基于并行统计计算的金融数据分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代计算机系统更加强大,使许多统计计算可以在瞬间完成。然而,一些重要的情况计算时间仍然需要用天来算,尤其是大样本海量数据或较大复杂抽样数据的统计推断。故一般的处理方法是用速度较快,但不太准确的方法,或完全跳过潜在的重要计算。因此,并行统计计算的发展是非常重要的。
     在这篇论文中,我们研究了工资数据,破产数据的加速机会,和养老基金数据的统计方法。我们发现了,并行统计计算处理大型统计推断问题良好的速度性能。本论文由五个章节,其主要内容描述如下:
     第一章并行统计计算是一个非常有趣的问题:在统计中,有很多统计计算是密集并行,因此并行和统计计算之间交叉的研究非常重要。本章重点关注的是回归问题,非参数推断,随机过程。特别是,我们综述的方法有并行多分裂法,线性回归最小二乘的并行统计解法和非线性回归并行统计算法,并行自助在非参数推断的理论结构:马氏链的并行统计解法,并行马氏链蒙特卡洛。非常重要的是,我们对并行GPU处理非图形的应用给出了综述。我们的结论是,并行统计算法的进一步研究是必须的。并对一些重要且悬而未决的问题给予了描述。
     第二章对于执行多元线性模型,子集选择和运行时间是很重要的问题。为了解决这些问题,我们引入一个新的并行估计。首先给出这一方法和广义最小二乘估计的等价条件,并考虑了投影和特征值的秩。然后,当存在一个稳定解时,我们给出它的误差。此外,我们所提出的方法,被用于破产数据,获得了一个数据集的估计方程,并报告了两个数据模拟的执行时间。
     第三章探讨解大样本方程的乘性和阻尼加性施瓦茨法的收敛理论。对于大样本的广义线性模型和广义加性模型,我们建议施瓦茨法解拟似然和惩罚拟似然。施瓦茨法用于一个子模型的序列,其中每个子模型对应两步估计参数中元素的一个子集,组合的子模型一起产生整个模型的解。这项技术可被用于模型比较,其中子模型的拟合值被用来作为一个更大模型的初始值。
     第四章并行自助是一个非常有用,时间性能突出的统计方法。然而,该法的理论研究还没有出现。在本章,介绍一个关于该法的工作相关矩阵,称为并行自助矩阵。我们考虑该重抽样的一些性质,以及光滑函数模型的相关最优子样本长度。我们出现了并行自助估计的时间性能研究;对于金融时间序列数据,给出了子样本长度选择的一些性能研究结果。
     第五章研究马氏链拟平稳分布的计算方法。这里的矩阵为拟随机阵,即,每行的和小于或等于1。我们发展施瓦茨法解该分布。特别是,得到了加性和乘性施瓦茨以及两水平的半收敛性。为了解释建议的方法,我们给出了马氏链拟平稳分布的两个例子。
Modern computer systems are now even more powerful to make many common statistical computations literally instantaneous. However, some im-portant situations still exist where a result can require days to compute, es-pecially, statistical inference in large-sample mass data or as sampling large complex data. As a result, either faster but less accurate methods are used, or potentially important computations are skipped entirely. Thus, the devel-opment of parallel statistical computations is very important.
     In this thesis we report the results of our studies on speedup opportunities in financial data, including wage data, bankruptcy data and pension fund data. We find that good speedup and other performances are available for large statistical inference problems. This dissertation consists of five chapters, whose main contents are described as follows:
     Chapter One Parallel statistical computing is a very interesting prob-lem:there are many stats calculations are embarrasingly parallel in statistics, such research thus appears to play an important role in the interface between parallel and statistical computation. This chapter is concerned with paral-lel statistical computing in regression problems, nonparametric inference, and stochastic processes. In particular, we review the methods parallel multisplit-ting method, parallel method for least squares in linear regressions, and parallel statistical computing in multiple linear regression; the theoretic framework of parallel bootstrap in nonparametric inference; parallel methods for Markov Chain, and parallel Markov chain Monte Carlo. It is very important that we survey the non-graphics applications on GPUs. We conclude that there is a need for further research in parallel statistical computing, and describe some of the important unsolved problems.
     Chapter Two For performing multiple linear models, chosen subsets and run-time are important questions. To solve them, we introduce a new parallel maximum likelihood estimator for multiple linear models. We first give an equivalent condition between the method and generalized least squares esti-mator, and consider rank of projections and eigenvalue. We then present error of it when there exists a stable solution. Some theorems of the error are given in the paper. In addition, we use the proposed method to fit bankruptcy data, obtain an estimator equation of the data sets, and report the execution time of the method by two simulation data sets.
     Chapter Three We explore the convergence theories of multiplicative Schwarz method and damped additive Schwarz method for the solution about GLMs and GAMs with large sample sizes. For GLMs and GAMs with large samples, we suggest Schwarz methods for the QL and the the penalized QL. The Schwarz methods use a sequence of sub-models, each sub-model corre-sponding to a subset of the components of δ, the sub-models being patched together to yield the solution for the full model. The technique might be useful for model comparison, where the fitted values from a sub-model are used as starting values for a larger model.
     Chapter Four Parallel bootstrap is an extremely useful statistical method, with good timing performance. However, the theoretical study of the method is not present. In the chapter, we introduce a working correlation matrix about the method, called parallel bootstrap matrix. We consider some properties of the resampling, and related optimal subsample lengths in smooth function models. We also present the timing performance of parallel bootstrap estima-tors, and some performance results of subsample length selection on finance time series data.
     Chapter Five We study computational schemes for quasi stationary distributions of Markov chains, having matrices which are quasi stochastic, i.e., all of their row sums arc less than or equal to one. We develop Schwarz methods for the corresponding distributions. In particular, we get the semiconvergcnce of additive and multiplicative Schwarz methods, and that of two level Schwarz iterative methods for the quasi stationary distributions (QSDs). We provide two examples of Markov chains with QSDs, to explain our methods.
引文
[1]Adams, N. M., Kirby, S. P. J., Harris, P., and Clegg, D. B. A review of parallel processing for statistical computation. Statistics and Computing,6 (1996),37-49.
    [2]Alefeld, G. and Schneider, N. On square roots of M-matrices. Linear Algebra Appl.,42 (1982),119-132.
    [3]Amaral, G. J. A., Dryden, I. L. and Wood, A. T. A. Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. J. Amer. Statist. Assoc.,102 (2007),695-707.
    [4]Andrews, D. W. K. Higher-order improvements of a computationally attrac-tive k-step bootstrap for extremum estimators. Econometrica,70 (2002),119-162.
    [5]Andrews, D. W. K. The block-block bootstrap:Improved asymptotic refine-ments. Econometrica,72 (2004),673-700.
    [6]Armstrong, B. Measurement error in the generalized linear model. Communi-cation in Statistics-Simulation and Computation,14 (1985),529-544.
    [7]Arnal. J., Migallon, V., Penades, J. and Szyld, D. B. Newton additive and multiplicative Schwarz iterative methods. IMA Journal of Numerical Analysis, 28 (2008),143-161.
    [8]Artalejo, J. R., Economou, A. and Lopez-Herrero, M. J. The maximum num-ber of infected individuals in SIS epidemic models:Computational techniques and quasi-stationary distributions. J. Comput. Appl. Math.,233 (2010),2563-2574.
    [9]Azzini, I., Girardi, R. and Ratto, M. Paralellization of Matlab codes under Windows platform for Bayesian estimation:a dynare application. Working Paper 1, Euro-area Economy Modelling Centre,2007.
    [10]Beck, N., Jackman, S. Beyond linearity by default:generalized additive mod-els. Amer. J. Polit. Sci.,42 (1998),596-27.
    [11]Beddo, V. Applications of parallel programming in Statistics. Ph.D. disserta-tion, University of California, Los Angeles,2002.
    [12]Beliakov, G. Parallel Calculation of the Median and Order Statistics on GPUs with Application to Robust Regression,2011, arXiv:1104.2732v1.
    [13]Benn, A., Kulperger, R. Massively parallel computing:a statistical applica-tion. Stat. Comput.,8 (1998),309-318.
    [14]Bentkus, V. On Hoeffding's inequalities. Ann. Probab.,32 (2004),1650-1673.
    [15]Benzi, M., Frommer,A., Nabben, R. and Szyld, D. B. Algebraic theory of multiplicative Schwarz methods. Numer. Math.,89 (2001),605-639.
    [16]Benzi, M., Tuma, M. A parallel solver for large-scale Markov chains. Appl. Numer. Math.,41 (2002),135-153.
    [17]Benzi. M., Dayar, T. The arithmetic mean method for finding the stationary vector of Markov chains. Parallel Algorithms Appl.,6 (1995),25-37.
    [18]Benzi, M., Sgallari, F., Spaletta, G. A parallel block projection method of the Cimmino type for finite Markov chains. In:W.J. Stewart (Ed.). Computations with Markov Chains, Kluwer Academic, Dordrecht,1995, pp.65-80.
    [19]Berkowitz, J. and Kilian, L. Recent developments in bootstrapping time series. Econometric Reviews,19 (2000),1-48.
    [20]Berman, A., Plemmons, R. J. Nonnegaitve Matrices in the Mathematical Sci-ences. SIAM, Philadelphia, PA,1994.
    [21]Bhattacharya, R. N. and Ghosh, J. K. On the validity of the formal Edgeworth expansion. The Annals of Statistics,6 (1978),434-451.
    [22]Bing, J. On the relative performance of the block bootstrap for dependent data. Commun. Statist. Theory Meth.,26 (1997),1313-1328.
    [23]Ake Bjorck. Numerical Methods for Least Squares Problems. SIAM, Philadel-phia,1996.
    [24]Bouaricha, A., Schnabel, R. B. Parallel Tensor Methods for Nonlinear Equa-tions and Nonlinear Least Squares.1993, PPSC:639-643.
    [25]Bouyouli, R., Jbilou, K., Sadaka, R. and Sadok, H. Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math.,196 (2006),498-511.
    [26]Brockwell, A. Parallel Markov Chain Monte Carlo Simulation by Prefetching. Journal of Computational and Graphical Statistics,15 (2006),246-261.
    [27]Bru, R., Pedroche, F. and Szyld, D. B. Overlapping additive and multiplicative Schwarz iterations for H-matrices. Linear Algebra Appl.,393 (2004),91-105.
    [28]Bru, R., Pedroche, F. and Szyld, D. B. Additive Schwarz iterations for Markov chains. SIAM J. Matrix Anal. Appl.,27 (2005),445-458.
    [29]Buckner, J., Wilson, J., Seligman, M., Athey, B., Watson, S., and Meng, F. The gputools package enables GPU computing in R. Bioinformatics,26(2010), 134-135.
    [30]Buhlmann, P. Bootstraps for time series. Statistical Science,17 (2002),52-72.
    [31]Burrage, K., Burrage, P. M. and Tian, T. Numerical methods for strong so-lutions of stochastic differential equations:an overview. Proceedings:Math-ematical, Physical and Engineering, Royal Society of London,460 (2004), 373-402.
    [32]Bylina, J. A distributed approach to solve large Markov chains, Proceedings from EuroNGIWorkshop:New Trends in Modeling, Quantitive Methods and Measurements, Jacek Skalmierski Computer Studio, Gliwice,2004, pp.145-154.
    [33]Carlstein, E. The use of subseries methods for estimating the variance of a general statistic from a stationary time series. The Annals of Statistics, 14(1986),1171-1179.
    [34]Cattiaux. P. and Meleard, S. Competitive or weak cooperative stochastic lotka-volterra systems conditioned to non-extinction. J. Math. Biology.,6 (2010) 797-829.
    [35]Chambers, J. M., Hastie. T. J. Statistical Models. Pacific Grove. CA:S. Wadsworth/Brooks Cole,1992.
    [36]Chernick, M. R. Bootstrap Methods:A Guide for Practitioners and Re-searchers,2nd Ed., Wiley,2007.
    [37]Cheung, K. Y., Lee, S. M. S. and Young, G. A. Iterating the m out of n bootstrap in nonregular smooth function models. Statist. Sinica,15 (2005), 945-967.
    [38]Chilson, J., Ng, R., Wagner, A. and Zamar, R. Parallel Computation of High-Dimensional Robust Correlation and Covariance Matrices. Algorithmica,45 (2006),403-431.
    [39]Claeskens, G., Aerts, M. On local estimating equations in additive multipa-rameter models. Statist. Probab. Lett.,49 (2000),139-148.
    [40]Coleman, T. F., Plassmann, P. E. A parallel nonlinear least-squares solver: theoretical analysis and numerical results. SIAM Journal on Scientific and Statistical Computing,13 (1992),771-793.
    [41]Consebido, A., Fernandes, F., Leung, K. Mpi In Windows EE 8603:Project Report,2007. in www.ee.ryerson.ca/courses/ee8218/MPIWIN.pdf.
    [42]Creel, M. User-Friendly Parallel Computations with Econometric Examples. Computational Economics,26 (2005),107-128.
    [43]Coolen-Schrijner, P. and Van Doorn, E. A. Quasi-stationary distributions for a class of discrete-time Markov chains. Methodol. Comput. Appl. Probab.,8 (2006),449-465.
    [44]Coppi, R., D'Urso, P., Giordani, P., Santoro, A. Least squares estimation of a linear regression model with LR fuzzy response. Comput. Statist. Data Anal., 51 (2006),267-286.
    [45]Craiu, R. V., and Meng, X. L. Multi-process parallel antithetic coupling for forward and backward Markov chain Monte Carlo. The Annals of Statistics, 33 (2005),661-697.
    [46]Craiu, R. V., Rosenthal, J. S. and Yang, C. Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC. Journal of the American Sta-tistical Association,104 (2009),1454-1466.
    [47]Creel, M. User-Friendly Parallel Computations with Econometric Examples. Computational Economics,26 (2005),107-128.
    [48]Creel. M., and W. L. Goffe Multi-core CPUs. Clusters, and Grid Computing: A Tutorial. Computational Economics,32 (2008),353-382.
    [49]Dai, B., Peng, Y., Gong, B. Parallel Option Pricing with BSDE Method on GPU, gcc, pp.191-195,2010 Ninth International Conference on Grid and Cloud Computing,2010.
    [50]Davidson, R. and Flachaire, E. The Wild Bootstrap, Tamed at Last. Journal of Econometrics,146 (2008),162-169.
    [51]Dennis, J. E. and Steihaug, T. A Ferris-Mangasarian technique applied to linear least squares problems. Tech. Report CRPC-TR 98740, Rice University, 1998.
    [52]Dhillon, I. S. and Modha, D. S. A parallel data-clustering algorithm for distributed memory multiprocessors. In M. J. Zaki and C. T. Ho, editors, Large-Scale Parallel Data Mining, Lecture Notes in Artificial Intelligence,1759 (2000),245-260. Springer-Verlag, New York.
    [53]Doorn, E. A. Van and Pollett, P. K. Survival in a quasi-death process. Linear Algebra Appl.,429 (2008),776-791.
    [54]Doorn, E. A. Van and Pollett, P. K. Quasi-stationary distributions for re-ducible absorbing Markov chains in discrete time. Markov Processes Relat. Fields,15 (2009),191-204.
    [55]Eksioglu, B., Demirer, R., and Capar, I. Subset Selection in Multiple Linear Regression:A New Mathematical Programming Approach. Computers and Industrial Engineering,49 (2005),155-167.
    [56]Fan, J., Hardle, W., Mammen, E. Direct estimation of low dimensional com-ponents in additive models. Ann. Statist.,26 (1998),943-971.
    [57]Fischer, M. and Kemper, P. Distributed numerical Markov chain analysis. In Y. Cotronis and J. Dongarra, editors, Proc.8th Euro PVM/MPI, volume 2131 of LNCS, pages 272-279, Santorini (Thera) Island, Greece, September 2001.
    [58]Flegal, J. M. and Jones, G. L. Implementing Markov chain Monte Carlo:Es-timating with condence. In Brooks, S., Gelman, A., Jones, G., and Meng, X., editors, Handbook of Markov Chain Monte Carlo. Chapman and Hall/CRC Press,2010.
    [59]Foster, D. P. and Stine, R. A. Variable selection in data mining:building a predictive model for bankruptcy. J. Amer. Statistical Assoc.,99 (2004),303-313.
    [60]Gelman, A., Rubin, D. B. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science,7 (1992),457-511.
    [61]Gentle, J. E., Hadle, W., Mori, Y., editors. Handbook of computational statis-tics. Springer, New York,2004.
    [62]Geyer, C. J. Markov chain Monte Carlo maximum likelihood. In Keramidas (ed.), Computing Science and Statistics:Proceedings of the 23rd Symposium on the Interface. Interface Foundation, Fairfax Station,1991, pp.156-163.
    [63]Goel, P. K., DeGroot, M. H. Only normal distributions have linear posterior expectations in linear regression. J. Am. Statist. Assoc.,75 (1980),895-900.
    [64]Guo, G. Schwarz Methods for Quasi-Likelihood in Generalized Linear Models. Commun. Stat.-Simul Comput.,37 (2008),2027-2036.
    [65]Guo, G. and Lin, S. Schwarz Method for Penalized Quasi-likelihood in Gen-eralized Additive Models. Commun. Statist.-Theory Meth.,39 (2010),1847-1854.
    [66]Guo, G. and Zhao, W. Schwarz Methods for Quasi Stationary Distributions of Markov Chains. Calcolo,49 (2012),21-39.
    [67]Gursoy, A. Data decomposition for parallel k-means clustering. In PPAM, ed. R.Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski, Volume 3019 of Lecture Notes in Computer Science (2003),241-248:Springer.
    [68]Hall, P. The Bootstrap and Edgeworth Expansion. Springer, New York,1992.
    [69]Hall, P., Horowitz, J. L. and Jing, B. Y. On blocking rules for the bootstrap with dependent data. Biometrika,82 (1995),561-574.
    [70]Hardle, W., Horowitz, J. and Kreiss, J. Bootstrap methods for time series. International Statistical Review,71 (2003),435-459.
    [71]Hasenbusch, M., and Schaefer, S. Speeding up parallel tempering simulations. Phys. Rev., E82 (2010),046707.
    [72]Hastie, T., Tibshirani, R. Generalized Additive Models. New York:Chapman and Hall,1990.
    [73]Havrdnek, T., Stratkos, Z. On practical experience with parallel processing of linear models. Bulletin of the International Statistical Institute,53 (1989) 105-17.
    [74]Hayfield, T., Racine, J. Nonparametric econometrics:The np package. Journal of. Statistical Software,27 (2008),1-32.
    [75]Haynsworth, E. V. Quasi-stochastic matrices. Duke Math. J.,22 (1955),15-24.
    [76]Heeswijk, M., Miche, Y., Oja, E., and Lendasse, A. GPU-accelerated and par-allelized ELM ensembles for large-scale regression. Neurocomputing,74(2011), 2430-2437.
    [77]Hegland, M., McIntosh, I., and Turlach, B. A. A parallel solver for generalized additive models. Computational Statistics and Data Analysis,31 (1999),377-396.
    [78]Henningsen, A., and Toomet, O. maxLik:A package for maximum likeli-hood estimation in R. Computational Statistics, (2010), Online First. DOI: 10.1007/s00180-010-0217-1.
    [79]Hoeffding, W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc.,58 (1963),13-30.
    [80]Horowitz, J. L. The bootstrap in econometrics. Statistical Science,18 (2003), 211-218.
    [81]Hussain, H. M., Benkrid, K., Erdogan, A. T. and Seker, H. Highly Parame-terized K-means Clustering on FPGAs:Comparative Results with GPPs and GPUs. Proc. of ReConFig (2011), Cancun, Mexico.
    [82]Ipsen. I., and Nadler, B. Refined perturbation bounds for eigenvalues of her-mitian and non-hermitian matrices. SIAM J. Matrix Anal. Appl,31 (2009), 40-53.
    [83]Jiang, J. M. A nonlinear Gauss-Seidel algorithm for inference about GLMM. Computational Statistics,15 (2000),229-241.
    [84]Joel, M. Malard Parallel restricted maximum likelihood estimation for linear models with a dense exogenous matrix. Parallel Computing,28 (2002),343-353.
    [85]Kaufman, L., Hopke, P. K., and Rousseeuw, P. J. Using a Parallel Computer System for Statistical Resampling Methods. Computational Statistics Quar-terly,2 (1988),129-141.
    [86]Ke, C., Wang, Y. Nonlinear nonparametric regression models. J. Amer. Statist. Assoc.,99 (2004),1166-1175.
    [87]Keese, A. A review of recent developments in the numerical solution of stochas-tic PDEs (stochastic finite elements). Informatikbericht 2003-6, Technische Universitat Braunschweig, Braunschweig,2003.
    [88]Keese, A, Matthies H. G. Hierarchical parallel solution of stochastic systems. In:Bathe K-J,editor. Computational fluid and solid mechanics,2 (2004), 2023-2035.
    [89]Keese, A, Matthies H. G. Parallel computation of stochastic groundwater flow. In:Proceedings of the NIC Symposium,2004.
    [90]Keller, H. B. On the solution of singular and semidefinite linear systems by iteration. SIAM Journal on Numerical Analysis,2 (1965),281-290.
    [91]Knaus, J., Porzelius, C., Binder, H., and Schwarzer, G. (2009). Easier Parallel Computing in R with snowfall and sfCluster. The R Journal,1,1.
    [92]Kontoghiorghes, E. Special issue on parallel processing and statistics, Comput. Statist. Data Anal.,31 (1999),373-516.
    [93]Kontoghiorghes, E. Parallel Algorithms for Linear Models:Numerical Meth-ods and Estimation Problems, vol.15, Advances in Computational Economics, Kluwer Academic Publishers, Boston, MA,2000.
    [94]Kontoghiorghes, E. Handbook of Parallel Computing and Statistics. CRC Press,2006.
    [95]Krishnamoorthy, K., Mondal, S. Tolerance factors in multiple and multivariate linear regressions. Commun. Stat., Simulation Comput.,37 (2008),546-559.
    [96]Kunsch, H. R. The jackknife and the bootstrap for general stationary obser-vations. The Annals of Statistics,17 (1989),1217-1241.
    [97]Kwiatkowska, M., Parker, D., Zhang, Y. and Mehmood, R. Dual-processor parallelisation of symbolic probabilistic model checking. In MASCOTS'04, pp.123-130.
    [98]Lahiri, S. N. Resampling Methods for Dependent Data. Springer, New York, 2003.
    [99]Lahiri, P. On the impact of the bootstrap in survey sampling and small-area estimation. Statistical Science,18 (2003),199-210.
    [100]Lahiri, S. N. Asymptotic expansions for sums of block-variables under weak dependence. The Annals of Statistics,35 (2007),1324-1350.
    [101]Lahiri, S. N. Edgeworth expansions for Studentized statistics under weak de-pendence. The Annals of Statistics,38 (2010),388-434.
    [102]Lahiri, S. N. Theoretical comparisons of block bootstrap methods. The Annals of Statistics,27 (1999),386-404.
    [103]Lee, A., Yau, C., Giles, M., Doucet, A., Holmes, C. On the utility of graphics cards to perform massively parallel simulation with advanced Monte Carlo methods. J. Comp. Graph. Stat.19 (2010),769-789.
    [104]Lele, S. R. Impact of the bootstrap on the estimating functions. Statistical Science,18 (2003),185-190.
    [105]Li, P., Church, K. W. and Hastie, T. One sketch for all:Theory and Applica-tion of Conditional Random Sampling. NIPS (2008),953-960.
    [106]Lin, X., Zhang, D. Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society, Series B,61 (1999), 381-400.
    [107]Linton, O. B., Hadle, W. Estimation of additive regression models with known links. Biometrika,83 (1996),529-540.
    [108]Linton, O., Nielsen, J. P. A kernel method of estimating structured nonpara-metric regression based on marginal integration. Biometrika,82 (1995),93-100.
    [109]Liu, R. Y., Singh, K. Efficiency and robustness in resampling. The Annals of Statistics,20 (1992),370-384.
    [110]Liu, H., Peng, Y., Wei, D. and Dai, B. X10 implementation of Parallel Option Pricing with BSDE method. ACM SIGPLAN 2011 X10 Workshop, June 2011.
    [111]Loisel, S., Nabben, R. and Szyld, D. B. On Hybrid Multigrid-Schwarz Algo-rithms. J. Sci. Comput.,36 (2008),165-175.
    [112]Lozano, E., Acuna, E. Parallel computation of kernel density estimates clas-sifiers and their ensembles. Proceedings of the International Conference on Computer, Communication and Control Technologies, Orlando Florida, USA, 2003.
    [113]Lubinsky, B. and Nicolls, F. Fast Implementation of the FRAME Algorithm using a GPU Gibbs Sampler. PRASA2011, Johannesburg, South Africa,2011.
    [114]Lukasik, S. Parallel Computing of Kernel Density Estimates with MPI. Lec-ture Notes in Computer Science,4489 (2007),726-734.
    [115]MacKinnon, J. Bootstrap inference in econometrics. Canadian Journal of Eco-nomics.,35 (2002),615-645.
    [116]Marek, I., Szyld, D. B. Algebraic Schwarz methods for the numerical solution of Markov chains. Linear Algebra Appl.,386 (2004),67-81.
    [117]McCullagh, P., Nelder, J. A. Generalized Linear Models.2nd ed. New York: Chapman and Hall,1989.
    [118]Mehmood, R. and Crowcroft, J. Parallel iterative solution method for large sparse linear equation systems. Technical Report UCAM-CL-TR-650, Com-puter Laboratory, University of Cambridge, UK,2005 October.
    [119]Mitchell, T. J. and Beauchamp, J. J. Bayesian variable selection in linear regression. J. Am. Stat. Assoc.,83 (1988),1023-1032.
    [120]Murray, L. GPU acceleration of the particle filter:the Metropolis resampler. (2012), arXiv:1202.6163.
    [121]Nabben, R., Comparisons between additive and multiplicative Schwarz itera-tions in domain decomposition methods. Numer. Math.,95 (2003),145-162.
    [122]Nagel, K., Rickert, M. Parallel implementation of the TRANSIMS micro-simulation. Parallel Computing,27 (2001),1611-1639.
    [123]Nakano, J. Parallel computing techniques. In Gentle J. E., Hadle W., Mori Y., editors, Handbook of Computational Statistics,2004, pp.237-266. Springer, Berlin, Germany.
    [124]Nicmi, J., Wheeler, M. Efficient Bayesian inference in stochastic chemical kinetic models using graphical processing units,2011, arXiv:1101.4242v1.
    [125]Nishiyama, Y. and Robinson, P. M. The bootstrap and the Edgeworth correc-tion for semiparametric averaged derivatives. Econometrica,73 (2005),903-948.
    [126]Nordman, D. J. A note on the stationary bootstrap's variance. The Annals of Statistics,37 (2009),359-370.
    [127]Opsomer, J. D. Asymptotic properties of backfitting estimators. J. Multivari-ate Anal.,73 (2000),166-179.
    [128]Owens, J., Houston, M., Luebke, D., Green, S., Stone, J. and Phillips, J. (2008). GPU computing. Proc. IEEE 96(5),879-899.
    [129]Pagan A., Ullah, A. Nonparametric Econometrics. Cambridge University Press, New York,1999.
    [130]Pan, J. and Manocha, D. Fast GPU-based locality sensitive hashing for k-nearest neighbor computation. GISACM (2011), pp.211-220.
    [131]Paparoditis, E. and Politis, D. N. The local bootstrap for Markov processes. J. Stat. Plan. Infer.,108 (2009),301-328.
    [132]Park, J. Y. Bootstrap unit root tests. Econometrica,71 (2003),1845-1895.
    [133]Peifer, M., Schelter, B., Guschlbauer, B., Hellwig, B., Lucking, C. H. and Timmer, J. On studentising and blocklength selection for the bootstrap on time series. Biometr Journal,47 (2005),346-357.
    [134]Peng, Y., Gong, B., Liu, H., Zhang, Y. Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation. High Performance Computing and Applications (Lecture Notes in Computer Science, vol.5938). Springer, Berlin,2010:325-330.
    [135]Peng, Y., Gong, B., Liu, H., Dai, B. Option Pricing on the GPU with Back-ward Stochastic Differential Equation. PAAP, pp:19-23,2011 Fourth Inter-national Symposium on Parallel Architectures, Algorithms and Programming, 2011.
    [136]Platen. E.. Bruti-Liberati. N. Numerical solutions of stochastic differential equations with jumps in finance. Stochastic Modelling and Applied Probabil-ity, Vol.64, Springer-Verlag, Berlin,2010.
    [137]Politis, D. N., and White, H. Automatic block-length selection for the depen-dent bootstrap. Econometric Reviews,23 (2004),53-70.
    [138]Politis, D. N., The Impact of Bootstrap Methods on Time Series Analysis. Statistical Science,18 (2003),219-230.
    [139]Politis, D. N. and Romano, J. P. The Stationary Bootstrap. J. Amer. Statist. Assoc.,89 (1994),1303-1313.
    [140]Politis, D. N. and Romano, J. P. A circular Block-Resampling Procedure for Stationary Data. Exploring the Limits of Bootstrap. Wiley New York,1992, 263-270.
    [141]Preis, T. GPU-computing in econophysics and statistical physics. EPJ-Special Topics,194 (2011),87-119.
    [142]Racine, J. Parallel distributed kernel estimation. Computational Statistics and Data Analysis,40 (1995),293-302.
    [143]Racine J., Hart J. and Li, Q. Testing the Significance of Categorical Predic-tor Variables in Nonparametric Regression Models. Econometric Reviews,25 (2006),523-544.
    [144]Renaut, R. A. A parallel multisplitting solution of the least squares problem. Numerical Linear Algebra with Applications,5 (1998),11-31.
    [145]Rossini, A. J., Luke Tierney, and Li, N. Simple parallel statistical computing in R. J. Comput. Graph. Stat.,16 (2007),399-420.
    [146]Rossini, A., Tierney, L., and Li, N. Simple parallel statistical computing in R. Working paper, UW Biostatistics,2003.
    [147]Rue, H. Fast sampling of Gaussian Markov random fields. Journal of the Royal Statistical Society B,63 (2001),325-338.
    [148]Ruoming, J. and Agrawal, G. A Middleware for developing parallel data min-ing applications. Proc. of the First SIAM Conference on Data Mining,2001.
    [149]Sarkar, A., Benabbou, N., Ghanem, R. Domain Decompostion Of Stochastic PDEs and its Parallel. HPCS 2006:14-17.
    [150]Schall, R. Estimation in generalized linear models with random effects. Biometrika,78 (1991),719-727.
    [151]Schervish, M. Applications of parallel computation to statistical inference. J. Am. Stat. Assoc.,83 (1988),976-983.
    [152]Schmidberger, M. Parallel Computing for Biological Data, Dissertation, LMU Munchen:Fakultat fur Mathematik, Informatik und Statistik,2009.
    [153]Schmidberger, M. and Mansmann, U. Parallel Computing with the R Lan-guage in a Supercomputing Environment; Book Chapter:High Performance Computing in Science and Engineering, Garching, Springer,2009.
    [154]Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., Mans-mann, U. State of the art in parallel computing with R. Journal of Statistical Software,31 (2009),1-27.
    [155]Schwartz, J. Nonparametric smoothing in the analysis of air pollution and respiratory illness. Canad. J. Statist.,22 (1994),471-487.
    [156]Seneta, E. and Vere-Jones, D. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. J. Appl. Prob.,3 (1966),403-434.
    [157]Seo, M. H. and Linton, O. A Smoothed Least Squares Estimator for Threshold Regression Models. Journal of Econometrics.141 (2007),704-735.
    [158]Sevcikova, H. Statistical Simulations on Parallel Computers. J. Comput. Graph. Statist.,13 (2004),886-906.
    [159]Shieh, G. A comparison of two approaches for power and sample size calcu-lations in logistic regression models. Communications in Statistics-Simulation and Computation,29 (2000),763-791.
    [160]Siverman, B. W. Density Estimation for Statistics and Data Analysis. Chap-man and Hall, London,1985.
    [161]Skvoretz, J., Smith, S. and Baldwin, C. Parallel processing applications for data analysis in the social sciences. Concurrency:Practice and Experience,4 (1992),207-21.
    [162]Song, Y. Semiconvergence of nonnegative splittings for singular matrices. Nu-mer. Math.,85 (2000),109-127.
    [163]Steel, S. J. and Uys, D. W. Influential data cases when the Cp criterion is used for variable selection in multiple linear regression. Comput. Stat. Data Anal.,50 (2006),1840-1854.
    [164]Steinsland, I. Parallel Exact Sampling and Evaluation of Gaussian Markov Random Fields. Computational Statistics and Data Analysis,51 (2007),2969-2981.
    [165]Stewart, G. on Scaled Projections and Pseudoinverses. Linear Algebra Appl., 112 (1989),189-193.
    [166]Stewart, C., Hart, D., Berry, D., Olsen, G., Wernert, E., Fischer, W.:Par-allel Implementation and Performance of fastdnaml-a Program for Maximum Likelihood Phylogenetic Inference. Proceedings of SC2001 (2001).
    [167]Stewart, W. J. Performance modeling and Markov chains. In Formal Methods for performance Evaluation. M. Bernardo and J. Hillston (Eds.):SFM 2007, LNCS 4486, Springer, pp.1-33.
    [168]Strid. I. Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach. Computational Statistics and Data Analysis,54 (2010), 2814-2835.
    [169]Subber, W. and Sarkar, A. Domain Decomposition of Stochastic PDEs:A Novel Preconditioner and Its Parallel Performance. HPCS 2009:251-268.
    [170]Suchard, M. A., Wang, Q., Chan, C., Prelinger, J., Cron, A., and West, M. Understanding GPU Programming for Statistical Computation:Studies in Massively Parallel Massive Mixtures. J. Comp. Graph. Stat.19 (2010),419-438.
    [171]Swann, C. Maximum Likelihood Estimation Using Parallel Computing:An Introduction to MPI. Computational Economics,19 (2002),145-78.
    [172]Szyld, D. B. Equivalence of convergence conditions for iterative methods for singular equations. Numer Linear Algebr.,1 (1994),151-154.
    [173]Suri, R., Deodhare, D. and Nagabhushan, P. Parallel levenberg-marquardt-based neural network training on linux clusters-a case study. The Third Indian Conference on Computer Vision, Graphics, and Image Processing,2002.
    [174]Temple Lang, D. A multi-threaded extension to a high level interactive sta-tistical computing environment. Ph.D. dissertation, University of California, Berkeley,1997.
    [175]Tian, Y. and Takane, Y. Some properties of projectors associated with the WLSE under a general linear model. J. Multivariate Anal.,99 (2008),1070-1082.
    [176]Tibbits, M. M., Haran, M., and Liechty, J. C. Parallel multivariate slice sam-pling. Statistics and Computing,20 (2010),1-16.
    [177]Tierney, L. Implicit and explicit parallel computing in R. In Proceedings in Computational Statistics,2008, ed. P Brito (2008),43-51.
    [178]Tierney, L., Rossini, A. J. and Li, N. Snow:A Parallel Computing Framework for the R System. International Journal of Parallel Programming,37 (2009), 78-90.
    [179]Trebst, S., Troyer, M., and Hansmann, U. Optimized parallel tempering sim-ulations of Proteins. J. Chem. Phys.,124 (2006),174903.
    [180]Tran, M. A parallel four step domain decomposition scheme for coupled for-ward backward stochastic differential equation. J. Math. Pures Appl.,96 (2011),377-394.
    [181]Wand. M. P. Central limit theorems for local polynomial backfitting estima-tors. J. Multivariate Anal.70 (1999),57-65.
    [182]Wang, X., Carriere, K. C. Exponential-bound property of estimators and vari-able selection in generalized additive models. Commun. Statist. Theor. Meth., 36 (2007),1105-1122.
    [183]Weare, J. Efficient conditional path sampling of stochastic differential equa-tions by parallel marginalization. Proc. Nat. Acad. Sci., USA.104 (2007), 12657-12662.
    [184]Wedderburn, R. W. M. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika,61 (1974),439-447.
    [185]Wegman, E. On Some Statistical Methods for Parallel Computation. Statis-tics, Textbooks and Monographs,184 (2006),285-306.
    [186]Whiley, M. and Wilson, S. P. Parallel Algorithms for Markov Chain Monte Carlo in Latent Spatial Gaussian Models. Statistics and Computing,14 (2004), 171-179.
    [187]Wilkinson, D. Parallel Bayesian Computation, in E. J. Kontoghiorghes, ed., Handbook of Parallel Computing and Statistics, Chapman and Hall,2004 chap-ter 16, pp.477-508.
    [188]William, M. L., Durairajan, T. M. A generalized quasi-likelihood estimation. Journal of Statistical Planning Inference,79 (1999),237-246.
    [189]Xiang, L., Tse, S. K. An approximate EM algorithm for maximum likeli-hood estimation in generalized linear mixed models liming. Communications in Statistics-Simulation and Computation,32 (2003),787-798.
    [190]Xiu, D.,and Karniadakis. G. E. Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics,187 (2003), 137-167.
    [191]Xu,M.,Wegman,E.and Miller,J.Parallelizing multiple linear regression for speed and redundancy:an empirical study.J.Stat.Comput.Sim.,39(1991), 205-214.
    [192]Xu,J.Iterative Methods by Space Decomposition and Subspace Correction. SIAM Rev.,34(1992),581-613.
    [193]Xu,J.,Zikatanov,L.The method of subspace corrections and the method of alternating projections in Hilbert space.J.Amer.Math.Soc.,15(2002), 573-597.
    [194]Yan,J.,Cowles,M.K.,Wang,S.and Armstrong,M.P.Parallelizing MCMC for Bayesian Spatiotemporal Geostatistical Models,Statistics and Computing, 17(2007),323-335.
    [195]Yang,T.Execution time analysis for least squares problems on massively par-allel distributed memory computers.In Proeeedings of International Confer-ence on Computational Modeling and Computing(CMCP-96),1996.Dubna, Russia.
    [196]Zareski,D.,Wade,B.:Hubbard,P.and Shirley:P.Efficient parallel global illu-mination using density-estimation.In Proceedings of ACM Parallel Rendering Symposium,1995,47-54.
    [197]Zeng,J.P.and Zhou,S.Z.On monotone and geometric convergence of Schwarz methods for two-side obstacle problems.SIAM J.Numer.Anal.,30 (1998),600-616.
    [198]Zhang,Y.,Parker,D.and Kwiatkowska,M.A wavefront parallelisation of CTMC solution using MTBDDs.In DSN'05.PP.732-742.IEEE Computer Society Press,2005.
    [199]Zhon,H.,Lange,K.,Suchard,M.A.Graphics Processing Units and High-Dimensional Optimization.Statistical Science,25(2010),311-324.
    [200]Zhu.W.and Li,Y.GPU-accelerated Diffierential Evolutionary Markov Chain Monte Carlo Method for muti-objective optimization over continuous space. In:Pro.7th IEEE ICAC-BADS Washington,DC,USA,2010.Subb09.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700