水声扩频通信关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声信道是最复杂的无线信道之一,也是极少可以肩负远距离水下传输的媒质。由于海洋介质对高频的衰减很严重,造就了它极窄的传输带宽;由于声波在海洋中传输速度缓慢,收发的相对运动导致接收信号存在有大多普勒频偏;而相干多途到达的信号又使接收信号产生畸变。海洋环境的复杂多变注定了水声信道的多途、多普勒、随机时变和空变。
     扩频技术以其自身特有的优势,具有克服复杂信道各种不利条件的能力。在无线电通信领域,扩频已经是一项非常成熟的技术,并已经得到广泛的应用。但是由于水声信道的复杂性,研究开发适应、适用于水声信道的扩频通信技术,仍然是科研人员致力于研究的热点问题。
     目前,研究水声扩频通信技术所面临的两个最为主要的难题是:
     1.面对水声信道严重的时变性,需要研究可跟踪信道时变的扩频同步技术;
     2.面对水声信道严重受限的带宽,需要研究高效带宽利用率的扩频技术。
     本文正是围绕这两个主题展开,分别对扩频的同步技术、高频谱利用率的多载波扩频技术和MIMO扩频技术进行了深入的研究。
     为适应水声信道快速时变性和提高扩频系统序列调制效率,本文研究采用高效的M-ary正交序列调制技术的正交混合扩频通信方案,通过不间断的发送同步序列以实现接收端对信道实时测量。
     水声信道下的多普勒属于宽带多普勒,且载波频率偏移和码相位的偏移是两个相互关联的因素,研究基于时频二维搜索的序列捕获方案,在载波频率偏移和码元相位偏移组成的二维空间内找寻最优的载频和码元相位,实现同时捕获和跟踪载波频率和码片相位的变化,过仿真验证及湖试、海试数据处理分析,验证了时频二维搜索算法在扩频同步上的有效性和鲁棒性,证明该方案可以很好的适应水声信道。
     研究了正交多载波水声扩频通信技术。结合水声信道特点,为了体现出多载波扩频对比单载波扩频在性能上的优势,本文定义了一个比较参量——码片载频系数(由于无线通信中的带宽与中心频率之比要远大于水声信道的,因此无线通信科研人员基本不用关心码片载频系数的大小,所以无线通信没有给出此参量的定义)。正交多载波水声扩频系统,利用载波间的正交性,既保证载波间互不干扰,又提高了频谱利用率,同时控制码片载频系数与单载波接近。
     扩频信号的符号时间长且占用带宽宽,水声扩频技术在时间域和空间域上已经没有可利用的多余资源,为了进一步提高系统的速率和性能,利用空间域资源的MIMO技术成为一条有效出路。本文给出了MIMO适用于水声信道的扩频通信方案,分别对接收分集和发射分集进行了细致地仿真。
     在经过各种仿真研究后,为了进一步验证每一种方法在实际水声信道中的性能,本文进行了大量的水池、湖试和海试试验,验证了各种算法和方案的有效性,均取得了较好的试验结果。尤其在正交多载波水声扩频技术方面进行的海试试验,实现了海上11.23km远程传输试验,带宽4kHz条件下,通信速率达到94.1176bps,频谱利用率相对于单载波提高近50%。
Underwater acoustic channel is not only one of the most complex wireless channels, butalso the few medium that undertake the long-distance underwater transmission. However, theseawater medium has a high attenuation for high frequency, what leads to the narrowtransmission bandwidth. In the meantime, the slow speed of the sound wave in the seawatercontributes to the high Doppler shift in the received signal. Then, the coherent multi-pathsignals made the received signal distorted. The complexity of the seawater environment is thereason for the multi-path, Doppler, random time-varying and space-varying of underwateracoustic channel.
     With its own advantages, spread spectrum technique has the ability to overcome thecomplexity and adverse conditions of the channel. In the field of wireless communication,spread spectrum is a mature technique which has been widely used. However, due to thecomplexity of the underwater acoustic channel, the spread spectrum communicationtechnique that adapted to the underwater acoustic channel is still a hot issue.
     At present, the underwater acoustic spread spectrum communication technique faces twochallenges:
     1. Faced with severe time-varying in underwater acoustic channel, spread spectrumsynchronization technique with the ability to track time-varying channel needs to beresearched.
     2. Faced with severe restricted bandwidth, spread spectrum technique with highbandwidth utilization needs to be researched.
     The paper which based on the two themes mentioned above has in-depth study on spreadspectrum synchronization technique, high spectral efficiency multi-carrier spread spectrumtechnique and MIMO spread spectrum technique.
     To adapt to vast time-varying underwater acoustic channel and to improve sequencemodulation efficiency of the spread-spectrum system, a orthogonal-mixed spread spectrumcommunication scheme with efficient M-ary orthogonal sequence modulation technique isproposed and studied. By continuous transmitting synchronization sequence, the receivercould measure channel change in real-time.
     Doppler in underwater acoustic channel belongs to broadband Doppler. Carrierfrequency offset and code phase offset are two interrelated factors. The research is based onthe time-frequency2-dimensional searching sequence acquisition scheme what carrier frequency offset and symbol offset formed a two-dimensional phase space. In the space,optimal carrier frequency and code phase are found to capture and track the carrier frequencyand chip phase at the same time. By simulation, lake test, sea test, data processing andanalysis, the algorithm of time-frequency spread spectrum synchronization in2-dimensionalsearching is verified effective and with robustness. In conclude, this scheme can adapt tounderwater acoustic channel perfectly well.
     The paper studied the orthogonal multi-carrier underwater acoustic spread spectrumcommunication technique. Combined with the characteristic of the underwater acousticchannel, the paper defined the compared parameter--chip carrier frequency coefficient toindicate the advantage that single-carrier spread spectrum has over multi-carrier spreadspectrum in performance.(As the ratio of the wireless communication bandwidth to centerfrequency is much larger than underwater acoustic channel, the wireless communicationresearchers do not care about the value of chip carrier frequency coefficients, so the wirelesscommunication does not define this parameter). For orthogonal multi-carrier spread spectrumunderwater acoustic system, not only did the orthogonality between carriers make inter-carriernoninterference from each other, but also improved the spectrum utilization. Chipfrequency-carrier coefficient is controlled to close to the single-carrier ones at the same time.
     Spread spectrum signal has a long symbol time and wide bandwidth. However, there isnot extra resource in time domain and space domain for underwater acoustic spread-spectrumtechnique. To improve system working rate and performance, there is a way out by makinguse of the spatial MIMO technology resources. The paper present MIMO communicationscheme for underwater acoustic channel and studied the receive and transmit diversity indetail.
     After all sorts of simulation and research, the paper conducted quite a lot pool, lake andsea test not only to verify the performance in real underwater acoustic channel, but also toverify the effectiveness of various algorithms and schemes. Finally, some good test resultsobtained. It is worth mentioning that in the orthogonal multi-carrier spread spectrumtechnique11.23km remote transmission sea test, the communication speed reached94.1176bps and spectral efficiency increased by50%.
引文
[1] E M Sozer, M Stojanovic, J G Proakis. Underwater Acoustic Networks. IEEE Journal ofOceanic Engineering,2000,25(1):72-83P
    [2] Chitre M, Shahabudeen S, Stojanovic M. Underwater Acoustic Communications andNetworking: Recent Advances and Future Challenges. Marine Technology Science Journal,200842(1):103–116P
    [3]王海斌,吴立新.混沌调频M-ary方式在远程水声通信中的应用.声学学报.2004,29(2):162-166页
    [4] S. Appleby and J. Davies,“Time, frequency, and angular dispersion modeling intheunderwater communications channel,” in Proc. of MTS/IEEE Oceans Conf., vol.2,Nice,France, September28-October1,1998.
    [5] C. Bjerrum-Niese and R. Lutzen,“Stochastic simulation of acoustic communicationinturbulent shallow water," IEEE Journal of Oceanic Engineering, vol.25, no.4, pp.523-532,October2000.
    [6] M. C. Domingo,“Overview of channel models for underwater wireless communicationnetworks," Physical Communication, vol.1, no.3, pp.163-182, September2008.
    [7] Essenbbar, G. Loubet, and F. Vial,“Underwater acoustic channel simulationsforcommunication," in Proc. of MTS/IEEE Oceans Conf., vol.3, Brest, France,September13-16,1994.
    [8] Essenbbar and E. Vercelloni,“Underwater acoustic channel simulationsforcommunication," in Proc. of MTS/IEEE Oceans Conf., vol.2, San Diego, CA,December9-12,1995.
    [9] Falahati, B. Woodward, and S. C. Bateman,“Underwater acoustic channel modelsfor4800b/s QPSK signals," IEEE Journal of Oceanic Engineering, vol.16, no.1, pp.12-20,January1991.
    [10] Y. Jiang, J. Li, and W. W. Hager,“MIMO transceiver design using geometricmeandecomposition," in Proc. of the Information Theory Workshop, San Antonio, TX,Oct.24-292004, pp.193-197.
    [11] H. Kim and D. J. Love,“On the capacity and design of limited feedback multiusermimouplinks," IEEE Trans. on Information Theory, vol.54, no.10, pp.4712-4724,October2008.
    [12] Andrew C. Singer, Jill K. Nelson, Suleyman S. Kozat,“Signal Processing forUnderwater Acoustic Communications”, IEEE Communications Magazine, pp.90-96, Jan.2009.
    [13] H.W. Marsh, M. Schulkin,“Shallow water transmission”, Journal of theAcousticalSociety of America34(1962)863-864.
    [14] Mari Carmen Domingo,“Overview of channel models for underwater wirelesscommunication networks”, Physical Communication, pp.163-182, Jan.2008
    [15] M.Stojanovic,"Acoustic (Underwater) Communications," entry in Encyclopedia ofTelecommunications, John G. Proakis, Ed., John Wiley&Sons,2003.
    [16]惠俊英,生雪莉.水下声信道.北京:国防工业出版,2007:37-39页
    [17] Gertrude:Underwater telephone-wikipedia, the free encyclopedia, available athttp://en.wikipedia.org/wiki/Underwater_telephone.
    [18] Mandar Chitre, Shiraz Shahabudeen, Lee Freitag, Milica Stojanovic,“Recent Advancesin Underwater Acoustic Communications&Networking”, IEEE Journal of OceanicEngineering, vol.121, No.2, April1996, pp.125-136.
    [19] D. B. Kilfoyle and A. B. Baggeroer,“The state of the art in underwater acoustictelemetry," IEEE Journal of Oceanic Engineering, vol.25, no.1, pp.4-27, January2000.
    [20] Baggeroer, D. E. Koelsch, K. von der Heydt, and J. Catipovic,“DATS-a digitalacoustictelemetry system for underwater communications," in Proc. of MTS/IEEE Oceans Conf.,Boston, MA, USA, September16,1981, pp.55-60.
    [21] J. Garrood,“Applications of the MFSK acoustic communications systems," in Proc. ofMTS/IEEE Oceans Conf., Boston, MA, USA, September16,1981, pp.67-71.
    [22] S. D. Morgera,“Multiple terminal acoustic communications system design," IEEEJournal of Oceanic Engineering, vol.5, no.3, pp.199-204, July1980.
    [23] M. Stojanovic,“Recent Advances in High-Speed Underwater Acoustic Communications”,IEEE J. of Ocean. Eng., Vol.21, No.2, April1996.
    [24] D. B. Kilfoyle, A. B. Baggeroer,“Research Directions in Underwater AcousticTelemetry”, Sea Technology, PP.10-15, May1999.
    [25] D. B. Kilfoyle,“The State of the Art in Underwater Acoustic Telemetry”, Ph.D.Dissertation, W.H.O.I.,1999.
    [26] D. J. Garrood,“Application of the MFSK Acoustical Communication System”, Proc.IEEE Oceans’81, Boston, MA,1981.
    [27] S.D. Morgera,“Multiple Terminal Acoustic Communications System Design”, IEEE J.of Ocean. Eng., Vol.5, PP.199-204,1980.
    [28] Baggeroer, D. E. Koelsch, K. von der Heit,“DATA-A Digital Acoustic TelemetrySystem for Underwater Communications”, Proc. of IEEE Ocean’81, Boston, MA,1981.
    [29] Baggeroer, D. E. Koelsch, K. von der Heit,“Design and Performance Analysis of DigitalAcoustic Telemetry System for the Short Range Underwater Channel”, IEEE J. of Ocean.Eng., Vol.9, PP.242-252,1984.
    [30] T. H. Eggen, A. B. Baggeroer, and J. C. Preisig,“Communication over Doppler spreadchannels. part I: Channel and receiver presentation," IEEE Journal of Oceanic Engineering,vol.25, no.1, pp.62-71, January2000.
    [31] D. B. Kilfoyle and A. B. Baggeroer,“The state of the art in underwater acoustictelemetry," IEEE Journal of Oceanic Engineering, vol.25, no.1, pp.4-27, January2000.
    [32] J. C. Preisig,“Performance analysis of adaptive equalization for coherent acousticcommunications in the time-varying ocean environment," Journal of the Acoustical Society ofAmerica, vol.118, no.1, pp.263-278, July2005.
    [33] M. Stojanovic, J. A. Catipovic, and J. G. Proakis,“Phase-coherent digitalcommunications for underwater acoustic channels," IEEE Journal of Oceanic Engineering,vol.19, no.1, pp.100-111, January1994.
    [34] Li, S. Zhou, M. Stojanovic, and L. Freitag,“Pilot-tone based ZP-OFDM demodulationfor an underwater acoustic channel," in Proc. of MTS/IEEE Oceans Conf., Boston, MA, USA,September18-21,2006, pp.1-5.
    [35] Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willet,“Non-uniform Dopplercompensation for zero-padded OFDM over fast-varying underwater acoustic channels," inProc. of MTS/IEEE Oceans Conf., Aberdeen, Scotland, June18-21,2007, pp.1-6.
    [36] M. Stojanovic,“On the relationship between capacity and distance in an underwateracoustic communication channel," in ACM WuWNet'06: Proc. of the1st ACM internationalworkshop on Underwater networks, Los Angeles, CA, September25,2006, pp.41-47.
    [37] M. Stojanovic, J. G. Proakis,“Adaptive Multi-Channel Combining and Equalization forUnderwater Acoustic Communications”, J. of Acoust. Soc. Am., Vol.94, PP.1621-1631,1993.
    [38] S.M. Jarvis and N.S. Pendergrass,“Implemintation of a Multi-Channel DecisionFeedback Equalizer for Shallow Water Acoustic Telemetry using a Stabilized Fast TransversalFilters Algorithm”, Proc. of Ocean’s95, San Diego, CA,1995.
    [39] J. Gomes and V. Barroso,“Blind Decision Feedback Equalization of UnderwaterAcoustic Channels”, Proc. of Ocean’s98, Nice, France,1998.
    [40] J. Labat, O. Macchi and C. Laot,“Adaptive Decision Feedback Equalization:Can YouSkip the Training Period?”, IEEE Trans. on Comm., Vol.46, PP.921-930,1998
    [41]徐小卡.基于OFDM的浅海高速水声通信关键技术研究[D].哈尔滨:哈尔滨工程大学,2009
    [42]王明华,桑恩方,乔钢.高速水声通信中正交频分复用技术试验研究.海洋工程2006,24(4):100-115页
    [43]郭中源,陈岩,贾宁等.水下数字语音通信系统的研究和实现[J].声学学报.2008,33(5):409-418页
    [44] Stojanovic M, Proakis J G, Rice J A,"Spread Spectrum Underwater Acoustic Telemetry",IEEE, Oceans'98Conference Proceddings,1998,2:650-654
    [45] Loubet G, Capellano V, FilpPiak R, Underwater Spread-Spectrum Communications,OCEANS'97, MTS/IEEE Conference Proceddings,1997,1:574-579
    [46] N. Yee, J. P. Linnartz, and G. Fettweis,"Multi-canier CDMA in indoor wireless radio",Proc. PIMRC'93, Yokohama, Japan, Dec.1993, pp. D1.3.1-5
    [47]余振标,冯久超.一种混沌扩频序列的产生方法及其优选算法.物理学报.2008,57(3):1409-1413页
    [48]王亥,胡健栋.改进型Logistic-Map混沌扩频.通信学报.1997,18(8):71-77页
    [49]胡进峰,郭静波.一种破译直接序列扩频保密通信的方法.物理学报.2008,57(3):1477-1484页
    [50]王海斌,吴立新.混沌调频M-ary方式在远程水声通信中的应用.声学学报,2004,29(2):161-166页
    [51]汪俊,吴立新,王海斌.浅海远程水声通信实验研究.中国声学学会2006年全国声学学术会议.
    [52]殷敬伟,惠俊英,王逸林等.M元混沌扩频多通道Pattern时延差编码水声通信.物理学报,2007,56(10):5915-5921页
    [53]陈威,许茹,胡晓毅等.水声通信网及其多址接入技术的研究.海洋科学,2007.4(31):58-61页
    [54]李霞,姜卫东,方世良等.水声通信中的多载波CDMA.声学技术,2005.24(4):202-205页
    [55] Benvenuto N, Tomasin S. On the comparison between OFDM and signal-carriermodulation with a DFE using a frequency-domain feedforward filter. IEEE Transactions onCommunications,2002,50(6):947-55P
    [56] Horlin F, et al. Signal-carrier FDMA or cycle_prefix CDMA with optimized spreadingsequences. IEEE Transactions on Vehicular Technology,2008
    [57] C R Berger, S Zhou, J Preisig, et al. Sparse channel estimation for multicarrierunderwater acoustic communication: From subspace methods to compressed sensing, Mar.2010
    [58] YuPing Z, Sven G H. Intercarrier Interference self-cancellation scheme for OFDMmobile communication systems. IEEE Trans. On Communication.200l,49(7):1185-1190P
    [59] D Hughes-Hartogs. Ensemble modern structure for imperfect transmission media, U. S.Pattents Nos.4679227, July1987:4731816, Mar.1988: and4833796, May1989
    [60] P S Chow, J M Cioffi, J A C BingHam. A Practacal Discrete Multitone TransceiverLoading Algorithm for Data Transmission over Spectrally Shaped Channels. IEEE Trans. OnCommm,1995,43(2/3/4):773-775P
    [61] R F H Fischer, J B Huber. A New Loading Algorithm for Discrete MultitoneTransmission. IEEE Proc. Globecom,1996:724-728P
    [62] Yu W, Rhee W, Boyd S, et al. Iterative water-filling for gaussian vector multiple accesschannels. IEEE Trans. on Inform. Theory,2004,50(1):145-152P
    [63] Palomar D P, Cioffi J M, Lagunas M A. Uniform power allocation in MIMO channels: Agame-theoretic approach. IEEE Trans. on Inform. Theory,2003,49(7):1707-1727P
    [64]乔宏乐,张歆等,基于空时编码的水声MIMO通信系统的应用研究,国外电子测量技术,Vol.29No.3PP.72-78, Mar.2010.
    [65]薛筱明,李建东.多进制正交码扩频系统的解扩和同步技术及其实现.电子学报.1998,26(1):105-110页
    [66] Pickholtz R L, Schilling D L, Milstein L D, Theory of Spread Spectrum CommunicationTutorial, IEEE Trans. Commun,1982,30:855-884P
    [67] Viterbi A J, Spread Spectrum Communication-Myths and Realities, IEEE Commun,1979,17:11-18P
    [68] Enge P K, Sarwate D V. Spread Spectrum Multiple Access Performance of OrthogonalCodes: Linear Receivers. IEEE Trans Commun,1987, COM-35(12):1309~1319
    [69]褚振勇,易克初,田红心.Rician慢衰落信道下的正交循环码M元扩频系统性能分析.电路与系统学报.2008,13(1):61-66页
    [70] Louay M A, Jafloul, J M Holtzman. Performance analysis of DS/CDMA withnoncoherent M-ary orthogonal modulationin multi Path fading channels. IEEE. on SelectedAreas in Communications,1994,12(5):862-870P
    [71]谢斌,李建东,正交码扩频系统的抗干扰性能分析.电子学报.1994,22(10):60-65页
    [72] Sawasd T, Alex W Lam, Patrick J V. Noncoherent sequential Acquisition of PNSequences for DS/SS Communications with/without channel Fading. IEEE Trans. Commun.1995,43:1738-1740P
    [73] Jia Chin Lin, Lin-Shan Lee. A noncoherent Sequential PN Code Acquisition Scheme inDS/SS Receivers, IEEE Conference.1998(9):2168-2170P
    [74]吴诩,朱炬波等.关于多普勒频率转换成距离变化率的讨论.中国空间科学技术.1997,(6):45-49页
    [75]李春霞.高动态条件下伪码相关特性及其应用研究.国防科技大学博士论文.2005:70-72页
    [76]童宝润.时间统一系统.北京:国防工业出版社,2003:51-53页
    [77]田日才.扩频通信.北京:清华大学出版社,2007:71-72页
    [78] UnJeng Cheng, Wiliam J H, Joseph I S. Spread-Spectrum Code Acquisition in thePresence of Doppler Shift and Data Modulation. IEEE Trans. Commun.1990,38:241-250P
    [79] K V Ravi, R F Ormondroyd. Simulation Performance of Aquantized Log-LikelihoodSequential Detector for PN Code Acquisition in The Presence of Data Modulation AndDoppler Shift. Military Communications Conference.1991,2:798-803P
    [80]王智.高动态多普勒条件下的扩频接收技术研究.上海交通大学硕士论文.2007:30-33页
    [81] M Stojanovic, J A Catipovic, J G Proakis. Phase-Coherent Digital Communications forUnderwater Acoustic Channels, IEEE Journal of Oceanic Engineering,1994,19(1):100-111P
    [82] Chengbing He, Jianguo Huang, Zhi Ding. A Variable-Rate Spread-Spectrum System forUnderwater Acoustic Communications, IEEE Journal of Oceanic Engineering,2009,34(4):624-633P
    [83] Zoran Zvonar, David Brady, Josko Catipovic, Adaptive Detection for Shallow-WaterAcoustic Telemetry with Cochannel Interference, IEEE Journal of Oceanic Engineering,1996,21(4):528-536P
    [84] Guosong Zhang, Jens M. Hovem, Hefeng Dong, et al. An efficient spread spectrum pulseposition modulation scheme for point-to-point underwater acoustic communication. AppliedAcoustics.2010,71:11–16P
    [85] S M Alamouti. A simple transmit diversity technique for wireless communications. IEEEJournal on selected areas in communications,1998,16(8):1451-1458P
    [86] Pingan Li, Khaled Ben Letaief. A Blind RAKE Receiver With Robust MultiuserInterference Cancelation for DS/CDMA Communications, IEEE Transactions onCommunications,2007,55(9):1793-1801P
    [87]罗涛,乐光新.多天线无线通信原理与应用.北京:北京邮电大学出版社,2005:19-20页
    [88] R Price, P E Green. A communication technique for multipath channels, Proceddings ofIRE,1958,46:555-570P
    [89] G L Turin. The effect of Multipath and Fading on the Performance of Direct-SequenceCDMA System. IEEE J. Select Areas Commun.1994,2:597-603P
    [90] G L Turin. Introduction to Spread Spectrum Anti-multipath Techniques and TheirApplication to Urban Digital Radio, Proc. IEEE,1980,68:328-353P
    [91] T S Rappaport. Wireless Communications Principle and Practice. Englewood Cliffs, NJ:Prentice-Hall,1996
    [92] J G Proakis, Digital Communications, New York: McGraw-Hill, Third ed.1995
    [93]仇佩亮,陈惠芳,谢磊.数字通信基础.北京:电子工业出版社,2007:582-585页
    [94] Ching-Hsiang Tseng, Fu-Sheng Lu, Fu-Kuei Chen, et al. Compensation of MultipathFading in Underwater Spread-Spectrum Communication Systems, Proceedings of1998International Symposium on Underwater Technology,1998,4:453-459P
    [95] E M Sozer, J G Proakis, M Stojanovic, et al. Direct Sequence Spread Spectrum BasedModem for Underwater Acoustic Communication and Channel Measurements, Oceans '99MTS/IEEE. Riding the Crest into the21st Century.1999,1:228-233P
    [96]刘涛.第三代移动通信中的Rake接收技术研究.西安电子科技大学硕士论文.2006:19-21页
    [97]李海燕.WCDMA系统Rake接收算法的研究与改进.兰州大学硕士论文.2006:36-37页
    [98] Zoran Hadzi-Velkov, Boris Spasenovski, Zorica B Nikolic. Capture effect in wirelessLANs with RAKE reception of DSSS/DPSK signals, Int. J. Electron. Commun.2006,60:199–207P
    [99]汪裕民.OFDM关键技术与应用.北京:机械工业出版社,2006
    [100]邬正义,徐惠刚.现代无线通信技术.北京:高等教育出版社,2008
    [101]尹长川,罗涛,乐光新.多载波宽带无线通信技术.北京:北京邮电大学出版社,2004:184-185页
    [102] N Yee, J P Linnarz, G Fettweis. Multi-carrier CDMA in indoor wireless radio networks.Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Comm.1993,9:109-113P
    [103] K Fazel, L Papke. On the performance of convolutionally-coded CDMA/OFDM formobile communication system,1993,9:168-472P
    [104] Gaonan Zhang, Guoan Bi, Qian Yu. Blind intersymbol decorrelating detector forasynchronous multicarrier CDMA system. Signal Processing.2005,85:1511-1522P
    [105] Victor Dasilva,E S Sousa. Performance of orthogonal CDMA codes forquasi-synchronous communication systems. Proceedings IEEE International Conference onUniversal Personal Communications.1993,10:995~999P
    [106] L Koffman, V Roman. Broadband wireless access solutions based on OFDM access inIEEE802.16. IEEE Comm. Magazine,2002,4:96-103
    [107] Shinsuke, Ramjee Prasad. Overview of Multi-carrier CDMA, IEEE Comm. Magazine,1997,12:126-132P
    [108] Lie-Liang Yang,张有光,潘鹏等.多载波通信[M].电子工业出版社.2010.6
    [109] L L Yang, L Hanzo. Performance of Generalized Multicarrier DS-CDMA OverNakagami-m Fading Channels. IEEE Trans. Commun,2002,50:956-966P
    [110] M B Pursley, Performance evaluation for phase-coded spread-spectrum multiple-accesscommunications–Part I:System analysis. IEEE Trans. Commun.1977,25:795-799P
    [111] L L Yang, L Hanzo. Overlapping M-ary frequency shift keying spread-spectrummultiple-access system using random signature sequences, IEEE Trans. Veh. Technol.1999,48:1984-1995P
    [112] J G Proakis. Digital Communications,3rd ed. New York: McGraw-Hill,1995
    [113] M Pursley, Performance evaluation for phase-coded spread-spectrum multiple accesscommunications-part I: system analysis, IEEE Trans. Comm.1977,35(8):795-799P
    [114]范敏毅.水下声信道的仿真与应用研究[D].哈尔滨:哈尔滨工程大学.2000:26-46页
    [115] Gerard Loubet, Vittorio Capellano, Richard Filipiak. Underwater Spread-SpectrumCommunications. OCEANS’97. MTS/IEEE Conference Proceedings.1997,1:574-579P
    [116] Ghassan Kawas Kaleh. Frequency-Diversity spread-spectrum communication system tocounter Bandlimited Gaussian Interference. IEEE Trans. Communications.1996,44(7):886-893P
    [117]韩晶,黄建国.正交M-ary/DS扩频及其在水声远程通信中的应用.西北工业大学学报.2006,24(4):465-467页
    [118]何成兵,黄建国.M元扩频OFDM水声通信新方法.西北工业大学学报.2007,25(2):190-194页
    [119]林云,何丰.MIMO技术原理及应用.北京:人民邮电出版社,2010
    [120] S M Alamouti. A Simple transmit diversity technique for wireless communications.IEEE Journal on selected areas in communications,1998,16(8):1451-1458P
    [121]艾渤.唐世刚译.MIMO通信系统编码.北京:电子工业出版社,2008:14页
    [122]肖扬.MIMO多天线无线通信系统.北京:人民邮电出版社,2009
    [123] W C Jakes. Microwave mobile communications. Piscataway: IEEE Press,1993
    [124] W Lee. Mobile Communications Engineering. New York: McGrow-Hill,1982
    [125] Gibson, D Jerry. The mobile communications handbook. Piscataway: IEEE Press,1999
    [126]卢宏刚.多载波扩频通信的Rake接收机理论研究及FPGA实现.北京邮电大学硕士学位论文.2009:27页
    [127]崔凯峰.扩频通信匹配滤波Rake接收系统分析.北京邮电大学硕士学位论文.2009:23-24页
    [128] Arogyaswami Paulraj, Rohit Nabar, Dhananjay Gore. Introduction to Space-TimeWireless Communications. New York:Cambridge University Press,2003
    [129] Branka Vucetic, Jinhong Yuan. Space-Time Coding. Chichester, England: Wiley,2003
    [130]罗涛,乐光新.多天线无线通信原理与应用.北京:北京邮电大学出版社,2005:24-27页
    [131] Netherlands Earth Observation NETwork. Available at http://www.neonet.nl/browse/dcn.waterland.net/neonet/Project/FRARRNMMKNKDMYDMOTECUMIDL.html
    [132] Tiffany Fox. Calit2's Reefbot Designed to Autonomously Monitor Ocean'sDisappearing Coral Reefs. San Diego CA.2008.12.16
    [133] S Coatelan, A Glavieux. Design and test of a coding OFDM system on the shallowwater acoustic channel. OCEANS’95. MTS/IEEE,1995(3):2065-2070P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700