狭长空间内航空煤油池火燃烧特性及细水雾抑制效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道等狭长空间的日益发展,在给人们带来方便的同时,也存在巨大的火灾隐患。航空煤油作为军事、交通等领域广泛应用的高热值燃料,是燃油泄漏火灾事故中的重大危险源。前人已开展了一些有关航空煤油的研究,但对于狭长空间内通风环境下航空煤油池火的燃烧特性研究甚少;此外,由于隧道火灾事故频发,人们对狭长空间提出更高的火灾防治要求。细水雾以其清洁、高效等优点而备受欢迎,但关于狭长空间内通风环境下细水雾的研究相对较少。基于前人研究工作的不足,本文自行设计、搭建了小尺度狭长空间实验台,选择纵向通风这一狭长空间内的典型通风形式,以小尺度航空煤油池火为研究对象,采用实验模拟并辅以FDS数值模拟的方法,分别研究了狭长空间内纵向通风条件下正方形航空煤油池火的燃烧特性及细水雾对其抑制效果。
     在小尺度狭长空间模拟实验台上,利用电子天平、烟气分析仪等实验仪器及数据采集系统,开展了纵向通风条件下正方形航空煤油池火的模拟实验。通过改变纵向风速、油池面积和油池深度,深入研究了纵向风速、油池面积及油池深度对正方形航空煤油池火燃烧特性的影响,通过对比各种工况的实验结果,得到一定的变化规律,结合温度等参数,从机理方面进行了探讨。同时,利用FDS进行了辅助计算,计算模拟结果与实验模拟结果比较吻合。
     基于上述关于航空煤油燃烧特性的研究,结合细水雾发生系统,较为细致地开展了狭长空间内纵向通风条件下细水雾抑制正方形航空煤油池火的模拟实验。通过改变纵向风速、油池面积、细水雾工作压力等参数,研究了细水雾抑制航空煤油池火的有效性,分析了纵向风速、油池面积和细水雾工作压力对细水雾抑制航空煤油池火性能的影响,探讨了细水雾抑制航空煤油池火的主导机理。
     本文的研究为通风条件下航空煤油池火的燃烧特性及细水雾抑制增添了实验数据,有利于更全面地掌握航空煤油池火的特性,并为此类火灾的防治与扑救奠定了基础。
With the increasing development of the building of long and narrow space suchas tunnels, which bring convenience to daily life, fire risk also improves rapidly.Aviation fuel, with high combustion heat, is widely used in chemical industryproduction and transport processes and other areas. Meanwhile it is the risk source inthe fuel-spilled-fires. Predecessors have carried out some research on aviation fuel,but few studies on combustion characteristics of aviation fuel under longitudinalventilation in long and narrow space have been done. In addition, with high frequencyof tunnel fire disasters, higher requirements for suppressing and extinguishing firewill be necessary. Water mist technology is very popular for fire suppression in recentyears due to many advantages, such as clean, high fire extinguishing, low cost andlittle damage to protected objects etc. However, study on water mist used in long andnarrow space under longitudinal ventilation is relatively few. On the base ofinadequacy of research of formers, with experimental and numerical simulation,combustion characteristics of square aviation fuel pool fire and fire suppressioneffectiveness of water mist in long and narrow space under longitudinal ventilationwill be investigate in this paper. In order to conduct the experiments conveniently, asmall-scale experimental platform of long and narrow space was built. Andlongitudinal ventilation was selected as the typical form of ventilation.
     Experiments of square aviation fuel pool fire were carried out on the small-scaleexperimental platform above. Experimental apparatus, such as electronic balance,intelligent flue gas analyzer, and data acquisition system were used in the experiments.A thorough study on the effect of longitudinal ventilation, pool area and pool depth tothe combustion characteristics of aviation fuel was made by changing longitudinalventilation, pool area and pool depth respectively. A series of change regularities havebeen obtained by comparing different experimental results. The mechanism has beendiscussed from different parameters, such as temperature. In addition, we haveperformed numerical simulations using Fire Dynamics Simulation (FDS). Accordingto our analysis of the related data from experiments and numerical simulations, wefind that numerical and experimental results agree well.
     Based on study of the combustion characteristics of aviation fuel above, a seriesof experiments of extinguishing square aviation fuel pool fire by water mist in thelong and narrow space under ventilation. Some parameters such as longitudinal ventilation, pool area and working pressure of water mist were changed in tests toexamine the effect of these factors on the effectiveness of water mist fire suppression.With experiments on water mist pool fire suppression and analysis of experimentalresults, main mechanism of aviation fuel pool fire suppression by water misthas beensummed up.
     The present work adds experimental data in the field of aviation kerosene andwater mist study under ventilation in long and narrow space. And can enhancepeople's comprehension on combustion characteristics of aviation fuel pool fires. Inaddition the study in this paper is useful for fire prevention and fighting.
引文
[1]洪丽娟,刘传聚. 2005.隧道火灾研究现状综述[J].地下空间与工程学报, 1(1):149-155.
    [2] A. Leitner. 2001. The fire catastrophe in the Tauern Tunnel: experience and conclusions forthe Austrian guidelines[J]. Tunnelling and Underground Space Technology, (16):217-223.
    [3]唐倩,庞奇志,王超. 2008.电缆沟火灾事故分析及预防措施[J].工业安全与环保,34(1):53-55.
    [4]周旭,赵明华,刘义虎. 2002.长大隧道火灾与防治设计研究[J].中南公路工程,27(4):87-90.
    [5] R.O. Carvel. 2004. Fire size in tunnels[D]. Riccarton: Heriot-Watt University.
    [6]张硕生,张庆明,毛朝君. 2003.隧道防火保护的现状及发展趋势[J].消防技术与产品信息, (07):6-9.
    [7]陈宜吉等. 1998.隧道列车火灾案例及预防[M].北京:中国铁道出版社.
    [8]王永宏. 2004.隧道与火灾[J].消防技术与产品信息, (10):10-14.
    [9] A.N. Beard, R.O. Carvel. 2005. The handbook of tunnel fire safety[M]. London: ThomasTelford Publishing.
    [10]唐有能,谢丽霖,方正,阙思思. 2007,自动喷水灭火系统在隧道中的应用与发展趋势[J].中国给水排水, 23(18):1-4.
    [11]范维澄. 1997.火灾科学的新理论及洁净、智能防灭火技术[C].香山科学会议第83次学术讨论会主题评述报告, 28-31.
    [12] R. Maegerle. Fire protection systems for traffic tunnels under test. 12th InternationalConference on Automatic Fire Detection, USA, Mar 25-28, 2001.
    [13] Wells S.P, Cozart K.S. , Dodsworth M.B. 1997.Aircraft Hangar Fire Threat StudyAnalysis[R]. AFRL-ML-TY-TR-1998-4504 Tyndall AFB FL .Air Force Research Laboratory.
    [14] Leonard J.T., Fulper C.R., Darwin R.. 1992. Fire Hazards of Mixed Fuels on the FlightDeck[R]. Washington, D.C. Naval Research Lab.
    [15] Andrew K.K., George P.C. 2001. 9th International Fire Science and engineeringConference[C], Edinburgh. Proceedings of Interflam.
    [16] Alger R.S, Corlett R.C, Gordon A.S. 1972. Some Aspects of Strutures of Turtublent PoolFire Technology 15(2):142-156.
    [17] Babrauskas V. 1995. The SFPE Handbook of Fire Protection Engineering, 2nd ed[M].Massachusetts.National Fire Protection Association.251-261.
    [18] Apte V.B, Green J.H. 1991. Proceeding of the Third International Symposium on Fire SafetyScience[C], ElseVier, London, 425-434.
    [19] Capener R.S. 1972. AIger, WSCI 72-76. Westem States Section Meeting of the CombustionInstitute[C], Monterey, CA.
    [20]庄磊. 2008.航空煤油池火热辐射特性及热传递研究[D] .合肥.中国科学技术大学.
    [21]孙志友. 2008.航空煤油池火燃烧特性研究[D] .合肥.中国科学技术大学.
    [22] V.I. Blinov, G.N. 1961. Khudiakov. Diffusion burning of liquids[R]. U.S. Army Translation,NTIS No. AD296762.
    [23] J.R. Welker, C.M. 1966. Sliepcevich. Bending of wind-blown flames from liquid pools[J].Fire Technology, 2(2):127-135.
    [24] Joshua A.R.Woods, Brian A.Fleck, Larry W.Kostiuk. 2006. Effects of transverse air flow onburning rates of rectangular methanol pool fires[J]. Combustion and Flame,146(1-2):379-390.
    [25] J.S. Roh, S.S. Yang, H.S. Ryou, etc. 2008. An experimental study on the effect of ventilationvelocity on burning rate in tunnel fires– heptanes pool fire case[J]. Building andEnvironment, 43(7):1225-1231.
    [26] HUA L H, LIU S, PENG W, et al. Experimental study on burning rates of square/rectangulargasoline and methanol pool fires under longitudinal air flow in a wind tunnel[J]. Journal ofHazardous Materials , 169 (2009):972–979.
    [27] G.G. Back. An overview of water mist fire suppression system technology[C]. Proceedings ofHalon Options Technical Working Conference, Albuquerque, NM, 1994:327.
    [28] J.S. Pepi. Advances in the technology of intermediate pressure water mist systems for theprotection of flammable liquid hazards[C]. Proceedings of Halon Options Technical WorkingConference, Albuquerque, NM, 1998:417-425.
    [29] J.S. Pepi. Performance evaluation of a low pressure water mist system in a marine machineryspace with open doorway[C]. Proceedings of Halon Options Technical Working Conference,Albuquerque, NM, 1995:423-447.
    [30] E.A. Ural, R.G. Bill. Fire suppression performance testing of water mist systems forcombustion turbine enclosures[C]. Proceedings of Halon Options Technical WorkingConference, Albuquerque, NM, 1995:449.
    [31] A.K. Kim, Z.G. Liu. Fire suppression performance of water mist under ventilation andcycling discharge conditions[C]. The 2nd International Water Mist Conference, Amsterdam,Netherlands, Apr. 2002:61-76.
    [32] Z.G. Liu, A.K. Kim, J.Z. Su. 2001. Examination of performance of water mist firesuppression systems under ventilation conditions[J]. Journal of Fire Protection Engineering,11(3):164-193.
    [33] L.M. Yuan, C.P. Lazzara. 2004. The effects of ventilation and preborn time on water mistextinguishing of diesel fuel pool fires[J]. Journal of Fire Science, 22(5):379-404.
    [34]郑维金,雷明远,陈俊勋等. 2003.细水雾灭火系统应用于半导体厂房性能式设计实务探讨.科技厂房防灾知识管理研讨会论文集.
    [35] S.K. Ray, R.P. Singh. 2005. Effects of water mist on open fire– a model study[J]. MiningTechnology: IMM Transactions section A, 114(1):1-12.
    [36] R. Amano, Y. Izushi, H. Kurioka, T. Tsuruda, et al. 2005. Fire experiments for a road tunnel–water screen as partitioning technology[C]. In: Proceedings of the 8th InternationalSymposium on Fire Safety Science, Beijing, China, Sep.
    [37]朱伟. 2006.狭长空间纵向通风条件下细水雾抑制火灾的模拟研究[D].中国科学技术大学博士学位论文.
    [38] W. K. Chow. 1998. On smoke control for tunnels by longitudinal ventilation[J]. Tunnelingand Underground Space Technology, 13(3): 271-275.
    [39] Y. Wu, M. Z. A. Baker. 2000. Control of smoke flow in tunnel fires using longitudinalventilation systems-a study of the critical velocity. Fire Safety Journal, 35(4): 363-390.
    [40]徐亚娟,余南阳. 2001.公路隧道纵向式通风控制系统研究[J].中国公路学报, 14(3):78-80.
    [41]易亮等. 2006.柴油池火功率特性[J].燃烧科学与技术,12(2):164-168.
    [42]田丽等. 2002.油池燃烧中油面上的热反馈分析[J].消防技术与产品信息,(11):24-27.
    [43] Throton W. The Relation of Oxygen to the Heat of Combustion of Organic Compounds.Philosophical Magazine and J. of Science, 1917, 33(196):19-23.
    [44] Huggett C. 1980. Estimation of Rate of Heat Release by Means of Oxygen ConsumptionMeasurements. Fire and Materials, 4: 61-65.
    [45]刘万福,葛明慧. 2009.影响热释放速率测量因素的实验研究[J].工程热物理学报, 30(4):717-719.
    [46] K.B.McGrattanv. 2002. Fire Dynamics Simulator(Version 3) Technical Reference Guide,NISTR6783.
    [47] J.Sutula. 2002. Applications of the Fire Dynamics Simulator in fire protection engineeringconsulting Fire Protection Engineering, (14): 33-41.
    [48] O.A Ezekoye, C. H.Lan, O.Anderson. The role of strong vent flows in fire hazardpredictions using FDS. 8th AIAA/ASME Joint Thermophysics&Heat lkansfer Conference,St. Louis, Missouri, USA, June 24-26, 2002: 1-11.
    [49] C.C.Hwang, J.C.Edwards. 2005. The critical ventilation velocity in tunnel fires-a computerFireSafetyJournal, 40(3): 213-244.
    [50] A. Bounagui, A.Kashef, N.Benichou. Simulation of the Dynamics of the Fire for a Section ofthe L.H.-La Fontaine Tunnel. NRC Report, IRC-RR-140, Canada, Sep 22, 2003.
    [51]李元洲,霍然,易亮. 2004.隧道火灾烟气发展的模拟计算研究[J].中国工程科学, 6(2):67-72.
    [52]杜文锋. 1997.消防燃烧学.[M].北京.中国人民公安大学出版社.
    [53] Hiroshi Koseki. 1997. Radiation Properties and Flame Structure of Large Hydricarbon PoolFire[R]. Building and Fire Research Laboratory, National Institute of Standards andTechnology, NISTIR 6030, 41-50.
    [54]魏东等. 2005.油罐火灾燃烧速度的实验研究[J].燃烧科学与技术11(3): 286-291.
    [55] Liu Zhigang, Andrew K Kim. 2000. A review of the research and application of water mistfire suppression system-fundamental studies[J].Journal of Fire Protection Engineering, 10(3):32-50.
    [56] Kim M B et a1. 1996. Burning rate of a pool fire with downward-directed sprays. Fire SafetyJournal, (27): 37-48.
    [57]刘江虹. 2001.细水雾抑制熄灭固体火焰的模拟实验研究[D].合肥.中国科学技术大学.
    [58]廖光煊,王喜世,秦俊. 2003.热灾害实验诊断方法[M].合肥.中国科学技术大学出版社.
    [59]陈吕义.2009.细水雾抑制受限空间轰燃的实验与理论研究[D].合肥.中国科学技术大学.
    [60]余永刚,冯金莉. 2007.细水雾与液体燃料火焰相互作用的小尺度实验研究机简化模型[J].热科学与技术, 6(1): 85-90.
    [61]陆强,廖光煊,秦俊. 2002.细水雾灭油池火时各种影响因素的相对重要度分析[J].火灾科学, 11(3): 164-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700