先进航天器轨道快速优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于低成本的太空资源开发、巨大的战略利益等因素的考虑,当前许多发达国家相继将发展先进航天器ASV(可重复使用运载器RLV、乘员返回飞行器CRV、空间作战飞行器SOV、军用空天飞机MSP、空间机动飞行器SMV等)作为未来航天技术发展的重点。先进航天器飞行时应具备自主导航的能力,其实现的关键技术之一是用机载计算机近实时或实时地生成一条满足各种约束条件的优化轨道。虽然国内外学者在ASV轨道优化方面已经做了大量研究工作,取得了令人瞩目的成果,但是绝大多数优化方法要花大量的计算机时才能获得最优控制量及相应的最优轨道,即传统的算法不能满足ASV自主导航实时生成轨道的要求。本论文就ASV轨道快速优化问题进行了深入研究,主要内容包括两部分:再入轨道快速优化和上升轨道快速优化。
     ASV再入轨道快速优化
     本文根据ASV再入轨道快速优化的需求,在运动模型处理方面和优化算法方面做了如下工作:
     模型处理:(1)根据ASV再入运动方程的特点和优化算法流程结构的特征,对模型做了合理的简化处理(将6状态量轨道状态方程分为参与数值优化迭代的一组状态方程和不参与数值优化迭代的一组状态方程);(2)运动模型无量纲处理;(3)运动模型转化处理(将终端时间自由的轨道最优控制问题转化为终端积分变量固定的最优控制问题)。处理后的模型计算量少,更适合优化数值解法求解。
     算法方面:与传统轨道优化算法不同,本文算法先根据轨道约束和准平衡约束规划出再入走廊,在再入走廊内选取满足航程约束的一条基准轨道,然后根据基准轨道反推算得到其中的一个控制量—滚转角,采用参数优化法优化滚转角。在此基础上,采用共轭梯度法对另一个控制量—迎角进行优化。
     仿真结果表明,只需10-20秒左右的时间即能产生一条满足轨道约束、终端约束、控制量约束和航程约束的优化轨道。此轨道可以用作ASV自主导航的参考轨迹,也可用作应急情况下再入的参考轨迹,具有很好的工程应用价值。
     ASV上升轨道快速优化
     本文根据ASV上升轨道快速优化的需求,在运动模型处理方面和优化算法方面做了如下工作:
Nowadays, a number of developed countries have launched many programmes about Advanced Space Vehicles(ASV), which include Reusable Launch Vehicle, Crew Return Vehicle, Space Operation Vehicle, Military Space Plane, Space Maneuver Vehicle et al., ground on space resource exploitation and strategic interests. The guidance and control methods should enable the ASV to accomplish fully autonomous and adaptive flight, a key problem is to achieve the optimal controls quickly. However, determining how to find the best controls of an ASV so that it is able to safely reach Terminal Area Energy Management (TAEM) or go into specified orbit involves the solution of a two-point boundary value problem. This problem, which is considered to be difficult, is traditionally solved on the ground rather than onboard. The optimal controls are found regardless of computing time by most of algorithms, which can meet requirements of traditional shuttle guidance. That is, traditional trajectory optimization algorithms can not perform this fast trajectory optimization tasks. The main works of this dissertation are focused on the fast ASV trajectory optimization, including:
    Fast optimization of three-dimensional reentry trajectory
    Traditional trajectory optimization algorithms cannot perform this fast optimization task. In this dissertation, a new hypothesis is introduced according to the features of three-dimensional constrained reentry trajectory of ASV. The dynamics and kinematics equations of motion are divided into two sets and only one of those is involved in iterations of optimization algorithm, and this simplification reduces the computation labor greatly. Different from other optimization algorithms, firstly, the algorithm generates a reentry corridor according to all common inequality constraints and quasi-equilibrium glide conditions. Then, a normal trajectory can be achieved based on range constraints within the corridor and a normal control variable (the bank angle) will be obtained by utilizing the normal trajectory and quasi-equilibrium glide conditions. Next, the Conjugate-Gradient Method is applied to optimize another control variable (the angle of attack). All above methods and operationes accelerate the convergence of optimization iteration greatly. The simulation shows that this methodology is able to generate a feasible reentry trajectory of about 2000 seconds flight time in about 10 seconds on the desktop computer.
    Fast optimization of three-dimensional launch trajectory
    The dissertation focuses on fast generation and optimization of three-dimensional ascent trajectory for ASV, which is one of fundamental research work. Firstly, the set of dynamics and kinematics equations of motion is simplified according to the features of three-dimensional constrained ascent trajectory of ASV, and this simplification reduces the computation labor greatly. Then, the trajectory optimal
引文
[1] 王振国,罗世彬,吴建军.可重复使用运载器研究进展[M].长沙:国防科技大学出版社,2004.12:25-30
    [2] Micheal A.R, Concepts of Operations for a Reusable Launch Vehicle[D], School of Advanced Airpower Studies, 1997
    [3] Benton, M. Berry, J. Benner, H. Second Generation RLV Development[C]. AIAA- 2003-2848.
    [4] Uwe Hueter. STATUS OF THE ADVANCED REUSABLE TECHNOLOGIES PROJECT [C]. AIAA-98-1569.
    [5] X-33 - Summary[EB/OL]. http://www.spaceandtech.com/spacedata/rlvs/x33_sum.shtml, 2005-5-27.
    [6] Andrew J. Butrica. X-33 History Project Home Page[EB/OL]. http://www.hq.nasa.gov/office/pao/History/x-33/project.htm, 2003-2-25
    [7] VentureStar-Summary[EB/OL]. http://www.spaceandtech.com/spacedata/rlvs/venturestar sum.shtml, 2005-5-30.
    [8] A.M.James. Where Profit Drives RLV[C]. AIAA-97-3909.
    [9] J.Andrews, D.D.Andrews. Low Cost Options for 2nd and 3rd Generation Reusable Launch Vehicles[C]. AIAA-2000-3824.
    [10] Uwe Hueter. STATUS OF THE ADVANCED REUSABLE TECHNOLOGIES PROJECT [C].AIAA-98-1569.
    [11] 黄志澄,仇强华,袁生学.高超卢速飞行展望[J].流体力学实验与测量.1997,11(1):6-10.
    [12] Dan Dumbacher, NASA'S SECOND GENERATION REUSABLE LAUNCH VEHICLE PROGRAM INTRODUCTION, STATUS, AND FUTURE PLANS[C]. AIAA-2002-3613.
    [13] 解发瑜,李刚,徐忠吕.高超声速飞行器概念及发展动态[J].飞航导弹.2004,no5:27-31.
    [14] 关世义.美国新一代X飞行器一瞥[J].飞航导弹.2002,no1:20-26.
    [15] 1993.1 T.A.Heppenheimer著,纪绍钧等译.美国国家空天飞机计划[M].北京:航空工业出版社,1989.
    [16] 陈准.美国X系列验证机的发展[J].飞航导弹,2003.No.8:45-49.
    [17] 刘桐林.俄罗斯高超声速技术飞行试验计划(一)[J].飞航导弹,2000,No.4:23-30.
    [18] 刘桐林.俄罗斯高超声速技术飞行试验计划(二)[J].飞航导弹,2000.No,5:27-31.
    [19] 刘桐林.俄罗斯高超声速技术飞行试验计划(续二)[J].飞航导弹,2000.No.6:17-23.
    [20] 刘桐林.俄罗斯高超声速技术飞行试验计划(四)[J].飞航导弹,2000.No.7:18-23.
    [21] 江绍东,韩鸿硕.国外主要新型可复用运载器发展概况[EB/OL],http://www.space.cetin.net.cn/docs/ht0312/ht0312htxtjs01.htm,2003-12-27.
    [22] 吴开林.航天器基本特点与设计要求概述(四)航天器的轨道设计、构形和可靠性[J].航天标准化,2002,第4期:42-47.
    [23] 高存厚.飞行器系统工程[M].北京:宇航出版社,1996.
    [24] 吴德隆,彭伟斌,王小军.气动力辅助变轨与最优控制研究进展[J].力学进展,2005,35(1):30-36.
    [25] 王华,唐国金,雷勇军.有限推力轨迹优化问题的直接打靶法研究[J].中国空间科学技术,2003.23(5):51-56.
    [26] 王华,唐国金.用非线性规划求解有限推力最优交会[J].国防科技大学学报,2003.25(5):9-13.
    [27] 黄海兵,高普云.利用厄密特多项式的配置和非线性规划进行小推力最优变轨[J].航空计算技术,2003,33(2):30-33.
    [28] 程国采.航天飞行器最优控制理论与方法[M].长沙:国防工业出版社,1999:240-260.
    [29] 吴宏鑫,胡海霞,解永春,于颖.自主交会对接若干问题[J].宇航学报,2003,24(2):104-109.
    [30] [美]阮春荣著,茅振东译,肖业伦校.大气飞行的最优轨迹[M].北京:宇航出版社,1987.8.
    [31] 邓子辰.最优控制理论的发展及现状[J].大自然探索,1994,13(2):32-36.
    [32] 崔志强,许南宁,曾维鲁.最优控制数值算法研究[J].武汉水利电力大学学报,1997,19(4):104-108.
    [33] 李文,梁昔明,龙祖强.最优控制理论的发展与展望[J].广东自动化与信息工程,2003.1:1-4.
    [34] 周凤歧,强文鑫,阙志宏.现代控制理论及其应用[M].成都:电子科技大学出版社,1992.
    [35] 蔡萱三.最优化与最优控制[M].北京:清华大学出版社,1982.435-457.
    [36] Betts, J., Bauer, T., Kondervan, K. Solving the Optimal Control Problem Using a Nonlinear Programming TechniquePart 1:General Formulation[C]. AIAA-84-2037.
    [37] Betts, J., Bauer, T,, Kondervan, K. Solving the Optimal Control Problem Using a Nonlinear Programming TechniquePart 1 :Optimal Shuttle Ascent Trajectories[C]. AIAA-84-2038.
    [38] J.T.Betts.Survey of Numerical Methods for Trajectory Optimization[J]. Journal of Guidance, Control, and Dynamics.21 (2): 193-207.
    [39] Hargraves,C.R., Johnson,F.T., Paris, S.W. el at. Numerical Computation of Optimal Atmospheric Trajectories[J]. Journal of Guidance, Control, and Dynamics, 1981,4(4):406-414.
    [40] Ross, I. Fahroo. F. A perspective on methods for trajectory optimization[C]. AIAA-2002-4727.
    [41] 郭飞.一类求解线性约束非线性规划问题的可行方向法[J].应用数学与计算机数学学报,1997,11(1):19-26.
    [42] 何光宇,卢强,陈雪青.一种求解非线性优化问题的可行方向法[J].清华大学学报(自然科学版),2004,24(10):1211-1213.
    [43] 孙清滢,张秀珍.解带非线性等式和不等式约束优化问题的超记忆梯度广义投影算法[J].S石油大学学报(自然科学版),2003,27(2):119-124.
    [44] 赖炎连.非线性最优化的广义梯度投影方法[J].中国科学A辑,1992,(9):916-924.
    [45] Philip E. Gilla, Laurent O. Jay, Michael W. Leonard, Linda R. Petzold,Vivek Sharma. An SQP method for the optimal control of large-scale dynamical systems[J]. Journal of Computational and Applied Mathematics 120 (2000) 197-213.
    [46] 滕召波.张世永,陈华富,何光中,非线性规划一般约束条件的SQP方法[J].电子科技大学学报,2001,30(1):103-106.
    [47] 李祥学.一种基于遗传算法的非线性规划问题求解方法[D].南京:南京大学,2000.4.
    [48] 陈峻,沈洁.用遗忙算法求解的非线性规划问题[J].计算机工程,2004,30(18):41-43.
    [49] 崔永利,魏君.SA法在求解非线性约束优化问题中的应用[J].大连大学学报,2003.24(6):5-8.
    [50] 毕荣山,杨霞.项曙光.利用微粒群优化算法求解非线性规划问题[J].青岛科技大学学报,2004,25(2):125-128.
    [51] 黄远灿,孙圣和,韩京清.基于Lagrange乘子法的非线性规划神经网络[J].电子学报.1998,26(1):24-28.
    [52] 林国华等.求解飞行轨迹最优化问题的组合算法[J].飞行力学,1994,12(1):50-56.
    [53] Woong-Rae Roh, Youdan Kim. Trajectory optimization for Multi-Stage Vehicle Using Time FEM Versus Collocation[C]. AIAA-99-4072.
    [54] A Trent, R Venkataraman, D Doman. Trajectory Generation Using A Modified Simple Shooting Method[C], AFRL-VA-WP-TP-2004-306, 2004.
    [55] I.M.Ross.,C.D.Souza.,F.Fahroo.,J,B.Ross. A FAST APPROACH TO MULTI-STAGE LAUNCH VEHICLE TRAJECTORY OPTIMIZATION[C]. AIAA-2003-5639.
    [56] Jeremy Rea. Launch Vehicle Trajectory Optimization Using a Legendre Pseudospectral Method [C]. AIAA-2003-5640.
    [57] Woong-Rae Roh, Youdan Kim. Trajectory optimization for Multi-Stage Vehicle Using Time FEM Versus Collocation[C]. AIAA-99-4072.
    [58] A Trent, R Venkataraman, D Doman. Trajectory Generation Using A Modified Simple Shooting MethodiC], AFRL-VA-WP-TP-2004-306, 2004.
    [59] I.M.Ross.,C.D.Souza.,F.Fahroo.,J.B.Ross. A FAST APPROACH TO MULTI-STAGE LAUNCH VEHICLE TRAJECTORY OPTIMIZATION[C]. AIAA-2003-5639.
    [60] Philip E. GILL. User's Guide for SNOPT Version 7, A Fortran Package for Large-Scale Nonlinear Programming[EB/OL], http://scicomp.ucsd.edu/~peg/, 2005-7-12.
    [61] Jeremy Rea. Launch Vehicle Trajectory Optimization Using a Legendre Pseudospectral Method [C]. AIAA-2003-5640.
    [62] 刘同仁.用参数最优化方法计算最优飞行轨迹[J].航空学报,1994,15(11):1298-1306.
    [63] 蔡萱三.最优化与最优控制[M],北京:清华大学出版社,1982.321-322.
    [64] 税清才,方振平.非线性数学规划在飞行力学中的应用[J].飞行力学,1995,13(3):29-26.
    [65] Hargraves, C.R., Paris, S.W. Direct trajectory Optimization Using Nonlinear Programming and Collocation[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(5):981-986.
    [66] C.R.Hargraves,. S.W.Paris. Direct trajectory Optimization Using Nonlinear Programming and Collocation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(4):338-342.
    [67] 南英.航天器再入轨迹与控制[D].西安:西北工业大学,1993.5.
    [68] 李小龙.天地往返航天器再入的最优轨迹于制导研究[D].西安:西北工业大学,1993.4.
    [69] Peter Friedrich Gath. CAMTOS-A Software Suite Combining Direct and Indirect Trajectory Optimization Methods[D]. Institut fur Flugmechanik und Flugregelung Universitat Stuttgart,2002. 11.
    [70] AeroSpace Trajectory Optimization Software[EB/OL], http://129.69.124.253/content.php?MENU_ID=202000000&LINK_ID=106, 2005-8-29.
    [71] Sparse Optimal Control Software [EB/OL], http://129.69.124.253/content.php?MENU_ID=203000000&LINK_ID=103, 2005-8-29.
    [72] Graphical Environment for Simulation and Optimization[EB/OL], http://129.69.124.253/content.php?MENU_ID=201000000&LINK_ID=105, 2005-8-29.
    [73] 王明光,袁建平,罗建军.RLV上升轨迹机载快速优化[J].弹箭与制导学报,2004,24(4):88-91.
    [74] 黄奕勇,张育林.配点法研究[J]_弹道学报,1998,10(3):40-43.
    [75] Oskar von Stryk. User's Guide for DIRCOL a Direct Collocation Method for the Numerical Solution of Optimal Control Problems[R]. 1999.11.
    [76] Heli Chen, Yuhong Su, and Bernie D. Shizgal. A Direct Spectral Collocation Poisson Solver in Polar and Cylindrical Coordinates[J]. Journal of Computational Physics 160, 453-469 (2000)
    [77] 黄交勇,张育林.用高精度配点法进行弹道优化[J].推进技术,1998,19(4):66-69.
    [78] 王劼,等.双积分系统最优控制的三次Hermite配点法[J].清华大学学报(自然科学版),2004,44(5):678-680.
    [79] B.A.Conway., K.M.Larson. Collcation Versus Differential Inclusion in Direct Optimization [J]. Journal of Guidance, Control, and Dynamics. 21(5): 780-785.
    [80] Albert L. Herman, Bruce A. Conway. Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3):592-599.
    [81] R Holsapple, R Venkataraman, D Doman. A MODIFIED SIMPLE SHOOTING METHOD FOR SOLVING TWO-POINT BOUNDARY-VALUE PROBLEMS[C], AFRLoVA-WP-TP -2002-327, 2002.
    [82] A Trent, R Venkataraman, D Doman. Trajectory Generation Using A Modified Simple Shooting MethodiC], AFRL-VA-WP-TP-2004-306, 2004.
    [83] P.F.Gath., K.Well. Trajectory Optimization Using a Combination of Direct Multiple Shoot- ing and Collocation[C]. AIAA-2001-4047.
    [84] Jean-Antoine Desideri, Sergey Peiginy, Sergey Timchenkoz. Application of Genetic Algorithms to the Solution of the Space Vehicle Reentry Trajectory Optimization Problem[M]. ISSN 0249-6399 ISRN INRIA/RR-3843-FR+ENG. 1999.12.
    [85] 邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.
    [86] 吴美平,胡小平.遗传算法在载人飞船返同轨道一体化设计中的应用[J].宇航学报.22(3):99-104.
    [87] Nobuhiro Yokoyama, Shinji Suzuki. Trajectory Optimization via Modified Genetic Algorithm[C]. AIAA-2003-5493.
    [88] Shen, Z., Lu, P.ON-BOARD GENERATION OF THREE-DIMENSIONAL CONSTRAINED ENTRY TRAJECTORIES[C]. AIAA-2002-4455.
    [89] J. D. Schierman, J. R. Hull, D. G. Ward. ON-LINE TRAJECTORY COMMAND RESHAPING FOR REUSABLE LAUNCH VEHICLES[C]. AIAA-2003-5439.
    [90] S.Twigg., A.Calise., E.Johnson. ON-LINE TRAJECTORY OPTIMIZATION FOR AUTO- NOMOUS AIR VEHICLES[C]. AIAA-2003-5522.
    [91] Shen, Z., Lu, P. Onboard generation of three-dimensional constrained entry trajectories[J], Journal of Guidance, Control, and Dynamics. 26(1): 111-121.
    [92] Yakimenko, Oleg. A Direct method for rapid prototyping of near-optimal aircraft trajectories[J]. Journal of Guidance, Control, and Dynamics. 23(5): 865-875.
    [93] Hans,J.P. Off-line and On-line Computation of Optimal Trajectories in the Aerospace Field[M]. 12th course in Applied Mathematics in the Aerospace Field.Erice,Sicily, September 3-10,1991.
    [94] Scott.J, I.Michael.R. Rapid Verification Method for the Trajectory Optimization of Reentry Vehicles. J.GUADANCE,VOL.26,NO.3
    [95] 谭浩强.C程序设计(第二版)[M].北京:清华大学出版社:1-1.
    [96] Shen, Z. On-Board Three-Dimensional Constrained Entry Flight Trajectory Generation[D]. Iowa state University, 2002.8.
    [97] Robert T.Bibeau. TRAJECTORY OPTIMIZATION FOR A FIXED-TRIM REENTRY VEHICLE USING DIRECT COLLOCATION AND NONLINEAR PROGRAMMING[C]. AIAA-2000-4262.
    [98] Milam,M.B. Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems[D]. California Institute of Technology, 2003.5.
    [99] Pietz, J.A. Pseudospectral Collocation Methods for the Direct Transcription of Optimal Control Problems[D]. RICE UNIVERSITY, 2003.4.
    [100] Hall,A.O. A MATLAB GUI FOR A LEGENDRE PSEUDOSPECTRAL ALGORITHM FOR OPTIMAL CONTROL PROBLEMS[D]. Monterey, California, NAVAL POSTGRADUATE SCHOOL, 1999.6.
    [101] John,W.H. LOW-THRUST TRAJECTORY OPTIMIZATION USING STOCHASTIC OPTIMIZATION METHODS[D], University of Illinois at Urbana-Champaign, 1999.
    [102] John,J.K. TRAJECTORY PLANNING FOR THE ARIES AUV[D]. Monterey, California, NAVAL POSTGRADUATE SCHOOL, 2002.6.
    [103] Kazuhiro Horie, COLLOCATION WITH NONLINEAR PROGRAMMING FOR TWO- SIDER FLIGHT PATH OPTIMIZATION[D]. University of Illinois at Urbana-Champaign, 2002.2.
    [104] Adam,L.S. Theory and Implementation of Numerical Methods Based on Runge-Kutta Integration for Solving Optimal Control Problems [D]. GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY, 1996.
    [105] Rahul Kamada. TRAJECTORY OPTIMIZATION STRATEGIES FOR SUPERCAVITATING VEHICLES[D]. School of Aerospace Engineering, Georgia Institute of Technology, 2005.3.
    [106] 赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社,1997.11.
    [107] 张黎.使用非线性规划法研究航天飞机的最优上升轨道[D].西安:西北工业大学,1986.
    [108] 候明.求解一类最佳轨迹问题的直接多重打靶法[D].西安:西北工业大学,1987.
    [109] 庄景堂.航天飞机最优再入轨道[D].西安:西北工业大学,1988.3.
    [110] 张少波.受加热率和过载限制时航天飞机的三维最优再入轨道[D].西安:西北工业大学,1987.3.
    [111] 王西京.飞行器轨道确定与机动的研究[D].西安:西北工业大学,2000.6.
    [112] 塔黑尔.弹道导弹飞行方案设计及弹道优化[D].北京:北京航空航天大学,2003.11.
    [113] 周文勇.跨大气层飞行器轨道优化设计[D].西安:西北工业大学,2004.3.
    [114] 黄奕勇.以火箭为动力单级入轨飞行器推进理论研究[D].长沙:国防科学技术大学,1999 9.
    [115] M. GERDTS. Direct Shooting Method for the Numerical Solution of Higher-Index DAE Optimal Control Problems[J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003,117(2):267-294.
    [116] W. GRIMM., A. MARKL. Adjoint Estimation from a Direct Multiple Shooting Method[J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92(2):263-283.
    [117] H. BAUMANN., H. J. OBERLE. Numerical Computation of Optimal Trajectories for Coplanar, Aeroassisted Orbital Transfer[J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000,1073):457-479.
    [118] Seymour V. Patter. On the Legendre-Gauss-Lobatto Points and Weights[J]. Journal of Scientific Computing, 1999,14(4):347-355.
    [119] M. H. BREITNER. Robust Optimal Onboard Reentry Guidance of a Space Shuttle: Dynamic Game Approach and Guidance Synthesis via Neural Networks[J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS,2000, 107(3):481-503.
    [120] ZENGXIN WEI., GAOHANG YU., GONGLIN YUAN., ZHIGANG LIAN.The Superlinear Convergence of a Modified BFGS Type Method for Unconstrained Optimization[J]. Computational Optimization and Applications, 2004,No.29, 315-332.
    [121] G. FRASER-ANDREWS. A Multiple-Shooting Technique for Optimal Control[J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS,1999,102(2) 299-313.
    [122] Yawiwat Veeraklaew, Sunil, K.A. A New Computional Framework for Trajectory Optimization of Higher-Order Dynamic Systems[C]. AIAA-2000-4260.d
    [123] Jonathan J.Lakso., Victoria L.Coverstone. Optimal tether deployment/retrieval trajectories using direct collocation[C]. AIAA-2000-4349.
    [124] Youssef. Hussein. Predictor-corrector entry guidance for reusable launch vehicles[C]. AIAA-2001-4043.
    [125] Vathsal, S., Sarkar, A K. Optimal control of mission trajectory by an efficient variable transformation technique[C]. AIAA-2001-4203.
    [126] Whiting, J K. Three-dimensional low-thrust trajectory optimization with applications[C]. AIAA-2003-5260.
    [127] Enrignt,P.J., Conway B.A. Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(3):994-1002.
    [128] F, Fahroo., I.M.Ross,. Costate Estimation by a Legendre Pseudospectral Method[J]. Journal of Guidance, Control, and Dynamics. 24(2): 270-277.
    [129] T, Veeraklaew., S.K.Agrawal. New Computational Framework for Trajectory Optimization of Higher-Order Dynamic Systems[J]. Journal of Guidance, Control, and Dynamics. 24(2): 228-235.
    [130] Seywald H. Trajectory Optimization Based on Differential Inclusion[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3)480-487.
    [131] 罗亚中,唐国金,周黎妮.混合遗传算法及其住运载火箭最优上升轨道设计中的应用[J].国防科技大学学报,2004,26(2):4-7.
    [132] 茹家欣.空中发射运载火箭发射轨道设计[J].现代防御技术,2004,32(1):28-29.
    [133] Bekey I. Why SSIO Rocket Launch Vehicles Are Now Feasible And Practical, IAF-94-V. 1.524, 1994.
    [134] John, R.S. SSTO RLVs: MORE GLOBAL REACH? A STUDY OF THE USE OF SINGLE STAGE TO ORBIT[D]. Air Force Institute of Technology. 1996.11.
    [135] 朱仁璋,林彦,李颐黎.空间交会V-bar接近冲量机动运动分析[J].中国空间科学技术,2003,23(3):1-7.
    [136] Robert Bell et al. HARDWARE-IN-THE LOOP TESTS OF AN AUTONOMOUS GN&C SYSTEM FOR ON-ORBIT SERVICING[C]. AIAA-2003-6372.
    [137] Koji Yamanaka et al. GUIDANCE AND NAVIGATION SYSTEM DESIGN OF R-BAR APPROACH FOR RENDEZVOUS AND DOCKING[C]. AIAA-98-1299.
    [138] 吴宏鑫,胡海霞,解永春,王颖.自主交会对接若干问题[J].宇航学报2003,24(2):132-138。
    [139] 郑本武,陈实.肮天飞机返回轨道[J].飞行力学,1989,7(3):28-35.
    [140] 郑本武.航天飞机再入大气层最优轨迹[J].南京航空航天大学学报,1993,25(4):431-437.
    [141] 黄福铭.航天器飞行控制与仿真[M].北京:国防工业出版社,2004:204-209.
    [142] 南英,陈士橹,吕学富.受多种约束时航天器再入走廊的计算分析[J].飞行力学,13(1):18-25.
    [143] 李小龙,陈士橹.航天飞机的最优再入轨迹与制导[J].宇航学报,1993,14(1):7-13.
    [144] 宋淑萍.有翼飞行器最大横向航程的最优三维再入机动轨道[J].佳木斯工学院学院学报.1993,15(1):1-5.
    [145] Jeng-Shing Chern, Nguyen Xuan Vinh. Optimal Reentry Trajectories of a Lifting Vehicle [R]. NASA CR-REPORT 80-3236.
    [146] 彭伟斌.吴德隆.用广义乘子法求解航天器最优平面再入轨迹[J].飞行力学,2004,22(2):49-56.
    [147] 王忠刚,严辉,陈士橹.轨边/飞行器总体参数的一体化优化方法研究[J].飞行力学 1997,15(2):20-26.
    [148] H.Suzuki, H.Fushimi. Optimal Ascent Trajectory and Guidance Law for Aerospace Plane [C]. AIAA-99-0386.
    [149] Peter F.G., Anthony J.C, OPTIMIZATION OF LAUNCH VEHICLE ASCENT TRAJECT ORIES WITH PATH CONTRAINTS AND COAST ARCS[C]. AIAA-99-4308,
    [150] Jeremy Rea. Launch Vehicle Trajectory Optimization Using a Legendre Pseudospectral Method [C]. AIAA-2003-5640.
    [151] 竺苗龙.关于发射人造地球卫星的最仕轨道(Ⅲ)[J].青岛大学学报,1994,7(2):23-29.
    [152] 竺苗龙.关于“最佳轨道引论”(01)[J].青岛大学学报,1998,13(3):71-73.
    [153] 1.M.Ross., C.D.Souza., F.Fahroo., J.B.Ross. A FAST APPROACH TO MULTI-STAGE LAUNCH VEHICLE TRAJECTORY OPTIMIZATION[C]. AIAA-2003-5639.
    [154] 竺苗龙,刘华富,严星刚,郭雷.关于“最佳轨道引论”(Ⅳ)[J].青岛大学学报,1994,7(4):46~54.
    [155] 崔志强,许南宁,曾维鲁.最优控制数值算法研究[J].武汉水利电力大学学报,1997,19(4):104-108.
    [156] 吴沧浦.最优控制的理论与方法[M].长沙:国防科技大学出版社,2000.
    [157] 杨峻松,为民.关于“最省燃料消耗的发射轨道问题讨论”(Ⅰ).[J].青岛在学学报,1999,12(3):10-14
    [158] Caetano, Marco A L, Yoneyama, Takashi. New iterative method to solve optimal control problems with terminal constraints[J]. Journal of Guidance, Control, and Dynamics, 19(1),Jan-Feb, 1996.p.262-264
    [159] 蔡萱三.最优化与最优控制[M].北京:清华大学出版社,1982.
    [160] 陈宝林.最优化理论与算法[M].北京:清华大学出版社,1989.
    [161] 粟塔山.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社,2002.
    [162] 袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,2003.
    [163] 林国华.等.求解飞行轨迹最优化问题的组合算法[J].飞行力学,1994,12(1):50-56.
    [164] 王明光,等.RLV再入段轨迹快速优化[J].宇航学报,26(3).253-256+313.
    [165] 程国采.航天飞机器最优控制理论与方法[M].长沙:国防工业出版社,1999.
    [166] 贺永宜.极小值原理与动态规划法的比较[J].天津职业技术师范学院学报,2000,10(2):5-7.
    [167] 吴受章.应用最优控制[M].西安:西安交通大学出版社,1987.
    [168] 邢继祥,张春蕊,许洪泽,等.最优控制应用基础[M].北京:科学出版社,2003.
    [169] 许文胜,陈祖浩.一类可变状态终端的最优控制问题[J].山东大学学报,1996,31(1):
    [170] H.Yan., H.Wu. INITIAL ADJOINT VARIABLE GUESS TECHNIQUE AND ITS APPLACATION IN OPTIMAL ORBITAL TRANSFER[C]. AIAA-98-4451.
    [171] Viorel Arnautu. Optimal control from theory to computer programs[M]. Dordrecht, Kluw- er Academic, 2003:213-254.
    [172] D.G.Hull. Conversion of Optimal Control Problems into Parameter Optimization Problems [C], AIAA-96-3812.
    [173] D.G.Hull. Conversion of Optimal Control Problems into Parameter Problems[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):57-60.
    [174] G.Elnagar., M.A.Kazemi. The Pseudospectral Legendre Method for Discretizing Optimal Control Problem[J]. IEEE Transaction on Automatic Control, 1995, 40(10): 1793-1796.
    [175] F.Fahroo., I.M.Ross. Direct Trajectory Optimization by a chebyshev Pseudospectral Method[J]. Journal of Guidance, Control, and Dynamics, 25(1): 160-166.
    [176] F, Fahroo., I.M.Ross. TRAJECTORY OPTIMIZATION BY INDIRECT SCPECTRAL COLLOCATION METHODS[C]. AIAA-2000-4028.
    [177] J.Vlassenbroeck. R.V.Dooren. Chebyshev Technique for Solving Nonlinear Control Problems[J]. IEEE Transaction on Automatic Control, 1988, 33(4):333-340.
    [178] 封建湖,车刚明,聂玉峰,等.数值分析原理[M].北京:科学出版社,2002.61-70.
    [179] 李信真,车刚明,欧阳,等.计算方法[M].西安:西北工业大学出版社,2000.167-168.
    [180] Maureen Doyle. A BARRIER ALGORITHM FOR LARGE NONLINEAR OPTIMIZATION PROBLEMS[D]. 2003. Stanford university:41-52.
    [181] H.Compton., J.Findlay., G.Kelly., M.Heck. Shuttle(sts-1) Entry Trajectory Reconstruction [J]. AIAA-81-2459.
    [182] A.Marinescu., S.llin. Minimum Heat Input Optimal Skip Entry into Venus Atmosphere[J], Journal of Spasecraft AND Rockets, 35(6): 774-777.
    [183] Istratie. OPTIMAL SKIP ENTRY ATMOSPHERE WITH MINIMUM HEAT AND COMSTRAINTS[C]. AIAA-2000-3993.
    [184] Lu, P. Entry Guidance for X-33 vehicle[J], Journal of Spacecraft AND Rockets, 35(3): 342-349.
    [185] 王明光,罗建军,袁建平.RLV再入轨迹次实时生成[C].第五届海内外华人航天科技研讨会,2004.9.
    [186] Zimmerman, C., Dukeman, G., and Hanson, J. An Automated Method to Compute Orbital Entry Re-Entry Trajectories with Heating Constraints[C]. AIAA-2002-4454.
    [187] 叶庆凯,王肇明.优化与最优控制中的计算方法[M].北京:科学出版社,1986.
    [188] Lu, P. AN ALTERNATIVE ENTRY GUIDANCE SCHEME FOR THE X-33[C]. AIAA-98-4255.
    [189] R.Windhorst. MINIMUM HEATING RE-ENTRY TRAJECTORIES FOR ADVANCED HYPERSONIC LAUNCH VEHICLES[C]. AIAA-97-3535.
    [190] 严恒元,励 缨.航天飞机三维最优再入轨道及气动加热过程[J].西北工业大学学报,1992,10(3):365-371.
    [191] A.D.HILL.X-33 TRAJECTORY OPTIMIZATION AND DESIGN[C]. AIAA-98-4408.
    [192] Lu, P. Entry guidance and trajectory control for reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics,20(1): 143-149.
    [193] Bonnans, J F., Launay, G. Large-scale direct optimal control applied to a reentry problem [J]. Journal of Guidance, Control, and Dynamics. 21 (6):996-1000.
    [194] Shen, Z.,Lu, P. ON-BOARD ENTRY TRAJECTORY PLANNING EXPENDED TO SUB-ORBITAL FLIGHT[C]. AIAA-2003-5736.
    [195] H.C.Chou., M.D.Ardema. Near-Optimal Entry Trajectories for Reusable Launch Vehicles [J]. Journal of Guidance, Control, and Dynamics. 21(6): 983-990.
    [196] H.C.Chou., M.D.Ardema. NEAR-OPTIMAL REENTRY TRAJECTORY FOR REUSABLE LAUNCH VEHICLES[C]. AIAA-97-3582.
    [197] A.Marinescu., S.Ilin. OPTIMAL ENTRY INTO EARTH ATMOSPHERE WITH IMPOSED HORIZONTAL DISTANCE[C]. AIAA-98-4408.
    [198] 南英,陈士橹.航天器最优再入轨迹的近似解[J].返回与遥感技术,1994(2):1-10.
    [199] Kenneth D.Mease. RE-ENTRY TRAJECTORY PLANNING FOR A REUSABLE LAUNCH VEHICLE[C]. AIAA-99-4160.
    [200] Donglong Sheu., Yu-Min Chen. Optimal Three-Dimensional Glide for Maximum Reachable Domain[C]. AIAA-98 -4255.
    [201] 南英,吕学富,陈士橹.航天器的再入走廊及其计算方法[J].飞行力学,1993,11(2):34-43.
    [202] Hull,David G. Optimal control theory for applications[M]. New York: Springer, 2003:45-47.
    [203] 王明光.RLV三维受约束再入轨迹快速优化[C].中国2004年飞行力学与飞行试验学术年会,2004.10.
    [204] F, Fahroo, I.M.Ross. COSTATE ESTIMATION BY A LEGENDRE PSEUDOSPECTRAL METHOD[C]. AIAA-98-4222.
    [205] 黄可鸣.专家系统导论[M].南京:东南大学出版社,1988.
    [206] 封建湖,车刚明,聂玉峰,等.数值分析原理[M].北京:科学出版社,2002.275-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700