海参虫草复剂对糖尿病大鼠肾脏保护作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病肾病(Diabetes nephropathy, DN)是常见的糖尿病慢性微血管并发症,病人晚期出现严重肾功能衰竭,是导致糖尿病患者死亡的主要原因之一。因此,控制和延缓糖尿病肾病的发生和发展过程具有重要的临床意义。
     海参自古以来被视为珍贵的滋补品,其味咸性温补,具有补肾益精、养血润燥、滋阴壮阳之功效。海参中含有海参多糖、海参皂苷、胶原多肽、脑苷脂等多种活性物质,具有抗氧化、降血脂、降血压和免疫调节等生理活性。蛹虫草又名北冬虫夏草,其化学成分与冬虫夏草相似,富含虫草多糖、虫草素、虫草酸、超氧化物歧化酶(Superoxide dismutase, SOD)等活性物质,具有降血糖、抗肿瘤、调节免疫和抗衰老等功能。中医认为其味甘性温平,具有补肺益肾、化痰止咳等功能。将二者配药具有大补元气、补肾益肺、养血生精之功效。本研究采用一次性腹腔注射STZ的方法建立糖尿病大鼠模型,在长期高血糖环境下造成肾脏损伤。采用日本刺参(Apostichopus japonicus)和蛹虫草(Cordyceps militaris)配制成的复剂灌胃STZ诱导的糖尿病模型大鼠,研究其对大鼠肾脏的保护作用,并对其作用机理进行了较系统和深入的研究。实验同时设立了海参和虫草单剂组作为比较。主要研究结果如下:
     海参虫草复剂具有显著的降血糖和提高肾小球率过功能的作用。实验结果显示:海参虫草复剂能显著降低糖尿病大鼠空腹血糖和肾肥大指数(P<0.05,P<0.01),显著降低血清中尿素氮(Blood urea nitrogen, BUN)、肌酐(Creatinine, Cr)和尿酸(Uric acid, UA)的含量(P<0.05,P<0.01),显著减少尿蛋白、微量白蛋白(Microalbuminuria, mAlb)及N-乙酰-β-D-氨基葡萄糖苷酶(N-acetyl-β-D-Glucosaminidase, NAG)的排泄率(P<0.05,P<0.01)。且海参虫草复剂的效果优于单剂。
     海参虫草复剂具有显著的脂质代谢调节作用。结果表明:海参虫草复剂能显著降低糖尿病大鼠血清中总胆固醇(Total cholesterol, TC)、甘油三酯(Triglyceride, TG)和游离脂肪酸(Free fatty acid, FFA)的含量(P<0.05,P<0.01),提高肝脏中饱和脂肪酸(Saturated fatty acid, SFA)比例、降低单不饱和脂肪酸(Mono-unsaturated fatty acid, MUFA)比例,并显著降低肝脏中硬脂酰辅酶A去饱和酶(Stearoyl-CoA desaturase, SCD)活性。提示海参虫草复剂对脂质代谢的调节作用可能是通过降低SCD活性来抑制脂质合成实现的。
     海参虫草复剂具有显著的抗氧化功能。实验结果显示,海参虫草复剂能显著降低糖尿病大鼠肾脏中丙二醛(Malondialdehyde, MDA)、一氧化氮(Nobelium, NO)含量(P<0.01),提高肾脏中SOD和过氧化氢酶(Catalase, CAT)活力(P<0.05,P<0.01)。提示海参虫草复剂可通过提高肾脏抗氧化酶活性,清除体内自由基,从而达到肾脏保护作用。海参虫草复剂效果较海参和虫草单剂使用时优。
     采用光学显微镜及透射电镜观察,研究了海参虫草复剂对糖尿病大鼠肾脏组织显微和亚显微结构的影响。显微观察结果表明:海参虫草复剂能显著抑制糖尿病大鼠肾小球和肾小管肿大、系膜区扩大和系膜细胞增生。亚显微观察结果显示,海参虫草复剂能显著抑制糖尿病大鼠基底膜节段性增厚,减轻足突细胞融合现象,减少溶酶体在系膜区的聚集。说明海参虫草复剂能显著改善糖尿病大鼠肾脏组织的病理学改变,且海参虫草复剂效果优于单剂。
     利用RT-PCR、Western blot和免疫组化等方法研究了海参虫草复剂对糖尿病大鼠肾脏保护的机制。结果表明,海参虫草复剂能显著抑制糖尿病大鼠肾脏中转化生长因子-β1(Transforming growth factor beta, TGF-β1)及其Ⅱ型受体(TypeⅡreceptor of TGF-β, TβRⅡ)、结缔组织生长因子(Connective tissue growth factor, CTGF)的mRNA表达,降低肾脏中TGF-β1及Ⅳ胶原蛋白的表达,提高过氧化物酶体增殖激活受体γ(Peroxisome proliferator activated receptor-γ, PPARγ)的基因表达。TGF-β1与TβRⅡ结合后发挥其生物活性直接造成肾脏损伤,并介导其下游因子CTGF的表达,促进Ⅳ胶原等细胞外基质合成、抑制其降解,导致肾脏肥大。而PPARγ激活可调节体内脂质代谢,减少脂质过氧化物对TGF-β1的刺激。提示海参虫草复剂可通过提高体内PPARγ活性,改善体内脂肪代谢紊乱,并抑制TGF-β1、TβRⅡ和CTGF的表达,从而减少细胞外基质合成,达到保护肾脏的作用。且海参虫草复剂的效果优于海参和虫草单剂使用的效果。
     本论文首次全面系统地研究了海参虫草复剂对糖尿病大鼠肾脏的保护作用,并对其机制进行了深入探讨。进一步挖掘了海参和虫草的药用价值,为海参虫草复剂临床推广应用于预防和治疗糖尿病肾病提供了较为全面、深入的分子水平的理论依据。
Diabetic nephropathy(DN) is a major complication of diabetes mellitus and a primary cause of end-stage renal failure. So, it is of improtant clinical significance to prevent the progression toward chronic renal failure in the early stage of diabetic nephropathy.
     Sea cucumber, an important food and medicine resource, has lots of bioactive substances, such as sea cucumber polysaccharide, saponins, collagen proteins and cerebrosides. These substances have been proved to possess anti-oxidation, hypolipidemic, antihypertensive and immunomodulatory activities. Cordyceps militaris, one of the most valued traditional Chinese medicines, which contains polysaccharide, cordycepin, cordycepic acid and SOD, has the activities of hypoglycemic, anti-tumour, anti-aging and kidney protection. In this study, the mixture of Apostichopus japonicus and Cordyceps militaris (AC) was used to investigate the protection effect and mechanisms in diabetes nephropathy rat which was induced by a single intraperitoneal injection of Streptozotocin. Results are shown as follows:
     AC has remarkable suppress hyperglycemia and promote glomerular filtration rate in diabetic rats. And it could decreased the renal index (p<0.05, p<0.01), the level of BUN, Cr and UA (p<0.05,p<0.01) in serum, and decreased excretion of protein, mAlb and NAG (p<0.05, p<0.01) in urine. The AC was more effective than Apostichopus japonicus and Cordyceps militaris.
     The effect of AC on rugulate lipid metabolism in DN rats was detected. The results showed that AC could significantly reduce the serum TC, TG and FFA contents (p<0.05,p<0.01) and improve the ratio of hepatic SFA. It also reduced the activities of SCD and the ratio of MUFA in the liver tissue. It is suggested that AC could inhibit the synthesis of fatty acid wich attribute to the protection of renal injury in diabetic rats.
     Comparative investigation on the effect of AC on the anti-oxidation possibility in DN rats was also conducted. The results showed that AC could reduce the content of MDA and NO (P<0.01), increase the activities of CAT(P<0.05, P<0.01) and SOD(P<0.01) remarkably in the kidney. Therefore, AC could downregulate the level of fasting blood glucose, improve lipid metabolism and promote the activities of endogenous anti-oxidation enzymes, which attribute to the impact of preventing DN. The AC was more effective than Apostichopus japonicus and Cordyceps militaris. The AC was more effective than Apostichopus japonicus and Cordyceps militaris.
     The changes of renal tissue morphology in diabetic rats were observed by optical microscope and electric microscope. The results showed that AC could lessen the glomerular hypertrophy and the extracellar matrix expansion, inhibit the mesangial hyperplasia and extension; AC could also reduce glomerular basement membrane thickness, decrease the deposition of immunocomplex and lysosomes aggregation in mesangium,witch were observed under electromicroscopy. The results presented here indicated that AC could raise the pathological change of diabetic rats
     The investigation of the protection of diabetes nephropathy mechanisms of AC were conducted by RT-PCR, immunohistochemistry or western blot analysis. The results demonstrated that the TGF-β1, TβRⅡand CTGF mRNA expression were markedly increased in the kidney of diabetic rats, which were effectively suppressed by AC treatment (P<0.05, P<0.01); AC could also improve the mRNA expression level of PPARy (P<0.05, P<0.01); Western blot and immunohistochemistry analysis showed that the expression of TGF-β1 and CollagenⅣprotein was reduced significantly by AC treatment. All these rusults suggested that the beneficial effect of AC might result from its inhibiting TGF-β1, TβRⅡand CTGF expression and activating PPARy.
     In summary, the protective effect and its mechanism of AC on the renal in the DN rats was systemically investigated for the first time, which could further the pharmaceuticals applications of AC and supplied comprehensive and intensive theoretical basis for the clinic trial on the DN.
引文
[1]Caramori ML, Mauer M. Diabetes and nephropathy[J]. Curr Opin Nephrol Hypertens.2003, 12(3):273-282.
    [2]史铁蘩.协和内分泌和代谢学[M].北京:科学出版社,1999,1349-1351.
    [3]胡仁明.内分泌代谢病临床新技术[M].北京:人民军医出版社,2002,464-468.
    [4]Sheetz MJ, King GL. Molecular understanding of hyperglycemia's adverse effects for diabetic complications[J]. JAMA,2002,288(20):2579-2587.
    [5]Nisra A, Kumar S, Kishore Vikram N, et al. The role of lipids in the development of diabetic microvascular complications:implications for therapy[J]. Am J Cardiovasc Drugs,2003, 3(5):325-338.
    [6]Tanji N, Markowitz GS, Fu C, et al. The expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and non-diabetic renal disease[J]. J Am Soc Nephrol 2000,11:1656-1666.
    [7]Ziyadeh FN. Mediators of diabetic renal disease:the case for tgf-Beta as the major mediator[J]. J Am Soc Nephrol,2004,5(Suppl 1):S55-S57.
    [8]Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy [J]. Diabetologia,2001,44:1957-1972.
    [9]Krolewski AS, Laffel LMB, Krolewski M, et al. Glycosylated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus[J]. N Engl J Med,1995, 332(19):1251-1255.
    [10]Sakurai S, Yonekura H, Yamamoto Y. The AGE-RAGE system and diabetic nephropathy [J]. J Am Soc Nephrol,2003,14(8 Suppl 3):S259-S263.
    [11]Bucala R, Viassara H. Advanced glycosylation end products in diabetic renal and vascular disease[J]. American Journal of Kidney Diseases,1995,26(6):875-888.
    [12]Striker LJ, Striker GE. Administration of AGEs in vivo induces extracellualar matrix gene express[J].Nephrol Dial Transplant,1996,11:62-65.
    [13]Nakamura T, Fukui M, Ebiharal I, et al. Abnomral gene expression of matrix metalloprotein-ases and their inhibitor in glomeurli form diabetic rats[J]. Ren Physiol Biochen,1994, 17(6):316-325.
    [14]Boyd-white J, Williams JC. Effect of cross-linking in matrix permeability:A model for AGE-modified basement membranes[J]. Diabetes,1996,45(3):348-353.
    [15]李兴,赵宝珍.非酶糖化与糖尿病慢性并发症[J].医学综述,1999,5(9):412-412.
    [16]Napolci C, Triggiani M, Palumbo G, et al. Glycosylation enhances oxygen radiacal-induced modicications and decreases acetylhydrolase activity of human low density lipoprotein[J]. Basic Res Cardiol,1997,92(6):96-105.
    [17]章精,刘志红,李颖健,等.大黄酸对体外培养小鼠肾小球系膜细胞葡萄糖转运蛋白1表达及葡萄糖摄入的影响[J].中华内分泌代谢杂志,1999,15(4):229-232.
    [18]Dorin RI, Shah VO, Kaplan DL, et al. Regulation of aldose reductase gene expression in renal cortex and medulla of rats[J]. Diabetologia,1995:38:46-54.
    [19]刘国庆,董砚虎.蛋白激酶C与糖尿病慢性并发症[J].国外医学:内分泌分册,1999,19(4):178-180.
    [20]Chen L, Jia RH, Qiu CJ, et al. Hyperglycemia inhibits the uptake of dehydroascorbate in tubular epithelial cell[J]. Am J Nephrol,2005,25(5):459-465.
    [21]Drel VR, Pacher P, Stevens MJ, et al. Aldose reductase inhibition counteracts nitrosative stress and poly (ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells[J]. Free Radic Biol Med,2006,40(8):1454-1465.
    [22]叶山东,朱禧星.氧化应激与糖尿病并发症[J].国外医学:内分泌分册,1994,14(3):128-131.
    [23]Ha H, Yu MR, Choi YJ, et al. Role of high glocose-induced nuclear factor-κB activation in monocyte chemoattratant protein-1 expression by mesangial cells[J]. J Am Soc Nephrol, 2002:13(4):894-902.
    [24]Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insuffieieney, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal anti-transforming growth fcetor-beta antibody in db/db miee[J]. Proc Natl Acad Sci USA,2000,97(14):8015-8020.
    [25]Ha H, Lee HB. Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose[J]. Kidney Int,2000,58:S19-S25.
    [26]Iglesias-De LC, Ruiz-Torres P, Alcmai J, et al. Hydrogen peroxide increases extracellular matrix mRNA through TGF-P in human mesangial cells[J]. Kidney Int,2001,59:87-95.
    [27]Studer RK, Craven PA, Derubertis FR. Antioxidant inhibition of protein kinase C-signaled increase in transforming growth factor-beta in mesangial cells[J]. Metabolism,1997, 46(8):918-925.
    [28]朱禧星主编.现代糖尿病学[M].上海:上海医科大学出版社,第一版,2000,314-316.
    [29]Yu HY, Inoguchi T, Nakayama M, et al. Statin attenuates high glucose-induced and angiotensin Ⅱ-induced MAP kinase activity through inhibition of NAD(P)H oxidase activity in cultured mesangial cells[J]. Med Chem,2005, 1(5):461-466.
    [30]卢志顺,余晓,唐俊利,等.胆固醇对血管内皮细胞的损伤[J].第三军医大学学报.2006,28(16):1679-1683.
    [31]Bays H, Mandarino L, Defronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus:peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach[J]. J Clin Endocrinol Metab,2004,89(2):463-478.
    [32]Svatikova A, Wolk R, Gami AS, et al. Interactions between obstructive sleep apnea and themetabolic syndrome[J]. Current Diabetes Reports,2005,5:53-58.
    [33]刘志红,黎磊石.糖尿病肾病发病机理[J].中华肾脏病杂志,1999,15(2):122-123.
    [34]Ando T, Okuda S, Tamaki K, et al. Localization of transforming growth factor-β and latent transforming growth factor-β binding protein in rat kidney[J]. Kidney International,1995, 47(3):733-739.
    [35]Hoffman BB, Sharma K, Zhu Y, et al. Transcriptional activation of TGF-β1 in mesangial cell culture by high glucose concentration[J]. Kidney International,1998,54(4):1107-1116.
    [36]Isono M, Mogyorosi A, Han DC, et al. Stimulation of TGF-β type Ⅱ receptor by high gluocse in mouse mesangial cells and in diabetic kidney[J]. Am J Physiol Renal Physiol,2000,278: F830-F838.
    [37]Sharmaland SJ, Scholey JW. Expression of transforming growth factor-β during diabetic renal laypertrophy [J]. Kidney Int,1994,46:430-436.
    [38]Iwano M, Knboa ML, Nishino T, et al. Quantification of glomerular TGF-β1 mRNA in patients with diabeties mellitus[J]. Kidney Int,1996,49:1120-1126.
    [39]Ellis D, Forrest KY, Erbey J, et al. Urinary measurement of transforming growth factor-β and type Ⅳcollagen as new markers of renal injury:application in diabetic nephropathy[J]. Clin Chem,1998,44(5):950-956.
    [40]Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy[J]. Kidney Int, 1999,56(2):393-405.
    [41]Sharma K, Ziyadeh FN. Renal hypertrophy is associated with upregulation of TGF-beta 1 gene expression in diabetic BB rat and NOD mouse[J]. Am J Physiol Renal Physiol,1994, 267(6):F1094-1110.
    [42]Wolf G, Sharma K, Chen Y, et al. High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-beta[J]. Kidney Int,1992,42:647-656.
    [43]Ziyadeh FN, Han DC, Cohen JA, et al. Glycated albumin stimulates fibronectin gene expression in glomerular mesangial cells involvement of the transforming growth factor-β system [J]. Kidney Int,1998,53:631-638.
    [44]Sharma K, Jin YL, Guo J, et al. Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced excellular matrix gene expression in STZ-induced diabetic mice[J]. Diabetes,1996,45:522-530.
    [45]Mclennan SV, Kelly DJ, Cox AJ, et al. Decreased matrix degradation in diabetic nephro pathy:effects of ACE inhibition on the expression and activites of matrix metalloproteinase[J]. Diabetologia,2002,452:268-275.
    [46]Sharama K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease:The case for transforming growth factor-β as a key mediator[J]. Diabetes,1995,44:1139-1146.
    [47]Nakamura T, Ushiyama C, Suzuki S,et al. Urinary excretion of podocytes in patients with diabetic nephropathy[J]. Neprol Dial Transplant,2000,15(9):1379-1383.
    [48]Ha SW, Kim HJ, Bae JS, et al. Elevation of urinary βig-h3, transforming growth factor-β-induced protein in patients with type 2 diabetes and nephropathy[J]. Diabetes Res Clin Pract,2004,65(2):1672-1673.
    [49]Schiffer M, Bitzer M, Roberts IS, et al. Apoptosis in podocytes induced by TGF-β1 and Smad7[J]. J Clin Invest,2001,108(6):807-811.
    [50]Ziyadeh FN, Han DC. Involvement of transforming growth factor-beta and its receptors in the pathogenesis of diabetic nephrology[J]. Kidney Int Suppl,1997,60:S7-S11.
    [51]Isono M, Andras M, Dong C H, et al. Stimulation of TGF-P type Ⅱ receptor by high glucose in mouse meangial cells and in diabetic kidney[J]. Am J Physiol Renal Physiol,2000,278: F830-F838.
    [52]Hill C, Flyvbjerg A, Gronbaek H, et al. The renal expression of transforming growth factor-beta isoforms and their receptors in acute and chronic experimental diabetes in rats[J]. Endocrinology,2000,141(3):1196-1208.
    [53]Hong SW, Isono M, Chen S, et al. Increased glomerular and tubular expression of transforming growth factor-β1, its type Ⅱ receptor, and activation of the Smad signaling pathway in the db/db mouse[J]. Am J Pathol,2001,158(5):1653-1663.
    [54]Dong CH, Hoffmam BB, Soon WH, et al. Therapy with antisense TGF-β1 oligadeoxy-nucleotides reduces kidney weight and matrix mRNAs in diabetic mice[J]. Am J Physiol (Renal physiol),2000,278:F628-F634.
    [55]Guh JY, Yang ML, Yang YL, et al. Captopril reverses high-glucose-induced growth effects on LLC-PK1 cells partly by decreasing transforming growth factor-beta receptor protein expressions[J]. J Am Soc Nephrol,1996,7(8):1207-1215.
    [56]Bredham DM, Igarashi A, Potter RI. et al. Connective tissue growth factor:a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10[J]. J Cell Biol,1991,114(6):1285-1294.
    [57]史玉杰,刘必成.结缔组织生长因子在糖尿病肾病发生中的作用[J].肾脏病与透析肾移植杂志,2003,12(2):172-175.
    [58]Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor[J]. FEBS Lett,1993,327(2):125-130.
    [59]Gupta S, Clarkson MR, Duggan J, et al. Connective tissue growth factor:potential role in glomerulosclerosis and tubulointerstitial fibrosis[J]. Kidney Int,2000,58(4):1389-1399.
    [60]Murphy M, Godson C, Cannon S, et al. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells[J]. J Biol Chem,1999,274(9):5830-5834.
    [61]Riser BL, Denichilo M, Cortes P, et al. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetes glomerulosclerosis [J]. J Am Soc Nephrol,2000, 11(1):25-38.
    [62]Ito Y, Aten J, Bende RJ, et al. Expression of connective tissue growth factor in human renal fibrosis[J]. Kidney Int,1998,53(4):853-861.
    [63]Adler SG, Kang SW, Feld S, et al. Glomerular mRNAs in human type 1 diabetes:biochemical evidence for microalbuminuria as a manifestation of diabetic nephropathy[J]. Kidney Int, 2001,60(6):2330-2336.
    [64]Suzuki D, Toyoda M, Umezono T, et al. Glomerular expression of connective tissue growth factor mRNA in various renal diseases[J]. Nephrology,2003,8(2):92-97.
    [65]Twigg SM, Cao Z, MCLennan SV, et al. Renal connective tissue growth factor induction in experimental diabetes is prevented by aminoguanidine[J]. Endocrinology,2002,143(12): 4907-4915.
    [66]Wahab NA, Weston BS, Roberts T, et al. Connective tissue growth factor and regulation of the mesangial cell cycle:role in cellular hypertrophy[J]. J Am Soc Nephrol,2002,13(10): 2437-2445.
    [67]Weston BS, Wahab NA, Mason RM. CTGF mediates TGF-β-induced fibronectin matrix deposition by upregulating active a5β1 integrin in human mesangial cells[J]. J Am Soc Nephrol,2003,14(3):601-610.
    [68]Yokoi H, Mukoyama M, Sugawara A, et al. Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis[J]. Am J Physiol Rena Physiol,2002, 282(5):F933-F942.
    [69]Wahab NA, Yevdokimova N, Weston BS, et al. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy[J]. Biochem J,2001,359(Ptl):77-87.
    [70]Wang S, Denichilo M, Brubaker C, et al. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy[J]. Kidney Int,2001,60:96-105.
    [71]黄海长,李惊子,王海燕.结缔组织生长因子诱导肾成纤维细胞转化成肌成纤维细胞[J].科学通报,2002,47(1):37-40.
    [72]Ines PT, Giulia C, Caroline D. Peorxisome proliefrator-activated receptors:form transcriptional control to clinical practice[J]. Current Opinion in Lipidology,2001,12(3): 245-254.
    [73]Isshiki K, Haneda M, Koya D, et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats[J]. Diabetes,2000, 49(6):1022-1032.
    [74]Nicholas SB, Kawano Y, Wakino S, et al. Expression and function of peroxisome proliferator-activated receptor-y in mesangial cells[J]. Hypertension,2001,37:722-727.
    [75]Routh RE, Johnson JH, McCarthy KJ. Troglitazone suppresses the secretion of type I collagen by mesangial cells in vitro[J]. Kidney Int,2002,61(4):1365-1376.
    [76]Asano T, Wakisaka M, Yoshinari M, et al. Peroxisome proliferator-activated receptoryl (PPARγ1)expresses in rat mesangial cells and PPARy agonists modulate its differentiation[J]. Biochim Biophys Acta.2000,1497(1):148-154.
    [77]Zheng F, Fornoni A, Elliot SJ, et al. Upregulation of type Ⅰ collagen by TGF-β in mesangial cells is blocked by PPARy activation[J]. Am J Physiol Renal Physiol,2002,282(4): F639-F648.
    [78]Kone BC. Nitric oxide in renal health and diseased[J]. Am J Kidney Dis,1997,30(3): 311-333.
    [79]Lubec B, Aufricht C, Amann G, et al. Arginine reduces lidney collagen accumalation, cross-linking, lipid peroxidation, glycoxidation, kidney weight and albuminuria in the diabetic KK mouse[J]. Nephron,1997,75(2):213-218.
    [80]Craven PA, Studer RK, Felder J, et al. Nitric oxide inhibition of transforming growth factor-beta and collagen synthesis in mesangial cells[J]. Diabetes,1997,46(4):671-681.
    [81]陈明,黄颂敏.内皮素、一氧化氮与糖尿病肾病[J].国外医学:内分泌学分册,1999,19(2):69-72.
    [82]廖玉麟.《中国动物志棘皮动物门海参纲》[M].北京:科学出版社.1997,115-117.
    [83]赵学敏.本草纲目拾遗[M].北京:商务印书馆.1995.
    [84]肖枫,曾名湧,董士远,等.海参胶原蛋白的研究进展[J].水产科学,2005,24(6):39-41.
    [85]樊绘曾.海参:海中人参-关于海参及其成分保健医疗功能的研究与开发[J].中国海洋药物,2001,4(82):37-44.
    [86]邹峥嵘,易杨华,张淑瑜,等.海参皂苷研究进展[J].中国海洋药物,2004,97(1):46-53.
    [87]Zhang SY, Yi YH, Tang HF. Bioactive Triterpene Glycosides from the Sea Cucumber Holothuria fuscocinerea[J], Journal of Natural Product,2006,69 (10):1492-1495.
    [88]Zou ZR, Yi YH, Wu HM. Intercedensides A-C, Three New Cytotoxic Triterpene Glycosides from the Sea Cucumber Mensamaria intercedens Lampert[J], Journal of Natural Product,2003, 66(8):1055-1060.
    [89]Zou ZR, Yi YH, Wu HM. Intercedensides D-I, cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens lampert[J]. Journal of Natural Products,2005,68(4): 540-546.
    [90]尹一恒,章翔,程光,等.海参皂苷抑制人脑胶质母细胞瘤U251细胞生长实验研究[J].中华神经外科疾病研究杂志,2009,8(1):19-22.
    [91]Santhakumari G, Stephen J. Antimitotic effects of holothurin[J]. Cytologia,1988,53(11): 163-168.
    [92]刘志东.革皮氏海参皂苷抗肿瘤活性及其作用机制的研究[D].青岛:中国海洋大学海洋生命学院,2009.
    [93]Sedov AM, Shepeleva IB, Zakharova NS,et al. Effect of cucumariosides(a triterpene glycoside form the holothurians cucumaria japonica) on the development of an immune response in mice to corpuscular pertussis vaccine[J]. Mikrobiol Epidemiol Immunobiol,1984, 9:100-104.
    [94]Aminin DL, Piengin BV, Pichugina LV, et al. Immununomodulatory properties of Cumaside [J]. International Immunopharmacology,2006,6:1070-1082.
    [95]Aminin DL, Agafonova IG, Berdyshev EV, et al. Immunomodulatory properties of cucumariosides from the edible Far-Eastern holothurian Cucumaria japonica [J]. J Med Food, 2001,4(3):127-135.
    [96]王静凤,傅佳,王玉明,等.格皮氏海参皂苷对小鼠免疫功能的调节作用[J].中国海洋大学学报(自然科学版)[J].2010,40(2):28-32.
    [97]胡晓倩,王玉明,任兵兴,等.海参主要活性成分对大鼠脂质代谢影响的比较研究[J].食品科学,2009,30(23):393-396.
    [98]Hu XQ, Wang YM, Wang JF, et al. Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARa and SREBP-1c signaling[J]. Lipids in Health and Disease,2010,9(25).
    [101]Kalinin Ⅵ, Volkova OV, Likhatskaya GN, et al. Hemolytic activity of triterpene glycosides from the Cucumariidae family holothurians and evolution of thisgroup of toxins[J]. J Nat Toxins,1992,1:17-30.
    [102]傅天保,林建云,陈忠科,等.二色桌片参皂苷药理作用的初步研究[J].台湾海峡,2004,5(2):144-152.
    [103]Katzman RL, Jeanloz RW. The carbohydrate chemistry of invertebrate connective tissue. In: The Chemistry and Molecular Biology of the Intercellular Matrix[J]. Academic Press,1970, 217-225.
    [104]王强基,李春艳.玉足海酸性参多糖对小鼠免疫功能的影响[J].海洋药物,1984,3(1):12-15.
    [105]黄益利,郑忠辉,苏文金,等.二色桌片参的化学成分研究Ⅲ,二色桌片参多糖-Ⅰ的免疫调节作用[C].全国第三界生命活性物质与天然生化药物学术讨论会论文集.海南,2000:129-132.
    [106]孙玲,徐迎辉,许华林.刺参酸性粘多糖对细胞免疫功能的增强作用[J].生物化学与生物物理进展,1991,18:394-395.
    [107]Imanari T, Washio Y, Huary Y, et al. Oral absorption and clearance of partially deploymeri-zed fucosy chondroitinsulfate from sea cucumber[J]. Thromb Res,1999,93(3):129-136.
    [108]王振立,刘桂敏,郑瑞,等.刺参酸性粘多糖抑制小鼠肿瘤细胞DNA合成及代谢研究[J].中国医药工业杂志,1993,24(9):405-408.
    [109]胡人杰,于苏萍,姜卉.刺参酸性黏多糖与可的松联用方案对小鼠肿瘤的抑制作用[J].癌症,1997,6:422-430.
    [110]胡仁杰,于苏萍SJAMP与可的松合用对肿瘤血管生成的抑制作用[J].中国药理学会通讯,1996,13(4):20.
    [111]Borsig L, Wang LC, Cavalcante MCM, et al. Selectin Blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber[J]. J Biol Chem,2007,282: 14984-14991.
    [112]沈卓洲,王学锋,谢育才,等.玉足海参酸性粘多糖影响凝血、血脂和血粘度的研究[J].上海医学检验杂志,1997,12(2):100-103.
    [113]Liu HH, Ko WC, Hu ML. Hypolipidemic effect of glycossaminoglycans from the sea cucumber Metriatyla scabra in rats fed acholesterol-supplemented diet[J]. J Agric Food Chem, 2002,50(12):3602-3606.
    [114]王静凤,逢龙,薛勇,等.日本刺参酸性粘多糖、皂苷和胶原蛋白多糖对血管内皮细胞的保护作用[J].中国药理学通报,2008,24(2):227-232.
    [115]沈卫章,周荣富,王学锋,等.玉足海参糖胺聚糖抗血形成的研究[J].中华血液学杂志,2006,27(9):579-583.
    [116]Suzuki N, Kitazato K, Takamatsu J, et al. Antithrombotic and anticoagulant activity of depolymerized fragment of the glycosaminoglycan extracted from Stichopus japonicus Selenka [J]. Thromb Haemost,1991,64(4):369-373.
    [117]Mourao PA, Giumaraes B, Mulloy B. Antithrombotic activity of a fucosylated chondrotin sulphate from echinoderm:sulphated fucose branches on the polysaccharid account for its antithrombotic action[J]. Br J Heamatol,1998,101(4):647-652.
    [118]Li Z, Wang H, Li J. Basic and clinical study on the antithrombotic mechanism of glycosaminoglycan extracted form cucumber[J]. Chin Mde J(Engl),2000,113(8):706-711.
    [119]徐菊娣,樊绘曾.花刺参酸性黏多糖的分离研究[J].中国海洋药物,1994,1:24-28.
    [120]樊绘曾.海参:海中人参—关于海参及其成分保健医疗功能的研究与开发[J].中国海洋药物,2001,4:37-41.
    [121]崔凤霞,薛长湖,李兆杰,等.仿刺参胶原蛋白的提取及理化性质[J].水产学报,2006,30(4):550-553.
    [122]崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究[D].青岛:中国海洋大学,2007.
    [123]赵芹.海参胶原蛋白多肽抗氧化活性的研究[D].青岛:中国海洋大学,2008.
    [124]王奕,王静凤,高森,等.日本刺参胶原蛋白多肽对紫外线诱导的光老化模型小鼠皮肤的保护作用[J].中国药科大学学报,2008,39(1):64-67.
    [125]Yuanhui Zhao, Bafang Li, Zunying Liu, Shiyuan Dong, Xue Zhao, Mingyong Zeng. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate [J]. Process biochemistry.2007,42:1586-1591.
    [126]Yuanhui Zhao, Bafang Li, Shiyuan Dong, Zunying Liu, Xue Zhao, Jingfeng Wang, Mingyong Zeng. A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate[J]. Peptides.2009,30:1028-1033.
    [127]赵元晖,李八方,曾名湧,等.一种低值海参蛋白酶解物降血压活性的研究[J].渔业现代化,2009,36(1):56-59.
    [128]Moon JH, Ryu HS, Yang HS, et al. Antimutagenic and anticancer effect of glycoprotein and chondroitin sulfates from sea cucumber (Stichopus japonicus) [J]. Korean Soc Food Nutr,1998, 27(2):350-355.
    [129]谢永玲,张明月,张静,等.海参肽对小鼠的免疫调节作用[J].中国海洋药物杂志,2009,28(4):43-45.
    [130]Rumiana K, Martin C. Phases and phase transitions of the sphin golipids[J]. BBA,1995, 1255:213-236.
    [131]Jin WZ, Kenneth LR, Elizabeth A. Ophidiacerebrosides:cytotoxic glycosphingolipids containing a novel sphingosine from a sea star[J]. J Org Chem,1994,59:144-147.
    [132]Fattorusso E, Mangoni A. Progress in the chemistry of natural products[J]. New York: Springer Wien,1997,72:215-301.
    [133]Natori T, Morita M, Akimoto K, et al. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas Mauritianus[J]. Tetrahedron,1994,50(9): 2771-2784.
    [134]邵力平等.真菌分类学[M].北京:中国林业出版社,1984:109.
    [135]吴征镒.新华本草纲要[M].上海:上海科学技术出版社,1990,731.
    [136]孙悦迎,张旭东.冬虫夏草与蛹虫草特性分析[J].中医药学报,2002,30(2):43-44.
    [137]汤晓云.蛹草的研究进展[J].基层中药杂志,2002,16(4):50-53.
    [138]龚晓健,季晖,卢顺高,等.人工虫草多糖对小鼠免疫功能的影响[J].中国药科大学学报,2000,31(1):53-55.
    [139]昌鸣先,陈孝煊,吴志新,等.虫草多糖对日本沼虾免疫机能的影响[J].华中农业大学学报,2001,20(3):275-278.
    [140]夏春雨,孙巍,刘学铭.虫草有效成分的研究进展[J].中国食用菌,2009,28(2):3-7.
    [141]Chiou WF, Chang PC, Chou CJ, et al. Protein constituent contributes to the hypotensive and vasorelaxant activities of cordyceps sinensis[J]. Life Sciences,2000,66(14):1369-1376.
    [142]Kiho T, Ookubo K, Usui S, et al. Structural features and hypoglycemic activity of polysaccharide(CS-F10) form the cultured mycelium of Cordyceps sinensis[J]. Biol Pharm Bull,1999,22(9):966-970.
    [143]Kiho T, Yamane A, Hui J, et al. Polysaccharide in fungi.ⅩⅩⅩ Ⅵ hypoglycemic activity of polysaccharide(CS-F30) form the cultured mycelium of Cordyceps sinensis and its effects on glucose metabolism in mouse liver[J]. Bio] Pharm Bull,1996,19(2):294-296.
    [144]Li SP, Zhang GH, Zeng Q, et al. Hypoglycemic activity of polysaccharide, with antioxida-tion, isolated from cultured Cordyceps mycelia[J]. Phytomedicine,2006,13:428-433.
    [145]Li SP, Li P, Dong TTX. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia[J]. Phytomedicine,2001,8(3):207-212.
    [146]Li SP, Su ZR, Dong TTX, el al. The fruiting body and its caterpillar host of Cordyceps sinensis show close resemblance in main constituents and anti-oxidation activity[J]. Phytomedecine,2002,9(4):319-324.
    [147]Li SP, Zhao KJ, Ji ZN, el al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC 12 cells against hydrogen peroxide-induced injury[J]. life Sciences,2003,73(19):2503-2513.
    [148]李连德,樊美珍,李增智.14种虫草多糖对果蝇成虫寿命影响的实验[J].微生物学通报.2000,27(6):427-428.
    [149]陈涛,尹鸿萍,吕小波,等.虫草多糖对大鼠肾脏5/6切除诱发的慢性肾衰的治疗作用[J].中药新药与临床药理,2009,20(3):221-224.
    [150]尹鸿萍,吕小波,陈涛.虫草多糖对腺嘌呤诱发慢性肾衰大鼠的治疗作用[J].中药新药与临床药理,2007,18(6):451-453.
    [151]周峰,陈涛,尹鸿萍.虫草多糖对庆大霉素诱发的急性肾衰的预防作用[J].药学与临床研究,2008,16(6):432-435.
    [152]徐方云.冬虫夏草及其发酵菌丝体的药理药效学研究[J].药品评价,2005,2(5):334-339.
    [153]林树钱,余美兰.人工虫草的研究与开发现状[J].中国食用菌,1997,1:5-7.
    [154]葛蓓蕾,江晓路.北虫草的研究现状[J].中国食用菌,1999,18(1):26-27.
    [155]凌建亚,孙迎杰,吕鹏,等.虫草属真菌中虫草菌素的超声波提取及毛细管电泳测定[J].菌物系统,2002,21(3):394-399.
    [156]程显好,白毓谦.冬虫夏草菌丝体及发醉液中抗菌活性物质的初步研究[J].中国食用菌,1996,14(3):37-38.
    [157]Bok JW, Lermer L, Chilton J, et al. Antitumor sterols from the mycelia of Cordycepin sinensis[J]. Phytochemistry,1999,51(7):891-898.
    [158]张小强,浦跃朴,尹立红,等.冬虫夏草及人工虫草菌丝体对超氧阴离子自由基和羟自由基清除作用的实验研究[J].中国老年学杂志,2003,23(11):773-775.
    [159]王本祥.现代中药药理学[M].天津:天津科学技术出版社,1996,1250.
    [160]申大伟.虫草素降低HepG2细胞内甘油三酯的机制探讨[D].延边大学生物化学与分子生物学,2008.
    [161]柴建萍,白兴荣,谢道燕.蛹虫草主要有效成分及其药理功效[J].云南农业科技,2003,4:22-23.
    [162]王建芳,杨春清.蛹虫草有效成分及药理作用研究进展[J].中医药信息,2005,22(5): 30-32.
    [163]王尊生,何卓晶,李素霞,等.蛹虫草菌丝体超氧化物歧化酶的制备[J].中国药学杂志,2006,41(22):1753-1756.
    [164]刘宏伟,林艺章.冬虫夏草防治肾脏病实验研究进展[J].中医杂志,1997,38(9):563-565.
    [165]张水生.红参虫草胶囊对糖尿病大鼠肾脏CTGF表达的影响极其机制探析[D].延边大学医学部,2007.
    [166]欧阳涓,姜傥.肾脏的损伤性诊断[J].中华检验医学杂志,2005,28(8):877-879.
    [167]向红丁.糖尿病肾病的预防措施[J].临床内科杂志,2005,22(3):147-149.
    [168]王爱民.2型糖尿病肾病危险因素分析[J].中国现代医学杂志,2005,15(1):116-119.
    [169]Glass CK, Witztum JL. Atherosclerosis.The road ahead[J]. Cell,2001,104(4):503-516.
    [170]李青,龚细礼,刘育进.血脂变化与2型糖尿病肾病的关系[J].医学临床研究,2006,23(2):184-187.
    [171]Endo K, Miyashita Y, Sasaki H, et al. Probucol delays progression of diabetic nephropathy [J]. Diabetes Res Clin Pract.2006:71(2):156-163..
    [172]Hagiwara S, Makita Y, Gu L, et al. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice:Involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation[J]. Nephrol Dial Transplant,2006,21(3):605-615.
    [173]Cha JY, Mameda Y, Yamamoto K, et al. Association between hepatic triacylglycerol accumulation induced by administering orotic acid and enhanced phosphatidate phosphohydrolase activity in rats[J]. Biosci Biotechnol Biochem,1998,62:508-520.
    [174]前田有美惠,越智寿美子,山本政利,等.食品中の脂肪酸の简易分析法[J].食衛誌,1987,28(5):384-389.
    [175]Drel VR, Pacher P, Stevens MJ, et al. Aldose reductase inhibition counteracts nitrosative stress and poly (ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells[J]. Free Radic Biol Med,2006,40(8):1454-1465.
    [176]Chen L, Jia RH, Qiu CJ, et al. Hyperglycemia inhibits the uptake of dehydroascorbate in tubular epithelial cell[J]. Am J Nephrol,2005,25(5):459-465.
    [177]Basile DP, Donohoe D, Roethe K, et al. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function[J]. Am J Physiol,2001,281: F887-F899.
    [178]王筱霞,吴兆龙.冬虫夏草对离体人肾小球系膜增殖的影响[J].中国临床药学杂志,2001,10(1):24-26.
    [179]王要军,孙自勤,权启镇,等.冬虫夏草对人成纤维细胞形态及细胞外基质合成功能的影响[J].滨州医学院学报,1999,22(3):226-227.
    [180]孙建红,何戎华,任传路,等.虫草制剂和开博通对糖尿病大鼠肾脏功能和形态影响的对比研究[J].徐州医学院学报,2000,20(6):450-453.
    [181]黄海泉.百令胶囊治疗Ⅱ型糖尿病伴微白蛋白尿的临床观察[J].中国药业,2000,9(8):4343.
    [182]窦爱霞,陆伦根.胰岛素抵抗和非酒精性脂肪性肝病研究进展[J].世界华人消化杂志.2006,14(12):1197-1202.
    [183]丁效蕙,赵景民.非酒精性脂肪性肝炎的发病机制及治疗的研究进展[J].世界华人消化杂志.2005,13(3):371-375.
    [183]Heinemann FS, Ozols J. Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms[J]. Prostaglandins Leukot Essent Fatty Acids. 2003,68(2):123-133.
    [185]Miyazaki M, Ntambi JM. Role of stearoyl-coenzymeA desaturase in lipid metabolism[J]. Prostaglandins Leukot Essent Fatty Acids.2003,68(2):113-121.
    [186]Gibbons GF, Wiggins D, Brown AM, et al. Synthesis and function of hepatic very-low-density lipoprotein[J]. Biochem Soc Trans.2004,32:59-64.
    [187]Onozato ML, Tojo A, Goto A, et al. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy:effects of ACEI and ARB[J]. Kidney Int,2002,61(1):186-194.
    [188]李才,邓义斌,王丽娟,等.实验性糖尿病大鼠肾脏自由基防御机能的改变及其意义[J].中国病理生理杂志,1995,11(6):638-641.
    [189]Brownlee M. Biochemisty and molecular cell biology of diabetic complications[J]. Nature, 2001,414:813-20.
    [190]Koya D, Lee IK, Ishii H, et al. Prevention of glomerular dysfunction in diabetic rat by treament of d-α-tocopherol[J]. J Am Soc Nephrol,1997,8(3):426-435.
    [191]Asaba K, Tojo A, Onozato ML, et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy[J]. Kidney Int,2005,67(5):1890-1898.
    [192]Oktem F, Ozguner F, Yilmaz HR, et al. Melatonin reduces urinary excretion of N-acetyl-(3-D-glucosaminidase, albumin and renal oxidative markers in diabetic rats[J]. Clin Exp Pharmacol Physiol,2006,33:95-101.
    [193]Striker LJ, Peten EP, Elliot SJ, et al. Biology of disease-mesangial cell turnover:effect of heparin and petide growth factors[J]. Lab Invest,1991,64(3):446-456.
    [194]Gambaro G, Cavazzana AO, Luzi P, et al. Glycosaminoglycans prevent morphological renal alterations and albuminuria in daibetic rats[J]. Kidney Int,1992,42(1):285-291.
    [195]Fogo AB. The role of angiotensin Ⅱ and plasminogen activator inhibitor-1 in progressive glomeruloselerosis[J]. Am J Kidney Dis,2000,35(2):179-188.
    [196]Ma LJ, Marcantoni C, Linton MF. Peroxisome proliferator-activated recepter-γ agonist troglitazone protects against nondiabetic glomerulosclerosis in rats[J]. Kidney Int,2001, 59:1899-1910.
    [197]Eng E, Floege J, Young BA, et al. Does extracellular matrix expansion in golmerular disease require mesangial cell proliferation[J]. Kidney Int,1994,45:S45-S47.
    [198]Lise W, Nielsen CB, Peter H, et al. Under control of the Ren-1C prmoter, Locally produced transforming growth factor-β1 induces accumulation of glomerular extracellular matrix in transgenic mice[J]. Diabeltes,1999,48:182-192.
    [199]Sharma K, Jin Y, Guo J, et al. Neutralization of TGF-β by anti-TGF-β antibody attenusates kidney hypertrophy and the enhanced extracellular matix gene expression in STZ-induced daibetic mice[J]. Diabetes,1996,45(4):522-530.
    [200]Wahab NA, Sehaefer L, Weston BS, et al. Glomerular expression of thrombospondin-1, transforming growth factor beta and connective tissue growth factor at different stages of diabetic nephropathy and their interdependent roles in mesangial response to diabetic stimuli[J]. Diabetologia,2005,48(12):2650-2660.
    [201]Guh JY, Yang ML, Yang YL, et al. Captopril reverses high-glucose-induced growth effects on LLC-PK1 cells partly by decreasing transforming growth factor-beta receptor protein expressions[J]. J Am Soc Nephrol,1996,7:1207-12115.
    [202]魏林,王海燕.细胞外基质在人系膜细胞增生性肾小球肾炎中的变化[J].中华病理杂志,1994,23:7-9.
    [203]鲁盈,李惊子,郑欣,等.黄芪当归合剂对肾病综合征血清脂谱和肾小球硬化的影 响[J].中国中西医结合杂志,1997,17(7):478-482.
    [204]Singh R, Song RH, Alavi N, et al. High glucose decreases Matrix metallo proteinase activity in rat mesangoal cells via transforming growth factorβ1[J]. Exp Nephrol,2001,9:249-257.
    [205]Twigg S M, Cooper M E. The time has come to target connective tissue growth factor in
    diabetic complications [J]. Diabetologia,2004,47(6):965-968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700