宽带无线OFDM系统中ICI抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
OFDM技术是无线局域网、无线城域网、第四代移动通信等宽带无线系统物理层的核心技术之一;同时,OFDM还与新兴的协同通信、认知无线电等技术结合紧密,是未来通信领域的基础技术之一。但OFDM系统对子载波间干扰(ICI)很敏感,ICI会破坏子载波之间的正交性,导致系统性能恶化;尤其在实际宽带无线OFDM系统中,射频部件的模拟缺陷、基带处理的不完美和无线信道环境的复杂多变,都会引起ICI。
     论文围绕宽带无线OFDM系统中的ICI问题展开,深入研究了宽带无线OFDM系统物理层中的ICI抑制技术,包括相位噪声(PHN)抑制、时变信道的ICI均衡等,并提出了一些有效的、实用的改进方法,主要的研究内容如下:
     第一,从无线通信系统物理层的基本结构出发,较全面地分析OFDM系统中产生ICI的原因,将无线OFDM系统中ICI的来源归结为数字信号处理算法的残余误差、模拟前端的非理想特性、无线信道的时变性等三个方面,并逐一分析其对OFDM系统的影响。
     第二,针对存在PHN的突发OFDM传输系统中前导训练阶段的频偏、信道估计与PHN抑制问题,基于最大似然的思想,提出了基于训练符号的频域联合估计算法。所提算法由两个步骤来实现,第一步利用前导中两个重复的训练符号,在频域完成细频偏估计;第二步进行信道与PHN的频域估计。在第一步中,先在已知PHN的协方差先验信息的情况下,推导了频域的频偏估计算法,该算法的频偏估计结果不受PHN和信道的影响,精度较高;再假设未知PHN先验信息,该算法简化为经典的Moose算法。仿真结果表明,在PHN较小时,简化对性能的影响较小。在第二步中,通过构建等式约束的二次规划问题,并利用拉格朗日乘子法求解,从而获得信道和PHN的频域估计;并通过利用PHN的低通特性减少了待估参数维数,从而避免进行计算量较大的大矩阵求逆运算,降低了复杂度。与以前的算法相比,所提算法的优势在于:无需实际系统中难以获得的PHN协方差先验信息;而且估计过程在频域完成,能够利用PHN和信道的频域向量的特点,因此无需信道长度信息,并可利用PHN的低通特性进行化简。
     第三,针对存在PHN的突发OFDM系统中数据传输阶段的数据符号检测与PHN抑制问题,提出了基于公共相位误差(CPE)插值的联合估计算法。该算法利用PHN的缓变特性,在相邻符号的CPE估计值之间插值,将插值结果作为PHN估计值用于均衡,从而在一定程度上抑制了PHN引起的ICI,有效的克服了传统CPE校正算法中因忽略ICI影响而导致的PHN抑制效果不佳的问题。为了进一步提高PHN的抑制效果和数据符号的检测性能,采用了基于判决反馈的迭代均衡:先将CPE插值结果作为迭代过程的PHN初始值,再利用PHN估计结果消除已知导频子载波对数据子载波的影响,接着求解最小二乘问题,然后进行频域迫零均衡,得到数据符号的估计,并利用判决的数据符号反馈开始迭代,从而最终获得PHN和数据符号的联合估计。复杂度分析和仿真结果表明,在相同迭代次数时,所提迭代算法的复杂度远小于迭代双最小二乘经典算法,同时前者性能要优于后者;在不进行迭代时,所提算法性能优于传统的CPE估计算法,在相位噪声较严重时,优势尤为明显。
     第四,针对放大前传(AF)协同OFDM通信系统中同时存在频偏和PHN的情况,提出了存在频偏和PHN的AF协同OFDM系统模型及接收机算法。利用近似等价的信号模型,详细设计了目的节点内接收机的同步和信道估计方案;针对数据传输阶段的PHN抑制和数据恢复问题,提出了一种基于判决反馈的PHN估计与译码联合算法,该算法性能明显优于没有进行PHN抑制的方法。仿真结果表明,所提方案和算法能够有效改善存在频偏和PHN的AF协同OFDM系统的性能。此外,所提的接收机结构和算法还可以扩展到多个中继节点的情况。
     最后,针对时变衰落信道下ICI抑制问题和传统V-BLAST均衡算法复杂度过高的问题,提出了一种低复杂度的、适用于时变信道ICI均衡的SAGE-OSIC算法。该算法基于空间交替广义期望最大化(SAGE)算法和排序串行干扰抵消(OSIC)思想,迭代过程由求期望和求最大化两部分组成,并结合SINR排序或SNR排序,以避免迭代过程中的错误传播问题,从而改善误码性能。复杂度分析和仿真结果表明,所提的基于SINR排序和SNR排序的SAGE-OSIC算法,其复杂度明显低于V-BLAST算法,并与传统SAGE算法相当;而其性能优于传统的SAGE算法,并接近V-BLAST算法。尤其是在多普勒频移较大时,所提的新算法对系统性能的改善更加明显,因此更适合高速移动环境。
The orthogonal frequency division multiplexing (OFDM), is one of the keytechnologies of physical layer (PHY) in many wide-band wireless systems, such aswireless local area network (WLAN), wireless metropolitan area network (WMAN),and the fourth generation mobile communication systems (4G). The OFDM is also oneof the fundamental technologies for future wireless communication, due to itsintegration with the emerging techniques such as cooperative communication andcognitive radio. However, OFDM is sensitive to inter-carrier interference (ICI), whichdestroys the orthogonality among the subcarriers and degrades the system performance.There are many reasons to cause ICI in practical wideband wireless OFDM systems,such as the impairment of the RF circuits, the imperfection of the baseband processingand the time-variation of wireless channels.
     The main idea of the dissertation is to study ICI mitigation in the physical layer forwideband wireless OFDM systems, including the phase noise (PHN) mitigation and ICIequalization for time-varying channels. Besides, the improved schemes are presented.The contributions of the dissertation are as follows:
     Firstly, based on the basic structure of the PHY in wireless communications, thesources of ICI in OFDM are analyzed comprehensively, which can be described by thethree aspects: the residual error in DSP algorithms, the impairment of analog front-end,and the time-varying characteristics of the channels. The ICI effects from the sources onOFDM are also analyzed.
     Secondly, the frequency-domain joint estimation algorithm of the carrier frequencyoffset (CFO), channel and PHN, is proposed for the preamble stage in burst OFDMsystems with PHN. Using PHN covariance prior information and two repeat trainingsymbols in preamble, the fine CFO is estimated in frequency domain with high accuracy,which isn't effected by the PHN and channel. Then a low complexity algorithm withoutmatrix inversion and the PHN prior is given, and it's proven that the simplicity has alittle influence on the performance. In order to get the joint estimation of channel andPHN, a quadratic programming problem with equality constraint is formatted andsolved, and then the lowpass character of PHN is utilized to reduce the computationalcomplexity. In all, the proposed algorithm is finished in frequency domain, so thefrequency domain character of PHN and channel can be used, and no prior information about the channel length and PHN covariance is required.
     Thirdly, through the interpolation of the common phase error (CPE) of PHN, thejoint estimation of data symbol and PHN is proposed for the data transmission stage inburst OFDM systems with PHN. In order to compensate the interference from the PHNof local oscillators, an iterative algorithm for PHN estimation and equalization isproposed. Firstly, the slow-going PHN is approximated by the interpolation of theadjacent CPE, and then the interpolation points of the PHN are considered as the initialvalues for the following iteration. Finally, the phase noise and de-mapping symbols canbe obtained jointly by the iterative estimation and equalization in the frequency domain.Computer simulation illustrates that the proposed scheme with lower complexitysignificantly outperforms the conventional method based on CPE coefficient in the biterror ratio (BER) performance when the number of iterations is the same. In addition,the proposed scheme without iterations has much better BER performance than thesimple non-iteration CPE correction method, especially for the environments withsevere PHN.
     Fourthly, the amplify-and-forward (AF) cooperative OFDM system model andreceiver structure is proposed for AF cooperative OFDM system with PHN and CFO.By the approximate signal model, the scheme of synchronization and channelestimation for inner receiver is designed. And for the data transmission stage, adecision-directed joint PHN mitigation and decoding algorithms is proposed, which issuperior to the approach without PHN suppression. The proposed scheme andalgorithms can be extended to the AF cooperative OFDM systems with multiple relays.
     Finally, based on the space alternating generalized expectation-maximization(SAGE) algorithm, and the ordered serial interference cancellation (OSIC) approach, anICI mitigation algorithm, named as the SAGE-OSIC, is proposed for OFDM systemsover multipath fading and rapidly time-varying channels. Computational complexityinvestigations and simulation results indicate that the proposed SAGE-OSIC, with noincrease in the computational complexity, significantly outperforms the existingmethods based on the SAGE, especially for large Doppler shifts. In addition, theperformance of the proposed SAGE-OSIC is very close to that of the VBLASTalgorithm, where the latter demands huge computation. Hence, the proposed algorithmis particularly well suited for practical highly mobile systems.
引文
[1] ITU-T. Framework for network management of IMT-2000networks [S]. ITU E.418,2003.
    [2] ITU-T. Framework for IMT-2000networks [S]. ITU Q.1701,1999.
    [3] ITU-T. Functional network architecture for IMT-advanced [S]. ITU-T Q.1704,2008.
    [4] Hwang T, Yang C Y, Wu G, et al..OFDM and Its Wireless Applications: A Survey [J].IEEETransactions on Vehicular Technology,2009,58(4):1673-1694.
    [5] T.S. Rappaport, A. Annamalai, R.M. Buehrer, W.H. Tranter. Wireless communications: Pastevents and a future perspective [J]. IEEE Commun. Magazine,2002,40(5):148-161.
    [6]尹长川,罗涛,乐光新.多载波宽带无线通信技术[M].北京:北京邮电大学出版社,2004.
    [7] IEEE. IEEE Standard for Information technology--Telecommunications and informationexchange between systems Local and metropolitan area networks--Specific requirements Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[S].IEEE Std802.11-2012,2012:1-2793.
    [8] IEEE. IEEE standard for local and metropolitan area networks part16: air interface forbroadband wireless access systems[S]. IEEE Std802.16-2009.
    [9] Morelli M, Kuo C C J and Pun M O.Synchronization techniques for orthogonal frequencydivision multiple access(OFDMA): A tutorial review [J].Proceedings of the IEEE,2007,95(7):1394-1427.
    [10] T. M. Schmidl and D. C. Cox, Robust frequency and timing synchronization for OFDM [J].IEEE Trans. Commun.,1997,45(12):1613–1621.
    [11] Abdzadeh-Ziabari H. and Shayesteh M. G.. Robust Timing and Frequency Synchronizationfor OFDM Systems [J]. IEEE Transactions on Vehicular Technology,2011,60(8),3646-3656.
    [12] Minn H., Bhargava V. K. and Ben Letaief K.. A robust timing and frequency synchronizationfor OFDM systems [J]. IEEE Transactions on Wireless Communications,2003,2(4),822-839.
    [13] Morelli M., Imbarlina G., and Moretti M. Estimation of Residual Carrier and SamplingFrequency Offsets in OFDM-SDMA Uplink Transmissions [J]. IEEE Transactions onWireless Communications,2010,9(2):734-744.
    [14] Wu Y. L., Zhao Y. P. and Li D.. Sampling Frequency Offset Estimation for Pilot-Aided OFDMSystems in Mobile Environment [J]. Wireless Personal Communications,2012,62(1):215-226.
    [15] Kim, Y. H., Lee J. H.. Joint Maximum Likelihood Estimation of Carrier and SamplingFrequency Offsets for OFDM Systems [J]. IEEE Transactions on Broadcasting,57(2):277-283.
    [16] Wu S P, Bar-Ness Y. OFDM systems in the presence of phase noise: Consequences andsolutions [J]. IEEE Transactions on Communications,2004,52(11):1988-1996.
    [17] Petrovic D, Rave W, Fettweis G. Effects of phase noise on OFDM systems with and withoutPLL: characterization and compensation [J]. IEEE Transactions on Communications,2007,55(8):1607-1616.
    [18] Syrjala V, Valkama M, Tchamov N N, et al. Phase noise modelling and mitigation techniquesin OFDM communications systems [C]. Proceedings of2009Wireless TelecommunicationsSymposium, Prague: IEEE2009:115-122.
    [19] Wu S P, Liu P, Bar-Ness Y. Phase noise estimation and mitigation for OFDM systems [J].IEEE Transactions on Wireless Communications,2006,5(12):3616-3625.
    [20] Dagres I, Polydoros A. Decision-directed least-squares phase perturbation compensation inOFDM systems [J]. IEEE Transactions on Wireless Communications,2009,8(9):4784-4796.
    [21] Zou Q Y, Tarighat A, Sayed A H. Compensation of phase noise in OFDM wireless systems [J].IEEE Transactions on Signal Processing,2007,55(11):5407-5424.
    [22] Lin D D K, Lim T J. The variational inference approach to joint data detection and phasenoise estimation in OFDM [J]. IEEE Transactions on Signal Processing,2007,55(5):1862-1874.
    [23]张浩,陈杰,亓中瑞等. OFDM系统中相位噪声的自适应补偿技术及性能仿真[J].系统仿真学报,2008,20(1):534-538.
    [24] Liu G H, Zhu W L. Phase noise effects and mitigation in OFDM systems over Rayleighfading channels [J]. Wireless Personal Communications,2007,41(2):243-258.
    [25] K. Nikitopoulos, A. Polydoros, Phase-impairment effects and compensation algorithms forOFDM systems [J]. IEEE Trans. Communications,2005,53(4):698–707
    [26] Septier, F. and Y. Delignon, MCMC sampling for joint estimation of phase distortions andtransmitted symbols in OFDM systems [J]. Digital Signal Processing,2011,21(2):341-353.
    [27] F. Septier, Y. Delignon, A. Menhaj-Rivenq, C. Garnier, Non-pilot-aided sequential MonteCarlo method to joint signal, phase noise, and frequency offset estimation in multicarriersystems [C]. EURASIP J. Adv. Signal Process.2008.
    [28] Yu G and Xia H.OFDM joint data detection and phase noise cancellation based on minimummean square prediction error [J]. Signal Processing,2009,89(4):502-509
    [29] Gong Y and Hong X.OFDM Joint Data Detection and Phase Noise Cancellation for ConstantModulus Modulations [J].IEEE Transactions on Signal Processing,2009,57(7):2864-2868
    [30] Y. Zhao and S. G. Haggman, Sensitivity to Doppler shift and carrier frequency errors inOFDM systems—The consequences and solutions [C]. in Proc. IEEE Veh. Technol. Conf.,1996,(3):1564–1568.
    [31] Y. Zhao and S. G. Haggman, Intercarrier interference self-cancellation scheme for OFDMmobile communication systems [J]. IEEE Trans. Commun.,2001,49(7):1185–1191.
    [32] A. Seyedi and G. J. Saulnier, General ICI self-cancellation scheme for OFDMsystems [J].IEEE Trans. Veh. Technol.,2005,54(1):198–210.
    [33] Y. Zhao and S. G. Haggman, Intercarrier interference compression in OFDM communicationsystems by using correlative coding [J]. IEEE Commun. Lett.,1998,2(8):214–216.
    [34] H. Zhang and Y. Li, Optimum frequency-domain partial response encoding in OFDM system[J]. IEEE Trans. Commun.,2003,51(7):1064–1068.
    [35] Y. Fu, C. Tellambura, and W. A. Krzymien, Transmitter precoding for ICI reduction inclosed-loop MIMO OFDM systems [J]. IEEE Trans. Veh. Technol.,2007,56(1):115–125.
    [36] W. G. Jeon, K. H. Chang, and Y. S. Cho, An equalization technique for orthogonalfrequency-division multiplexing systems in time-variant multipath channels [J]. IEEE Trans.Commun.,1999,47(1):27–32.
    [37] Y. Mostofi and D. C. Cox, Robust and efficient intercarrier interference mitigation for OFDMsystems in time-varying fading channels [J]. IEEE Trans. Veh. Technol.,2007,56(5):2517–2528.
    [38] Choi Y. S., Voltz P. J., and Cassara F. A. On channel estimation and detection for multicarriersignals in fast and selective Rayleigh fading channels [J]. IEEE Transactions onCommunications,2001,49(8):1375-1387.
    [39] Y. Mostofi and D. C. Cox, ICI mitigation for pilot-aided OFDM mobile systems [J]. IEEETrans. Commun.,2005,4(2):765–774.
    [40] Tubbax J, Come B, Van der Perre L, et al., Compensation of IQ imbalance and phase noise inOFDM systems [J]. IEEE Transactions on Wireless Communications,2005,4(3):872-877.
    [41] Gu C F, Law C L and Wu W.Time Domain IQ Imbalance Compensation for WidebandWireless Systems [J].IEEE Communications Letters,2010,14(6):539-541.
    [42] Narasimhan B, Wang D D, Narayanan S, et al., Digital compensation of frequency-dependentjoint Tx/Rx I/Q imbalance in OFDM systems under high mobility [J].IEEE Journal ofSelected Topics in Signal Processing,2009,3(3):405-417.
    [43] He L L, Ma S D, Wu Y C, et al..Pilot-aided IQ imbalance compensation for OFDM systemsoperating over doubly selective channels [J].IEEE Transactions on Signal Processing,2011,59(5):2223-2233.
    [44] Zolghadrasli A and Ghamat M H.An overview of PAPR reduction techniques for multicarriertransmission and propose of new techniques for PAPR reduction [J].Iranian Journal ofElectrical and Computer Engineering,2008,7(2):115-120.
    [45] Han S H and Lee J H.An overview of peak-to-average power ratio reduction techniques formulticarrier transmission [J].IEEE Wireless Communications,2005,12(2):56-65.
    [46] Ye Y and Muschallik C., Analysis and solutions for amplitude distortions in an OFDM signalat communication receivers [J]. IEEE Transactions on Broadcasting,2009,55(3):616-622.
    [47]汪裕民. OFDM关键技术与应用[M].北京:机械工业出版社,2007.48-166.
    [48]张海滨.正交频分复用的基本原理与关键技术[M].北京:国防工业出版社,2006.
    [49] B. Razavi, Design considerations for direct-conversion receivers [J]. IEEE Transactions onCircuits and Systems II: Analog and Digital Signal Processing,1997,44(6):428-435.
    [50] L. Piazzo and P. Mandarini, Analysis of phase noise effects in OFDM modems [J]. IEEETransactions on Communications,2002,50(10):1696-1705.
    [51] Lin, D.D., et al., Joint estimation of channel response, frequency offset, and phase noise inOFDM. IEEE Transactions on Signal Processing,2006.54(9):3542-3554.
    [52] El-Tanany M. S., Wu Y. Y., and Hazy H, Analytical modeling and simulation of phase noiseinterference in OFDM-based digital television terrestrial broadcasting systems [J]. IEEETransactions on Broadcasting,2001,47(1):20-31.
    [53] Zhang J H, Rohling H and Zhang P. Analysis of ICI cancellation scheme in OFDM systemswith phase noise [J].IEEE Transactions on Broadcasting,2004,50(2):97-106.
    [54] Demir A, Mehrotra A and Roychowdhury J.Phase noise in oscillators: a unifying theory andnumerical methods for characterization [J].Circuits and Systems I: Fundamental Theory andApplications, IEEE Transactions on,2000,47(5):655-674.
    [55] Lee T H and Hajimiri A.Oscillator phase noise: a tutorial [J].Solid-State Circuits, IEEEJournal of,2000,35(3):326-336.
    [56] Debaillie B, Van Wesemael P, Vandersteen G, et al..Calibration of Direct-ConversionTransceivers [J].IEEE Journal of Selected Topics in Signal Processing,2009,3(3):488-498.
    [57] Tandur D and Moonen M.Decoupled compensation of IQ imbalance in MIMO OFDMsystems [J].Signal Processing,2011,91(5):1194-1209.
    [58] Tandur D and Moonen M.Efficient compensation of transmitter and receiver IQ imbalance inOFDM systems [J].Eurasip Journal on Advances in Signal Processing,2010.
    [59] Saleh A. Frequency-independent and frequency-dependent nonlinear models of TWTamplifers [J].IEEE Transactions on Communications,1981,29:1715–1720.
    [60] Fran ois Horlin and André Bourdoux. Digital compensation for analog front-ends: a newapproach to wireless transceiver design [M], John Wiley&Sons,2008.
    [61] Banelli P, Baruffa G and Cacopardi S.Effects of HPA non linearity on frequency multiplexedOFDM signals [J].IEEE Transactions on Broadcasting,2001,47(2):123-136.
    [62] Banelli P and Cacopardi S.Theoretical analysis and performance of OFDM signals innonlinear AWGN channels [J].IEEE Transactions on Communications,2000,48(3):430-441
    [63] MAX2831/MAX2832datasheet, www.maxim-ic.com,2011.
    [64]李恩玉,杨士中,吴皓威等.一种基于PTS技术降低OFDM系统峰均比的改进算法[J].电子与信息学报,2011,(10).2511-2515
    [65] Coleri S, Ergen M, Puri A, et al..Channel estimation techniques based on pilot arrangementin OFDM systems [J].IEEE Transactions on Broadcasting,2002,48(3):223-229.
    [66] Tang Z J, Cannizzaro R C, Leus G, et al..Pilot-assisted time-varying channel estimation forOFDM systems [J].IEEE Transactions on Signal Processing,2007,55(5):2226-2238.
    [67] Simon E P, Ros L, Hijazi H, et al..Joint Carrier Frequency Offset and Channel Estimation forOFDM Systems via the EM Algorithm in the Presence of Very High Mobility [J].IEEETransactions on Signal Processing,2012,60(2):754-765.
    [68]张贤达,保铮.通信信号处理[M],国防工业出版社,北京,2002.
    [69] Y. Li and L. J. Cimini, Jr., Interchannel interference of OFDM in mobile radio channels [C].in Global Telecommunications Conference, IEEE GLOBECOM.2000,(2):706-710.
    [70] Fettweis G, Lohning M, Petrovic D, et al. Dirty RF: a new paradigm [J]. International Journalof Wireless Information Networks,2007,14(2):133-148.
    [71] K. Nikitopoulos and A. Polydoros, Compensation schemes for phase noise and residualfrequency offset in OFDM systems [C]. IEEE GLOBECOM’01,2001,(1):330–333.
    [72] S.Wu and Y. Bar-Ness, OFDM channel estimation in the presence of frequency offset andphase noise [C]. in Proc. IEEE Int. Conf. Communications (ICC)2003,2003,(5):3366–3370.
    [73] R. A. Casas, S. L. Biracree, and A. E. Youtz, Time domain phase noise correction for OFDMsignals [J]. IEEE Trans. Broadcast.,2002,48(1):230–236.
    [74] X. Ma, M. Oh, G. B. Giannakis, and D. Park, Hopping pilots for estimation offrequency-offset and multiantenna channels in MIMO-OFDM [J]. IEEE Trans. Commun.,2005,53(1):162–172.
    [75] M. Pun, M. Morelli, and C. C. J. Kuo, Maximum-likelihood synchronization and channelestimation for OFDMA uplink transmissions [J]. IEEE Trans. Commun.,2006,54(4):726–736.
    [76] Tao J, Wu J X and Xiao C S.Estimation of channel transfer function and carrier frequencyoffset for OFDM systems with phase noise [J].IEEE Transactions on Vehicular Technology,2009,58(8):4380-4387.
    [77] Septier, F., et al., Monte Carlo methods for channel, phase noise, and frequency offsetestimation with unknown noise variances in OFDM systems. IEEE Transactions on SignalProcessing,2008.56(8):3613-3626.
    [78] J. G. Booth, J. P. Hobert, and W. S. Jank, A survey of Monte Carlo algorithms formaximizing the likelihood of a two stage hierarchical model [J]. Stat. Model,2001,(1):333–349.
    [79] Carvajal, R., et al., EM-based channel estimation in OFDM systems with phase noise [C], in2011IEEE Global Telecommunications Conference.2011, IEEE: New York.
    [80] Lin D D K and Lim T J.The variational inference approach to joint data detection and phasenoise estimation in OFDM [J].IEEE Transactions on Signal Processing,2007,55(5):1862-1874.
    [81] Petrovic D, Rave W, Fettweis G. Effects of phase noise on OFDM systems with and withoutPLL: characterization and compensation [J]. IEEE Transactions on Communications,2007,55(8):1607-1616.
    [82] Robert M. Gray. Toeplitz and Circulant Matrices: A review [M], Now Publishers Inc,2006
    [83] Moose P H.A technique for orthogonal frequency-division multiplexing frequency offsetcorrection [J].IEEE Transactions on Communications,1994,42(10):2908-2914.
    [84] S.M. Kay, Fundamentals of statistical signal processing—estimation theory. Upper SaddleRiver, NJ: Prentice-Hall PTR,1993:328–330.
    [85] T.M. Schmidl and D. C. Cox, Robust frequency and timing synchronization for OFDM [J].IEEE Trans. Commun.,1997,45(12):1613–1621.
    [86] IEEE P802.11-Task Group G. Phase Noise Matlab Model [Online]. Available: http:.grouper.IEEE.org/groups/802/11/Reports/tgg_update.htm.
    [87] Rabiei P, Won N and Al-Dhahir N.A Non-iterative Technique for Phase Noise ICI Mitigationin Packet-Based OFDM Systems [J].IEEE Transactions on Signal Processing,2010,58(11):5945-5950.
    [88] A. Sendonaris, E. Erkip, and B. Aazhang, User cooperation diversity part I: systemdescription [J]. IEEE Trans. Commun.,2003,51(11):1927-1938.
    [89] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, Cooperative diversity in wireless networks:efficient protocols and outage behavio [J]. IEEE Trans. Inf. Theory,2004,50(12):3062-3080.
    [90] R. U. Nabar, H. B lcskei, and F. W. Kneubühler, Fading relay channels: performance limitsand space-time signal design [J]. IEEE J. Sel. Areas Commun.,2004,22(6):1099-1109.
    [91] Bletsas A, Shin H D and Win M Z.Cooperative communications with outage-optimalopportunistic relaying [J].IEEE Transactions on Wireless Communications,2007,6(9):3450-3460.
    [92] Mheidat H, Uysal M and Al-Dhahir N.Equalization techniques for distributed space-timeblock codes with amplify-and-forward relaying [J].IEEE Transactions on Signal Processing,2007,55(5):1839-1852.
    [93] Suraweera H A and Armstrong J. Performance of OFDM-based dual-hopamplifily-and-forward relaying [J].IEEE Communications Letters,2007,11(9):726-728.
    [94] Y. Ding and M. Uysal, Amplify-and forward cooperative OFDM with multiple-relays:performance analysis and relay selection methods [J]. IEEE Trans. Wireless Commun.,2009,8(10):4963-4968.
    [95] X. Zhang, M. Tao, W. Jiao, and C. S. Ng, End-to-end outage minimization in OFDM basedlinear relay networks [J]. IEEE Trans. Commun.,2009,57(10):3034-3044.
    [96] W. P. Siriwongpairat, A. K. Sadek, and K. J. R. Liu, Cooperative communications protocolfor multiuser OFDM networks [J]. IEEE Trans. Wireless Commun.,2009,7(7):2430-2435.
    [97] Gao F F, Zhang R and Liang Y C.Channel estimation for OFDM modulated two-way relaynetworks [J].IEEE Transactions on Signal Processing,2009,57(11):4443-4455
    [98] B. Jiang, H. Wang, X. Gao, S. Jin, and K. K. Wong, Preamble-based channel estimation foramplify-and-forward OFDM relay networks [C]. IEEE Globecom, Dec.2009.
    [99] C. S. Patel and G. L. Stüber, Channel estimation for amplify and forward relay basedcooperation diversity systems [J]. IEEE Trans. Wireless Commun.,2007,6(6):2348-2356.
    [100] B. Gedik and M. Uysal, Impact of imperfect channel estimation on the performance ofamplify-and-forward relaying [J]. IEEE Trans. Wireless Commun.,2009,8(3):1468-1479.
    [101] Zhang Z S, Zhang W and Tellambura C.Cooperative OFDM channel estimation in thepresence of frequency offsets [J].IEEE Transactions on Vehicular Technology,2009,58(7):3447-3459.
    [102] Rabiei, P., W. Namgoong, and N. Al-Dhahir, On the performance of OFDM-basedamplify-and-forward relay networks in the presence of phase noise [J]. IEEE Transactions onCommunications,2011,59(5):1458-1466.
    [103] IEEE Standard for Local and metropolitan area networks Part16: Air Interface for BroadbandWireless Access Systems Amendment1: Multiple Relay Specification [S].IEEE Std802.16j-2009(Amendment to IEEE Std802.16-2009),2009,: c1-290
    [104] Islam T, Schober R, Mallik R K, et al..Analysis and design of cooperative BICM-OFDMsystems [J].IEEE Transactions on Communications,2011,59(6):1742-1751.
    [105] Jiang Y X, Hu Y X and You X H.SINR degradation due to carrier frequency offset in OFDMbased amplify-and-forward relay systems [J].IEICE Transactions on Communications,2012,E95B(1):317-32.
    [106] Suzuki A, Sanada Y and Namori M.Frequency offset amplify-and-forward relay in OFDMsystem [J].IEICE Transactions on Communications,2011, E94B(12):3289-3295.
    [107] Gao F F, Jiang B, Gao X Q, et al..Superimposed training based channel estimation forOFDM modulated amplify-and-forward relay networks [J]. IEEE Transactions onCommunications,2011,59(7):2029-2039.
    [108] He L L, Wu Y C, Ma S D, et al..Superimposed training-based channel estimation and datadetection for OFDM amplify-and-forward cooperative systems under high mobility [J].IEEETransactions on Signal Processing,2012,60(1):274-284.
    [109] Shin O S, Chan A M, Kung H T, et al..Design of an OFDM cooperative space-time diversitysystem [J].IEEE Transactions on Vehicular Technology,2007,56(4):2203-2215.
    [110] Schenk T C W, Tao X J, Smulders P F M, et al..On the influence of phase noise induced ICIin MIMO OFDM systems [J].IEEE Communications Letters,2005,9(8):682-684.
    [111] Pan L, Bar-Ness Y and Zhu J.Effects of phase noise at both transmitter and receiver on theperformance of OFDM systems [C].200640th Annual Conference on Information Sciencesand Systems (IEEE Cat No.06EX1366C),2006.
    [112] Speth M, Fechtel S A, Fock G, et al..Optimum receiver design for wireless broad-bandsystems using OFDM-Part I [J].IEEE Transactions on Communications,1999,47(11):1668-1677.
    [113] Troya A, Maharatna K, Krstic M, et al..Efficient inner receiver design for OFDM-basedWLAN systems: Algorithm and architecture [J]. IEEE Transactions on WirelessCommunications,2007,6(4):1374-1385.
    [114] H. Meyr, M. Moeneclaey, and S. Fechtel, Digital communication receivers: synchronizationand channel estimation algorithms. New York: Wiley,1997.
    [115] Ozdemir M K, Arslan H. Channel estimation for wireless OFDM systems [J].IEEECommunications Surveys&Tutorials,2007,9(2):18-48.
    [116] Simon E P, Ros L, Hijazi H, et al..Joint carrier frequency offset and channel estimation forOFDM systems via the EM algorithm in the presence of very high mobility [J]. IEEETransactions on Signal Processing,2012,60(2):754-765.
    [117] Hrycak T, Das S, Matz G, et al..Practical estimation of rapidly varying channels for OFDMsystems [J]. IEEE Transactions on Communications,2011,59(11):3040-3048
    [118] Wan P, McGuire M and Dong X D.Near-Optimal Channel estimation for OFDM infast-fading channels [J]. IEEE Transactions on Vehicular Technology,2011,60(8):3780-3791.
    [119] Zhang H, Dai X H and Pan D R.Linearly time-varying channel estimation and training powerallocation for OFDM/MIMO systems using superimposed training [J]. ScienceChina-Information Sciences,2011,54(7):1456-1470.
    [120] Panayirci E, Dogan H and Poor H V.Low-complexity MAP-based successive data detectionfor coded OFDM systems over highly mobile wireless channels [J].IEEE Transactions onVehicular Technology,2011,60(6):2849-2857.
    [121] Park J H, Whang Y, Kim K S. Low complexity MMSE-SIC equalizer employingtime-domain recursion for OFDM systems [J].IEEE Signal Processing Letters,2008,15:633-636.
    [122] Schniter P. Low-complexity equalization of OFDM in doubly selective channels [J].IEEETransactions on Signal Processing,2004,52(4):1002-1011.
    [123] Dogan H, Panayirci E, Poor H V. Low complexity joint data detection and channelequalisation for highly mobile orthogonal frequency division multiplexing systems [J].IETCommunications,2010,4(8):1000-1011.
    [124] Rugini L, Banelli P, Leus G. Simple equalization of time-varying channels for OFDM[J].IEEE Communications Letters,2005,9(7):619-621.
    [125]陈东华,仇洪冰.一种新的适用于OFDM系统的时变信道估计与均衡方案[J].西安电子科技大学学报,2010,37(6):999-1004.
    [126]韩华,吴乐南.时频双选信道OFDM系统的ICI消除与均衡[J].信号处理,2010,26(7):1039-1043.
    [127]席晓平,张灿.移动OFDM系统中的ICI消除算法研究[J].电子与信息学报,2009,31(3):653-656.
    [128] Hwang S U, Lee J H and Seo J. Low complexity iterative ICI cancellation and equalizationfor OFDM systems over doubly selective channels [J].IEEE Transactions on Broadcasting,2009,55(1):132-139.
    [129] Hsu C Y, Wu W R. Low-complexity ICI mitigation methods for high-mobilitySISO/MIMO-OFDM systems [J].IEEE Transactions on Vehicular Technology,2009,58(6):2755-2768.
    [130] Chen S P, Dai G F and Rao W G.ICI mitigation and diversity gain for OFDM systems intime-varying multipath fading channels [J].European Transactions on Telecommunications,2011,22(2):61-67.
    [131] A. F.Molisch,M. Toeltsch, and S. Vermani, Iterative methods for cancellation of intercarrierinterference in OFDM systems [J]. IEEE Trans. Veh. Technol.,2007,vol.56(4):2158–2167.
    [132] A. Gorokhov and J.-P. Linnartz, Robust OFDM receivers for dispersive time varying channels:Equalisation and channel acquisition [C]. in Proc. IEEE Int. Conf. Commun.(ICC), NewYork, Apr./May2002:470–474
    [133] J. Cai, J. Mark, and X. Shen, ICI cancellation in OFDM wireless communication systems [C].in Proc. IEEE GLOBECOM, Taipei, Taiwan, R.O.C.,2002:656–660.
    [134] X. N. Tran and T. Fujino, Groupwise successive ICI cancellation for OFDM systems intime-varying channels [C]. in Proc. IEEE Symp. Signal Process. Inf. Technol.(ISSPIT),Athens, Greece, Dec.2005:489–494.
    [135] Fessler J A, Hero A O. Space-alternating generalized expectation-maximization algorithm[J].IEEE Transactions on Signal Processing,1994,42(10):2664-2677.
    [136] Lee J H, Kim S C. Time and frequency synchronization for OFDMA uplink system using theSAGE algorithm [J].IEEE Transactions on Wireless Communications,2007,6(4):1176-1181.
    [137] Ylioinas J, Juntti M. Iterative joint detection, decoding, and channel estimation in turbo-codedMIMO-OFDM [J].IEEE Transactions on Vehicular Technology,2009,58(4):1784-1796.
    [138] W. Qin and Q. C. Peng, ICI reduction scheme for OFDM system with phase noise overtime-varying channels [J]. International Journal of Communication Systems,2009,22(4):503-511.
    [139] He L. L., Ma S. D., Wu Y. C. Pilot-aided IQ imbalance compensation for OFDM systemsoperatingover doubly selective channels [J]. IEEE Transactions on Signal Processing,2011,59(5):2223-2233.
    [140] B. Narasimhan, et al.,"Reduced-complexity baseband compensation of joint Tx/Rx I/Qimbalance in mobile MIMO-OFDM [J]. IEEE Transactions on Wireless Communications,2010,9(5):1720-1728.
    [141] Q. Huang, M. Ghogho, J. Wei. Data detection in cooperative STBC-OFDM systems withmultiple frequency offsets [J]. IEEE Signal Process. Lett.,2009,16(7):600-603.
    [142] X. Li, F. Ng, T. Han. Carrier frequency offset mitigation in asynchronous cooperative OFDMtransmissions [J]. IEEE Trans. Signal Process.,2008,56(2):675-685.
    [143] K. Sathananthan, C. R. N. Athaudage, B. Qiu. A novel ICI cancellation scheme to reduce bothfrequency offset and IQ imbalance effects in OFDM [C]. Proc. Ninth InternationalSymposium on Computers and Communications,2004,2:708-713.
    [144] Park S, Larson L E and Milstein L B.Spectrum Broadening Due to Phase Noise Interaction inCognitive Radio Systems [J].IEEE Communications Letters,2010,14(10):891-893.
    [145] A. Zahedi-Ghasabeh, et al.,"Wide-band spectrum sensing in the presence of receiver I/Qimbalance [C]. in Consumer Communications and Networking Conference (CCNC),2011IEEE,2011:497-502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700