].西安:第四军医大学,2009.
    [51] Makino T, et al. Processed aconite root prevents cold-stress-induced hypothermia andimmuno-suppression in mice[J].Biol Pharm Bull,2009,32:1741–1748.
    [52] Salak Johnson J L, McGlone J J.Making sense of apparently conflicting data:stress and immunity inswine and cattle[J].J Anim Sci,2007,85(13Sl): E81–E88.
    [53]于宪一.冷应激对雏鸡肠黏膜免疫影响的研究[D].哈尔滨:东北农业大学,2010.
    [54] Hashimoto K, Makino S, Asaba K, et al. Physiological roles of corticotrophin-releasing hormonereceptor type2[J].Endocrine J,2001,48(1):1–9.
    [55]杨明,李庆芬,黄晨西.冷暴露长爪沙鼠下丘脑-垂体-肾上腺轴对产热的调节[J].动物学报,2003,(5):571–577.
    [56] Camara AK, Riess ML, Kevin LG, et al.Hypothermia augments reactive oxygen species detected in theguinea pig isolated perfused heart[J].Am J Physiol Heart Circ Physiol,2004,286: H1289–1299.
    [57]徐世文.甘露寡糖抗雏鸡冷应激机理的研究[D].哈尔滨:东北农业大学,2006.
    [58]石红梅,何丽华,张颖,等.寒冷暴露致冷应激性高血压形成机制的研究[J].工业卫生与职业病,2008(05):269–272.
    [59]柯文波.应激状态对肝脏代谢的影响[J].实用肝脏病杂志,2006,9(2):107–110.
    [60]王玉同.应激对肝脏功能的影响及机理探究[D].西安:第四军医大学,2008.
    [61] Venditti P, Pamplona R, Portero-Otin M, et al.Effect of experimental and cold exposure inducedhyperthyroidism on H2O2production and susceptibility to oxidative stress of rat liver mitochondria[J].ArchBiochem Biophys,2006,447:11–22.
    [62] Venditti P, Bari A, Di Stefano L, et al.Vitamin E attenuates cold-induced rat liver oxidative damagereducing H2O2mitochondrial release[J].Int J Biochem Cell Biol,2007,39:1731–1742.
    [63]张建勤.固原鸡耐寒性状微卫星标记及其相关基因遗传变异研究[D].杨凌:西北农林科技大学,2008.
    [64]邱家祥,米克热木·沙衣布扎提,赵红琼.家禽冷应激研究进展[J].动物医学进展,2008,29(3):96–101.
    [65]许月英,李俊营,张永德,等.不同添加剂对淮南麻黄鸡抗冷应激能力的影响[J].家畜生态学报,2010,31(5):61–66.
    [66]杨焕民,计红,李士泽,等.动物冷应激研究进展.全国动物生理生化第九次学术交流会论文摘要汇编[Z].2006:51–53.
    [67]吴步猛,陈锡文,金月玲,等.铜预投对大鼠冷应激性胃溃疡的影响及机制[J].温州医学院学报,2005,35(2):107–110.
    [68]周芬,丁月云,殷宗俊,等.中草药红景天对冷应激断奶仔猪生理机能的影响[J].安徽农业科学.2011,39(12):7289–7290.
    [69] Ritossa F.A new puffing pattern induced by temperature shock and DNP in drosophila[J].Cellular andMolecular Life Sciences (CMLS),1962,18(12):571–573.
    [70] Ritossa F.Discovery of the heat shock response[J].Cell Stress Chaperones,1996,1(2):97–98.
    [71] Mayer M. P., Bukau B, et al.Hsp70chaperones: Cellular functions and molecular mechanism[J].CellMol Life Sci,2005,62(6):670–684.
    [72] Eirini Meimaridou, Sakina B Gooljar, J Paul Chapple.From hatching to dispatching: the multiple cellroles of the Hsp70molecular chaperone machinery[J].J Mol Endocrinol,2009,42(1):1–9.
    [73] Manzerra P et al.Tissue specific differences in heat shock protein hsc70and hsp70in the control andhyperthermic rabbit[J].Journal of Cellular Physiology,1997,170:130–137.
    [74]杨焕民.应激肉牛几种组织中HSPs表达的研究[D].长春:中国人民解放军军需大学,2002.
    [75]吴永魁.仔猪冷应激反应中激素、HSP70及其mRNA的动态分析[D].长春:吉林大学,2006.
    [76]李士泽,任宝波,杨焕民,等.不同强度冷应激对大鼠肌肉、脾脏和肝脏中HSP70表达的影响[J].应用与环境生物学报.2006,12(2):235–238.
    [77] Vega VL, Rodriguez-Silva M, Frey T, et al.Hsp70translocates into the plasma membrane after stressand is released into the extracellular environment in a membrane-associated form that activatesmacrophages[J].J Immunol,2008,180:4299–4307.
    [78] A Russo, M Palumbo, C Scifo, et al.Ethanol-induced oxidative stress in rat astrocytes: role of HSP70[J].Cell Biology and Toxicology,2001,17:153–168.
    [79]王慷慨.HSP70减轻氧化应激所致细胞核仁损伤的分子机制[D].长沙:中南大学2005.
    [80]范国华,陈生弟,戚辰.热休克蛋白减轻MPP~+引起的线粒体功能障碍和氧化应激[C].第九次全国神经病学学术大会论文汇编.广州,2006,546
    [81] Subash Chandra Gupta, Hifzur Rahman Siddique, Neeraj Mathur.Induction of hsp70, alterations inoxidative stress markers and apoptosis against dichlorvos exposure in transgenic Drosophila melanogaster:Modulation by reactive oxygen species[J].Biochimica et Biophysica Acta,2007,1770:1382–1394.
    [82] Marber MS, Walker JM, Latchman DS, et al. Myocardial protection after whole body heat stress in therabbit is dependent on metabolic substrate and is related tothe amount of the inducible70-kD heat stressprotein[J].J Clin Invest,1994,93(3):1087–1094.
    [83]张广雄.高热预处理对PC12细胞氧化应激损伤保护作用及其机制研究[D].武汉:华中科技大学,2006.
    [84]冼乐武,李奇林,谢可兵.谷氨酰胺对呼吸机所致肺损伤中HSP70表达的影响[J].中国急救医学,2008,28(8):731–733.
    [85]李术,贾海燕.谷氨酰胺对冷应激雏鸡肺组织中HO-1和HSP70mRNA表达的影响[C].全国动物生理生化第十一次学术交流会论文摘要汇编.昆明∶中国畜牧兽医学会动物生理生化学分会,2010:198.
    [86]刘瑜,鲁建华,张文芳,等.谷氨酰胺体外对大鼠晶状体上皮细胞HSP70和NF-κB表达的影响[J].国际眼科杂志,2010,10(9):1662–1664.
    [87]李亮.谷氨酰胺诱导肺泡Ⅱ型细胞HSP70表达及对H2O2引起的细胞凋亡的影响[D].济南:山东大学,2007.
    [88]黄建康.HSP70在机体创伤应激及维持内环境稳定作用的实验研究作者[D].南宁:广西医科大学,2010.
    [89]宋晓聪,杨芳芳,胡丹,等.腺病毒介导的热休克蛋白70表达对神经元氧化应激损伤的保护作用[J].Chinese General Practice,2010,13(2B):494–497.
    [90] Zhi-Qiang Yuan, Yan Zhang, Xiao-Lu Li et al.HSP70protects intestinal epithelial cells fromhypoxia/reoxygenation injury via a mechanism that involves the mitochondrial pathways[J].European Journalof Pharmacology,2010,643:282–288.
    [91] Lee YJ, Curetty L; Hou ZZ, et al.Effect of pH on duercetin-induced suppression of heat shock geneexpression and thermotolerance development in HT-29cells[J].Biochem Biophys Res Commun,1992,186(2):1121–1128.
    [92] Elia G, Santoro MG. Regulation of heat shock protein synthesis by quercetin in humanerthroleukaemia cells[J].Biochem J,1994,300(Pt1):201–209.
    [93] Lee YJ, Erdos C,Hou ZZ, et al.Mechanism of quercetin-induced suppression and delay of heat shockgene expression and thermotolerance development in HT-29cells[J].Mol Cell Biochem,1994,13(2):141–154.
    [94] Hosokawa N, Hirayoshi K, Kudo H, et al.Inhibition of the activation of heat shock factor in vivo andin vitro by flavonoids[J].Mol Cell Biol,1992,12(8):3490–3498.
    [95] Elia G, Amid C, Rossi A, et al. Modulation of prostaglandin A1-induced thermotolerance by quercetinin human leukemic cells: role of heat shock protein70[J].Cancer Res,1996,56(1):210–217.
    [96] Elbashir S M, Harborth J, Lendeckel W, et al.Duplexes of21nucleotide RNAs mediate RNAinterference in cultured mammalian cells[J].Nature,2001,411(6836):494–498.
    [97]张利生,陈大元.RNA干涉及其应用前景[J].遗传,2003,25(3):341–344.
    [98]韩建红.RNAi沉默HSP70基因对宫颈癌HeLa细胞增殖及凋亡的影响[D].重庆:重庆医科大学,2010.
    [99]袁婷.慢病毒载体介导的RNAi靶向沉默HSP70基因对琳巴瘤细胞凋亡的影响[D].济南:山东大学,2011.
    [100] R I费雷谢尼,等.动物细胞培养—基本技术指南[M].北京:科学出版社,2004.
    [101]张卓然.培养细胞学与细胞培养技术[M].上海:上海科学技术出版社,2004.
    [102]陈加平.微囊藻毒素LR对大鼠毒性效应研究[D].杭州:浙江大学,2004.
    [103] Hussain S M, Hess K L, Gearhart J M, et al.In vitro toxicity of nanoparticles in BRL3A rat livercells[J]. Toxicology in Vitro,2005,(19):975–983.
    [104]许刚.柴胡-黄芩药对保肝作用有效部位及其谱效关系[D].北京:北京中医药大学,2008.
    [105]王世美.TGF-β1及靶向Smad3基因shRNA慢病毒对大鼠肝细胞系BRL-3A增殖的作用[D].山西医科大学,2011.
    [106] Dulak N C, Temin H M.A partially purified polypeptide fraction from rat liver cell conditionedmedium with multiplication-stimulating activity for embryo fibroblasts[J].Journal of Cellular Physiology,1973,81:153–160.
    [107] Dulak N C, Temin H M.A partially purified polypeptide fraction from rat liver cell conditionedmedium with multiplication-stimulating activity for embryo fibroblasts[J].Journal of Cellular Physiology,1973,81:161–170.
    [108] Dulak N C, Shing Y W.Large scale purification and further characterization of a rat liver cellconditioned medium multiplication stimulating activity[J].Journal of Cellular Physiology,1977,90:127–137.
    [109] Moses A C, Nissley S P, Short P A, et al. Purification and Characterization ofMultiplication-Stimulating Activity[J].European Journal of Biochemistry,1980,103:387–400.
    [110] Svoboda M E, Van Wyk J J, Klapper D G.Purification of somatomedin-C from human plasma:chemical and biological properties, partial sequence analysis, and relationship to othersomatomedins[J].Biochemistry,1980,19(4):790–797.
    [111] Megyesi K, Kahn C R, Roth J, et al. The NSILA-s receptor in liver plasmamembranes.Characterization and comparison with the insulin receptor[J].J Biol Chem,1975,250(23):8990–8996.
    [112] Rechler M M, Fryklund L, Nissley S P, et al.Purified Human Somatomedin A and Rat MultiplicationStimulating Activity[J].European Journal of Biochemistry,1978,82(1):5–12.
    [113] Nissley S P, Short P A, Rechler M M, et al.Proliferation of buffalo rat liver cells in serum-freemedium does not depend upon multiplication-stimulating activity(MSA)[J].Cell,1977,11:441–446.
    [114] Geng Li-Ying, Zhang Chuan-Sheng, Ping Shen.Culture of Chicken Embryonic Stem Cells in BuffaloRat Liver3A Cells (BRL-3A) Conditioned Medium[J].Journal of Animal and Veterinary Advances.2011,10(6):791–795.
    [115] Colin Selman, Jane S Mclaren, Marjaana J Himanka, et al. Effect of long-term cold exposure onantioxidant enzyme activities in a small mammal[J].Free Rad Biol Med,2000,28(8):1279–1285.
    [116] Emel Sahin, Saadet Gümüslü.Stress-dependent induction of protein oxidation, lipid peroxidation andanti-oxidants in peripheral tissues of rats: comparison of three stress models(immobilization, cold andimmobilization-cold)[J].Clin Exp Pharmacol Physiol,2007,34:425–431.
    [117]计红,吴永魁,李士泽,等.冷刺激不同时间仔猪3种组织HSP70表达的Western blot检测分析[J].黑龙江八一农垦大学学报,2010,22(4):44–47.
    [118] Adriano Meneghini, Celso Ferreira, Luiz Carlos de Abreu, et al.Cold stress effects on cardiomyocytesnuclear size in rats: light microscopic evaluation[J].Rev Bras Cir Cardiovasc,2008,23(4):530–533.
    [119] Louzao M C, Vieytes M R, Botana L M.Effect of okadaic acid on glucose regulation[J].Mini RevMed Chem,2005,5:207–215.
    [120] Stefanovich P, Ezzell RM, Sheehan SJ, et al.Effects of hypothermia on the function, membraneintegrity, and cytoskeletal structure of hepatocytes[J].Cryobiology,1995,32:389–403.
    [121] P Venditti, R De Rosa, S Di Meo.Effect of cold-induced hyperthyroidism on H2O2production andsusceptibility to stress conditions of rat liver mitochondria[J].Free Radic Biol Med,2004,36:348–358.
    [122] Goldhaber J I, Weiss JN.Oxygen free radicals and cardiac reperfusion abnormalities[J].Hypertension,1992,20:118-127.
    [123]廖晓星.肾小管上皮细胞原代培养及氧化应激凋亡模型的建立[D].南昌市:江西医学院,2003.
    [124]陶学斌,李万亥,黄矛,等.过氧化氢诱导牛主动脉内皮细胞损伤和胞内Ca2+升高及钙拮抗剂的抑制作用[J].药学学报,1997,(07):485–489.
    [125] Farombi EO, Moller P, Dragsted LO.Ex-vivo and in vitro protective effects of kolaviron againstoxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat livercells[J].Cell Biol Toxicol,2004,20:1-12.
    [126] Dalle-Donne I, Rossi R, Giustarini D, et al.Protein carbonyl groups as biomarkers of oxidativestress[J].Clin Chim Acta,2003,329:23–38.
    [127] Emel Sahin, Saadet Gümüslü.Stress-dependent induction of protein oxidation, lipid peroxidation andanti-oxidants in peripheral tissues of rats: comparison of three stress models(immobilization, cold andimmobilization-cold)[J].Clin Exp Pharmacol Physiol,2007,34:425–431.
    [128] P Venditti, R De Rosa, M Portero-Otin, et al.Cold-induced hyperthyroidism produces oxidativedamage in rat tissues and increases susceptibility to oxidants[J].Int J Biochem Cell Biol,2004,36:1319–1331.
    [129] Colin Selman, Tilman Grune, Alexandra Stolzing, et al.The consequences of acute cold exposure onprotein oxidation and proteasome activity in short-tailed field voles,microtus agrestis[J].Free Rad Biol Med,2002,33:259–265.
    [130]黄晶,高建立,冯颖,等.SOD、GSH-Px、CAT系列氧化清除酶活性监测对肝组织损伤诊断的临床意义[J].临床肝胆病杂志,1998,(3):181–183.
    [131]彭庆远,钟辉秀,尹朝伦.硒、GSH-Px、SOD、MDA测定在探测肝脏疾病过氧化脂质损伤中的临床应用[J].国际检验医学杂志,2001(6):324.
    [132] Burhan Ates, M Ilker Dogru, Mehmet Gul, et al.Protective role of caffeic acid phenethyl ester in theliver of rats exposed to cold stress[J].Fundam Clin Pharmacol,2006,20(3):283–289.
    [133] Susmita Kaushik, Jyotdeep Kaur.Chronic cold exposure affects the antioxidant defense system invarious rat tissues[J].Clinica Chimica Acta,2003,333:69–77.
    [134] Colin Selman, Jane S Mclaren, Marjaana J Himanka, et al.Effect of long-term cold exposure onantioxidant enzyme activities in a small mammal[J].Free Rad Biol Med,2000,28(8):1279–1285.
    [135] Sengul Yuksel, Dilek Asma, Ozfer Yesilada.Antioxidative and metabolic responses to extended coldexposure in rats[J].Acta Biol Hung,2008,59:57–66.
    [136]范凌云,谢庆军.腺病毒载体的研究进展[J].中国生物制品学杂志,2008,21(2):153–157.
    [137]王莉梅,张东铭,沈庆煜,等.人胰岛素样生长因子-1重组腺病毒转染C17.2神经干细胞增殖及分化的影响[J].2009,(3):19–22.
    [138]王澎.hTERT启动子调控hNIS和hTPO基因联合转染胶质瘤细胞介导放射性碘治疗的研究
    [D].天津:天津大学,2010.
    [139]杨柳芹,房殿春,杨仕明,等.可溶性肿瘤坏死因子相关凋亡诱导配体重组腺病毒载体的构建及其在肝癌细胞株中的表达[J].胃病学,2008(5):276–280.
    [140]任宝波,王玉艳,王纯净,等.HSP70家族的分类及基因结构与功能[J].动物医学进展.2005,(01):98–101.
    [141]林蓉,刘俊田,李旭,等.槲皮素对血管内皮细胞损伤的保护作用[J].中国循环杂志.2000,15(5):304–305.
    [142]于丽红.香菇多糖对H2O2诱导的SH-SYSY细胞损伤的保护作用[D].济南:山东大学,2011.
    [143] Finkel T.Oxidant signals and oxidative stress[J].Curr Opin Cell Biol,2003,15(24):247–254.
    [144]张雪岩,孔玮,贾琳琳.热休克预处理对晶状体上皮细胞过氧化氢氧化损伤的保护作用[J].眼科新进展,2005,25(4):325–327.
    [145] K Sahin, C Orhan, F Akdemir, et al.Resveratrol protects quail hepatocytes against heat stress:modulation of the Nrf2transcription factor and heat shock proteins[J].Journal of Animal Physiology andAnimal Nutrition.2012,96(1):66–74.
    [146] Caroline S Broome, Anna C Kayani, Jesus Palomero, et al.Effect of lifelong overexpression of HSP70in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractileactivity[J].FASEB Journal: Official Publication of the Federation of American Societies for ExperimentalBiology,2006,20(9):1549–1551.
    [147]姜招峰,杨翰仪.氧自由基对CAT、SOD和GPX的氧化修饰研究[J].北京联合大学学报,2003,17(3):12–17.
    [148] P A OLSVIK, B E TORSTENSEN, et al.Hepatic oxidative stress in Atlantic salmon(Salmo salar L.)transferred from a diet based on marine feed ingredients to a diet based on plant ingredients[J].AquacultureNutrition,2011,17:424–436.
    [149] Winterbour CC.Superoxide as an intracellular radical sink[J].Free Radic Biol Med,1993,14:85-90.
    [150] Donati YRA, Slosman DO, Polla BS.Oxidative injury and the heat shock response[J].BiochemPharm,1990,40:2571–2577.
    [151]陈一燕.柯里拉京对氧化应激损伤SH-SY5Y和N9细胞的保护作用及其机制研究[D].福州:福建医科大学,2010.
    [152]陈瑗,周玫.自由基与衰老[M].北京:人民卫生出版社,12.
    [153]彭花,邓穗平,谈金,等.人类肾上皮细胞氧化损伤模型的建立[J].中国病理生理杂志.2012,28(1):189–192.
    [154]程桂荣,易胜中.黄芪预处理大鼠心肌保护效应的实验研究[J].高血压杂志,2001(04):42–44.
    [155]李晓泓,宋晓琳,徐莉莉,等.即刻针刺和“逆针”三阴交穴对痛经大鼠子宫HSP70、MDA及SOD的影响[J].中华中医药杂志,2010,25(11):1860–1863.
    [156]王建鑫,王安.急性冷应激对金定鸭开产前内分泌活动的影响[J].东北农业大学学报,2005,36(4):480–485.
    [157] Sahara S, Yamashima T, Calpain-mediated.Hsp70.1cleavage in hippocampal CA1neuronaldeath[J].Biochem Biophys Res Commun,2010,393(4):806–811.
    [158] Zhang HJ, Doctrow SR, Oberley LW, et al.Chronic antioxidant enzyme mimetic treatmentdifferentially modulates hyperthermia-induced liver HSP70expression with aging[J].J Appl Physiol,2006,100:1385–1391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700