准Z源级联多电平光伏逆变器控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光伏产业扶持政策的不断出台,全球太阳能光伏发电技术正持续快速发展。然而,光伏发电易受温度和光照等自然条件影响,具有随机性、不稳定性、季节性等特点。单个光伏电池电压较低,需要串联很多个电池满足用户电压等级要求。对于这种直接串联的结构,光伏电池板局部阴影和失配将严重降低整个系统的发电效率。为了克服这个问题,已有大量研究采用级联多电平逆变器(CMI),将光伏板分配给多个独立的H桥模块,对各模块分别进行最大功率跟踪来降低光伏电池板局部阴影和失配导致的不利,以改善发电效率。但传统H桥逆变模块缺少升压功能,光伏电池板最大功率点电压的不同将导致不平衡的直流母线电压;并且在光伏电压宽范围变化的情况下,对逆变器容量的要求倍增。近年,有研究提出在每个H桥模块嵌入DC-DC变换器来平衡直流母线电压,但是,附加的大量DC-DC变换器,不仅增加了功率电路和控制的复杂性,增加了成本,而且降低了系统效率。
     新近提出的准Z源级联多电平逆变器(qZS-CMI),将准Z源网络嵌入传统CMI,不仅改善了H桥模块无法升压的不足,且具有准Z源逆变器(qZSI)的特点。将其应用于光伏发电时,各H桥模块均以单级功率变换实现升压及直流-交流转换,独立地控制直流母线电压;逆变桥同一桥臂的上下开关管可同时导通而不损坏;可实现分布式最大功率跟踪;比传统CMI减少1/3的模块;等等。这些都有助于光伏发电系统成本的降低、可靠性的提高,受到了越来越多的关注。然而,对qZS-CMI这一新型拓扑的研究尚处于初步阶段,缺乏较深入的分析与控制设计。
     本文重点研究准Z源级联多电平光伏逆变器的控制方法,提出了两种脉宽调制策略,以及系统并网控制方法。具体如下:
     首先,建立了较详细的准Z源H桥光伏逆变模块模型。目前,在由qZS-CMI构成的光伏系统方面,尚无系统完整的模型来指导其参数选取和控制器设计。本文以准Z源H桥光伏逆变模块为对象,考虑光伏板终端电容和两倍频脉动功率影响,建立其统一的状态空间方程,推导了两倍频脉动分量模型和系统动态传递函数模型。依据两倍频脉动分量模型,分析了阻抗参数对低频脉动分量的影响,设计了抑制两倍频脉动的整套阻抗元件参数;动态模型则为设计独立的直流母线电压平衡控制提供依据。
     其次,提出了qZS-CMI的SVM方法。通过比较现有两电平三相qZSI的空间矢量调制(SVM),提出一种qZSI的SVM方法,以降低电感电流脉动、提高效率;依此为基础,结合qZS-CMI模块化特点,将两电平三相qZSI的SVM扩展到qZS-CMI,提出qZS-CMI的SVM方法,并以仿真和实验验证了所提出的方法。与qZS-CMI已有的移相正弦脉宽调制(PS-SPWM)相比,新调制方法具有电压利用率高、占用资源少、模块化、易于扩展至任意级联数目的优点。
     再次,提出了qZS-CMI的移相脉冲宽度幅值调制(PS-PWAM),以减少qZS-CMI的开关动作,降低功率损耗。研究了该调制方式下的损耗评估方法,比较了PS-PWAM和PS-SPWM两种方法控制时qZS-CMI的功率损耗。仿真与实验验证了所提出的PS-PWAM方法,表明PS-PWAM可有效降低系统损耗,改善效率。此外,分析了以新型宽能隙碳化硅(SiC)二极管作准Z源二极管,进一步从器件上减少损耗的情况。
     最后,提出了光伏qZS-CMI的并网控制策略,包括分布式MPPT、独立的直流母线电压平衡控制,及单位功率因数并网控制。先以单相系统为对象,建立了其系统级传递函数模型,详细设计了各调节器,以适应宽范围的光伏电压变化与实现高质量并网;再将所提出的控制方法进行扩展,研究了三相系统的控制策略。
     本文力从拓扑级、调制级、控制级和器件级等方面,对准Z源级联多电平光伏逆变系统进行研究,分别以仿真和实验验证提出的控制方法,其研究成果将促进新型太阳能光伏逆变器的应用,满足高质量的供电用电需求。
The global solar Photovoltaic (PV) technology is experiencing a sustained and rapid development with the continuous introduction of supporting policies in PV industry. However, PV power generation is stochastic, instable, and susceptible to natural conditions, such as irradiation and temperature variations. Moreover, partial shading and mismatching of PV panels are also one of the main reasons of power loss. Researches have been dedicated on cascade multilevel inverter (CMI) that can allocate PV panels to several independent H-bridge inverter modules and each module tracks their own maximum power points distributedly, thus to weaken those defects of PV power generation. Nevertheless, traditional H-bridge inverter (HBI) module lacks of boost function so that different PV panel output voltages result in imbalanced dc-link voltages and the inverter KVA rating requirement has to be increased twice with a PV voltage range of1:2. More recently, extra dc-dc boost converter was added into each HBI module to handle PV panel voltage variations. However, such topology is with a two-stage inverter for each module, and many extra dc-dc converters will make the whole system complex, bulky, high cost, and low efficiency.
     The quasi-Z-source cascade multilevel inverter (qZS-CMI), coupling the quasi-Z-source network into each HBI's dc link, not only improves advantages of traditional CMI, but also inherits characteristics of quasi-Z-source inverter (qZSI). When applied to PV power generation, this topology presents promising features that: the ability of dc-link voltage balance because each of qZSI module can handle the wide PV panel voltage variation through single-stage power conversion; the power switches in the same bridge leg can conduct together without damage; the modular structure that each H-bridge inverter can be seen as a module with the same circuit topology, modulation, and control; the distributed MPPT that to maximize solar energy; etc. Therefore, the higher reliability, lower cost, and smaller volume can be brough in to PV power systems.
     The main contribution of this reseach is to investigate control of qZS-CMI based PV power system. Two pulse-width modulation (PWM) methods and the grid-tie control of the entire system are proposed accordingly. The details are as follows.
     Firstly, a double-line-frequency (2ω) ripple model of qZS network with PV panel terminal capacitance is established for qZS-HBI based PV module, which is used to analyze the influences of impedance parameter to2ω ripples and design impedance parameter to effectively buffer the low-frequency ripples. A small-signal model with stray resistance is established for designing the dc-link voltage control.
     Secondly, a simple extended, less-resource, and modular multilevel space vector modulation (SVM) for qZS-CMI is proposed on the basis of overview for two-level three-phase qZSI's SVM. Simulation and experiments verify the proposed method.
     Moreover, a phase-shifted pulse-width-amplitude modulation (PS-PWAM) is proposed for qZS-CMI, aiming at reducing the power loss of existing PS-SPWM of qZS-CMI. Simulation and experimental results demonstrate its validation, and the qZS-CMI presents lower power loss in the PS-PWAM than PS-SPWM.
     Finally, a grid-tie control scheme of the qZS-CMI based PV system is proposed, including distributed MPPT, indenpedent dc-link voltage balance control, and grid-tie control with unity power factor. Completed system-level modeling and regulator design process are presented for single-phase qZS-CMI based PV system. The proposed control is then extended to three-phase PV qZS-CMI system.
     This research aims at investigating the qZS-CMI based PV system in terms of topological level, modulation level, control level, and material level, etc. Simulation and experimental results verify the proposed control, which will promote the application of novel PV inverters and satisfy the high-quality power supply demands.
引文
[1]J.J. Negroni, F. Guinjoan, C. Meza, D. Biel, P. Sanchis, "Energy-Sampled Data Modeling of a Cascade H-Bridge Multilevel Converter for Grid-connected PV Systems," 10th IEEE International Power Electronics Congress, vol., no., pp.1-6,16-18 Oct.2006.
    [2]Dave Llorens, Solar Panel Efficiency and the Factors that Affect it, (2012), [Online]. Available: http://howsolarworks.1bog.org/solar-panel-efficiency/.
    [3]Top 10 World's Most Efficient Solar PV Modules (Mono-Crystalline), (July 30,2012), [Online]. Available:http://www.solarplaza.com/top10-crystalline-module-efficiency/.
    [4]H. Patel, V. Agarwal, "Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions," IEEE Transactions on Industrial Electronics, vol.55, no.4, pp.1689-1698, April 2008.
    [5]Yanzhi Wang, Xue Lin, Younghyun Kim, Naehyuck Chang, M. Pedram, "Enhancing efficiency and robustness of a photovoltaic power system under partial shading," 2012 13th International Symposium on Quality Electronic Design (ISQED), vol., no., pp.592-600,19-21 March 2012.
    [6]M.A. Rezaei, S. Farhangi, H. Iman-Eini, "Enhancing the reliability of single-phase CHB-based grid-connected photovoltaic energy systems," 20112nd Power Electronics, Drive Systems and Technologies Conference (PEDSTC), vol., no., pp.117-122,16-17 Feb.2011.
    [7]雷一,赵争鸣.大容量光伏发电关键技术与并网影响综述[J].电力电子,2010,(03):11-23.
    [8]2012年全球太阳能光伏产业发展报告,[EB/OL],http://wenku.baidu.com/view/823515d03186bceb19e8bbf2.html.
    [9]国际光伏产业发展现状及市场分析,[EB/OL], http://www.cai-cai.net/_d271896286.htm.
    [10]大型光伏电站发展前景广阔,2009年10月27日,[EB/OL],http://www.doc88.com/p-78474750413.html.
    [11]Wikipedia, Photovoltaic power station, (June 9,2013), [Online]. Available: http://en.wikipedia.org/wiki/Photovoltaic power station#cite note-Carrisa-2.
    [12]Syanne Olson, Dubai readies for 1,000MW Solar Park; first 10MW phase expected by 2013, (January 10,2012), [Online]. Available: http://www.pv-tech.org/news/dubai readies for 1000mw solar park first 10mw phase expect ed_by_2013.
    [13]Wikipedia, Agua Caliente Solar Project (June 17,2013), [Online]. Available: http://en.wikipedia.org/wiki/Agua Caliente Solar Project.
    [14]550 MW (AC) Topaz Solar Farm, (2012), [Online]. Available: http://topaz.firstsolar.com/Projects/Topaz-Solar-Farm
    [15]中国太阳能行业,2013年1月19日,[EB/OL],http://zh.wikipedia.org/wiki/%E4%B8%AD%E5%9B%BD%E5%A4%AA%E9%98%B3%E8% 83%BD%E8%A1%8C%E4%B8%9A.
    [16]陈志刚,大型光伏电站将迎发展机遇,2013年5月3日,[EB/OL],http://news.zhulong.com/read173889.htm.
    [17]2013年中国光伏产业发展报告,2013年4月30日,[EB/OL],http://wenku.baidu.com/view/0478aa86a0116c175f0e48a8.html.
    [18]光伏产业如何深入拓展国际国内光伏工程市场,2012年6月20日,[EB/OL],http://wenwen.soso.com/z/q385509932.htm.
    [19]业内专家探讨大型光伏电站发展趋势,2013年5月21日,[EB/OL],http://news.byf.com/html/20130521/160098.shtml.
    [20]S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules," IEEE Trans. Ind. Appl., vol.41, no.5, pp.1292-1306, Sep.2005.
    [21]太阳能光伏行业分析[EB/OL], http://wenku.baidu.com/view/a19ef31f59eef8c75ebfb304.html.
    [22]董密,罗安.光伏并网发电系统中逆变器的设计与控制方法[J].电力系统自动化,2006,30(20):97-102.
    [23]IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE 1547,2003.
    [24]Photovoltaic (PV) systems-Characteristics of the utility interface (International Electrotechnical Commission), IEC 61727,2004.
    [25]光伏系统并网技术要求,GB-T19939,2005.
    [26]许颇,基于Z源型逆变器的光伏并网发电系统的研究[D],合肥工业大学,2006.
    [27]H. Abu-Rub, M. Malinowski, K. Al-Haddad, "Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications", John Wiley & Sons, Hoboken, NJ,2014.
    [28]T. Kerekes, R. Teodorescu, M. Liserre, C. Klumpner, and M. Sumner, "Evaluation of three-phase transformerless photovoltaic inverter topologies," IEEE Transactions on Power Electronics, vol.24, no.9, pp.2202-2211, Sept.2009.
    [29]Ivan Patrao, Emilio Figueres, Fran Gonzalez-Espfn, Gabriel Garcera, "Transformerless topologies for grid-connected single-phase photovoltaic inverters," Renewable and Sustainable Energy Reviews, vol.15, no.7, pp.3423-3431, September 2011.
    [30]J. Biela, M. Schweizer, S. Waffler, J.W. Kolar, "SiC versus Si-Evaluation of Potentials for Performance Improvement of Inverter and DC-DC Converter Systems by SiC Power Semiconductors," IEEE Transactions on Industrial Electronics, vol.58, no.7, pp.2872-2882, July 2011.
    [31]Benjamin Sahan, Samuel V. Araujo, Thomas Kirstein, Lucas Menezes, Peter Zacharias, "Photovoltaic converter topologies suitable for SiC-JFETs," Proceedings PCIM Europe Conference, vol., no., pp.431-437,2009.
    [32]J. Valle-Mayorga, C.P. Gutshall, K.M. Phan, I. Escorcia-Carranza, H.A. Mantooth, B. Reese, M. Schupbach, A. Lostetter, "High-Temperature Silicon-on-Insulator Gate Driver for SiC-FET Power Modules," IEEE Transactions on Power Electronics, vol.27, no.11, pp.4417-4424, Nov. 2012.
    [33]J. Millan, P. Godignon, X. Perpinya, A. Perez-Tomas, J. Rebollo, "A Survey of Wide Band Gap Power Semiconductor Devices," IEEE Transactions on Power Electronics, vol.PP, no.99, pp. 2013. (in press)
    [34]M. M. Hernando, A. Fernandez, J. Garcia, D. G. Lamar, and M. Rascon, "Comparing Si and SiC diode performance in commercial AC-to-DC rectifiers with power-factor correction," IEEE Trans. Ind. Electron., vol.53, no.2, pp.705-707, Apr.2006.
    [35]Cree's 1200 V SiC MOSFETs enable Delta Energy Systems'next-gen solar inverters, (17 April, 2013), [Online] Available: http://www.semiconductor-today.com/news_items/2013/APR/CREE_170413.html.
    [36]Lidow, "Is it the end of the road for silicon in power conversion?" in Proc.6th Int. Conf. Integr. Power Electron. Syst., Nuremberg, Germany,2010.
    [37]M. A. Briere, "GaN based power conversion:A new era in power electronics," in Proc. PCIMEur., Nuremberg, Germany,2009.
    [38]E. Soenmez, "State of the art GaN HV technology-beyond single device on-chip," in Proc.3rd ECPE SiC User Forum, Barcelona, Spain,2009.
    [39]R. Singh, "Reliability and performance limitations in SiC power devices," Microelectronics and Reliability, vol.46, no.5-6, pp.713-730. May-June 2006.
    [40]C.N. Ho, H. Breuninger, S. Pettersson, G. Escobar, L.A. Serpa, A. Coccia, "Practical Design and Implementation Procedure of an Interleaved Boost Converter Using SiC Diodes for PV Applications," IEEE Transactions on Power Electronics, vol.27, no.6, pp.2835-2845, June 2012.
    [41]R.H. Baker and L.H. Bannister, "Electric power converter," U.S. Patent 3 867 643, Feb.18,1975.
    [42]F. Z. Peng, J.-S. Lai, J.W. McKeever, and J. VanCoevering, "A multilevel voltage-source inverter with separate DC sources for static VAr generation," IEEE Transactions on Industrial Application, vol.32, no.5, pp.1130-1138, Sep./Oct.1996.
    [43]Nabae, I. Takahashi, and H. Akagi, "A new neutral-point-clamped PWM inverter," IEEE Trans. Ind Appl., vol. IA-17, no.5, pp.518-523, Sep./Oct.1981.
    [44]G. Gateau, M. Fadel, P. Maussion, R. Bensaid, T.A. Meynard, "Multicell converters:active control and observation of flying-capacitor voltages," IEEE Transactions on Industrial Electronics, vol.49, no.5, pp.998-1008, Oct 2002.
    [45]J. Rodriguez, J.-S. Lai, and F. Z. Peng, "Multilevel inverters:A survey of topologies, controls, and applications," IEEE Trans. Ind Electron., vol.49, no.4, pp.724-738, Aug.2002.
    [46]D. Krug, S. Bemet, S. S. Fazel, K. Jalili, and M. Malinowski, "Comparison of 2.3-kV medium-voltage multilevel converters for industrial medium-voltage drives," IEEE Trans. Ind. Electron., vol.54, no.6, pp.2979-2992, Dec.2007.
    [47]J. Rodriguez, J. Pontt, C. Silva, R. Musalem, P. Newman, R. Vargas, and S. Fuentes, "Resonances and over voltages in a medium-voltage fan motor drive with long cables in an underground mine," IEEE Trans. Ind Appl., vol.42, no.3, pp.856-863, May/Jun.2006.
    [48]袁志昌,宋强,滕乐天,等.大容量链式STATCOM 150 Hz优化PWM控制策略的研究[J].电工技术学报,2004,19(8):83-87.
    [49]Y. Liu, A. Q. Huang, W. Song, S. Bhattacharya, and G. Tan, "Small signal model-based control strategy for balancing individual DC capacitor voltages in cascade multilevel inverter-based STATCOM," IEEE Trans. Ind. Electron., vol.56, no.6, pp.2259-2269, Jun.2009.
    [50]M. Glinka, "Prototype of multiphase modular-multilevel-converter with 2 MW power rating and 17-level-output-voltage," in Proc. IEEE 35th PESC,2004, vol.4, pp.2572-2576.
    [51]L. Zhou, Q. Fu, X. Li, and C. Liu, "A novel multilevel power quality compensator for electrified railway," in Proc. IEEE 6th IPEMC, May 2009, pp.1141-1147.
    [52]S. Daher, J. Schmid, and F. Antunes, "Multilevel Inverter Topologies for Stand-Alone PV Systems," IEEE Transactions on Industrial Electronics, vol.55, no.7, pp.2703-2712, July 2008.
    [53]E. Ozdemir, S. Ozdemir, L. Tolbert, and B. Ozpineci, "Fundamental frequency modulated multilevel inverter for three-phase stand-alone photovoltaic application," in Proc.23rd Annu. IEEE APEC, Feb.2008, pp.148-153.
    [54]J. Wen, K. M. Smedley, "Synthesis of Multilevel Converters Based on Single-and/or Three-Phase Converter Building Blocks," IEEE Transactions on Power Electronics, vol.23, no.3, pp.1247-1256, May 2008.
    [55]Bailu Xiao, FaeteFilho, and Leon M. Tolbert, "Single-phase cascaded H-bridge multilevel inverter with non-active power compensation for grid-connected photovoltaic generators", ECCE2011, Phoenix, AZ, Sept.17-22,2011, pp.2733-2737.
    [56]Yi Huang, Fang Z. Peng, Jin Wang, and Dong-wookYoo, "Survey of the power conditioning system for PV power generation", Proc.37th IEEE Power Electronics Specialists Conference, PESC'06, June 18-22,2006, Jeju, pp.1-6.
    [57]H. Sepahvand, Jingsheng Liao, M. Ferdowsi, K.A. Corzine, "Capacitor Voltage Regulation in Single-DC-Source Cascaded H-Bridge Multilevel Converters Using Phase-Shift Modulation," IEEE Trans. Ind Electron., vol.60, no.9, pp.3619-3626, Sept.2013.
    [58]S. Rivera, S. Kouro, B. Wu, J.I. Leon, J. Rodriguez, L.G. Franquelo, "Cascaded H-bridge multilevel converter multistring topology for large scale photovoltaic systems," 2011 IEEE International Symposium on Industrial Electronics (ISIE), vol., no., pp.1837-1844,27-30 June 2011.
    [59]J. Napoles, A.J. Watson, J.J. Padilla, J.I. Leon, L.G. Franquelo, P.W. Wheeler, M.A. Aguirre, "Selective Harmonic Mitigation Technique for Cascaded H-Bridge Converters With Nonequal DC Link Voltages," IEEE Trans. Ind Electron., vol.60, no.5, pp.1963-1971, May 2013.
    [60]J. Chavarria, D. Biel, F. Guinjoan, C. Meza, J.J. Negroni, "Energy-Balance Control of PV Cascaded Multilevel Grid-Connected Inverters Under Level-Shifted and Phase-Shifted PWMs," IEEE Trans. Ind. Electron., vol.60, no.1, pp.98-111, Jan.2013.
    [61]S. Vazquez, J.I. Leon, J.M. Carrasco, L.G. Franquelo, E. Galvan, M. Reyes, J.A. Sanchez, E. Dominguez, "Analysis of the Power Balance in the Cells of a Multilevel Cascaded H-Bridge Converter," IEEE Trans. Ind. Electron., vol.57, no.7, pp.2287-2296, July 2010.
    [62]H. Iman-Eini, J.-L. Schanen, S. Farhangi, J. Roudet, "A Modular Strategy for Control and Voltage Balancing of Cascaded H-Bridge Rectifiers," IEEE Transactions on Power Electronics, vol.23, no.5, pp.2428-2442, Sept.2008.
    [63]A.D. Aquila, M. Liserre, V.G. Monopoli, P. Rotondo, "Overview of PI-Based Solutions for the Control of DC Buses of a Single-Phase H-Bridge Multilevel Active Rectifier," IEEE Transactions on Industry Applications, vol.44, no.3, pp.857-866, May-june 2008.
    [64]C.D. Townsend, T.J. Summers, J. Vodden, A.J. Watson, R.E. Betz, J.C. Clare, "Optimization of Switching Losses and Capacitor Voltage Ripple Using Model Predictive Control of a Cascaded H-Bridge Multilevel StatCom," IEEE Trans. Power Electron., vol.28, no.7, pp.3077-3087, July 2013.
    [65]S. Kouro, C. Fuentes, M. Perez, J. Rodriguez, "Single DC-link cascaded H-bridge multilevel multistring photovoltaic energy conversion system with inherent balanced operation," IECON 2012-38th IEEE Industrial Electronics Society Annual Conference, vol., no., pp.4998-5005, 25-28 Oct.2012.
    [66]Zheng Wang, Shouting Fan, Yang Zheng, Ming Cheng, "Design and Analysis of a CHB Converter Based PV-Battery Hybrid System for Better Electromagnetic Compatibility," IEEE Transactions on Magnetics, vol.48, no.11, pp.4530-4533, Nov.2012.
    [67]F. Z. Peng, "Z-source inverter," IEEE Transactions on Industry Applications, vol.39, pp.504-510, 2003.
    [68]J. Anderson and F. Z. Peng, "Four quasi-Z-Source inverters," in PESC'08-39th IEEE Annual Power Electronics Specialists Conference, June 15,2008-June 19,2008, Rhodes, Greece,2008, pp.2743-2749.
    [69]Miaosen Shen, A. Joseph, Jin Wang, F.Z. Peng, D.J. Adams, "Comparison of Traditional Inverters and Z-Source Inverter for Fuel Cell Vehicles," IEEE Transactions on Power Electronics, vol.22, no.4,pp.1453-1463, July 2007.
    [70]李媛,彭方正.Z源/qZ源逆变器在光伏并网系统中的电容电压恒压控制策略[J].电工技术学报,2011,26(5):62-69.
    [71]蔡春伟,曲延滨,盛况.增强型Z源逆变器[J].中国电机工程学报,2011,31:259-266.
    [72]C.J. Gajanayake, Fang-Lin Luo, Hoay Beng Gooi, Ping Lam So, Lip Kian Siow, "Extended-Boost Z-Source Inverters," IEEE Transactions on Power Electronics, vol.25, no.10, pp.2642-2652, Oct.2010.
    [73]Miao Zhu, Kun Yu, Fang Lin Luo, "Switched Inductor Z-Source Inverter," IEEE Transactions on Power Electronics, vol.25, no.8, pp.2150-2158, Aug.2010.
    [74]Nguyen Minh-Khai, Young-cheol Lim, Geum-Bae Cho, "Switched-Inductor Quasi-Z-Source Inverter," IEEE Transactions on Power Electronics, vol.26, no.11, pp.3183-3191, Nov.2011.
    [75]Wei Qian, Fang Zheng Peng, Honnyong Cha, "Trans-Z-Source Inverters,"IEEE Transactions on Power Electronics, vol.26, no.12, pp.3453-3463, Dec.2011.
    [76]M. Adamowicz, J. Guzinski, R. Strzelecki, Fang Zheng Peng, H. Abu-Rub, "High step-up continuous input current LCCT-Z-source inverters for fuel cells," 2011 IEEE Energy Conversion Congress and Exposition (ECCE), vol., no., pp.2276-2282,17-22 Sept. 2011.
    [77]M. Adamowicz, R. Strzelecki, Fang Zheng Peng, J. Guzinski, H. Abu-Rub, "New type LCCT-Z-source inverters," Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011), vol., no., pp.1-10, Aug.30-Sept.1 2011.
    [78]葛宝明.储能型级联多电平光伏并网发电控制系统.中国.CN101917016A.2010年12月15日.2-15.
    [79]Liming Liu, Hui Li, Yi Zhao, Xiangning He, Z.J. Shen, "1 MHz cascaded Z-source inverters for scalable grid-interactive photovoltaic (PV) applications using GaN device," 2011 IEEE Energy Conversion Congress and Exposition (ECCE), vol., no., pp.2738-2745,17-22 Sept. 2011.
    [80]D. Sun, B. Ge, F.Z. Peng, A. Haitham, D. Bi, Y. liu, " A New Grid-Connected PV System Based on Cascaded H-bridge Quasi-Z Source Inverter," 2012 IEEE International Symposium on Industrial Electronics (2012 ISIE), vol., no., pp.951-956,28-31 May 2012.
    [81]Yan Zhou, Liming Liu, Hui Li, "A High-Performance Photovoltaic Module-Integrated Converter (MIC) Based on Cascaded Quasi-Z-Source Inverters (qZSI) Using eGaN FETs," IEEE Transactions on Power Electronics, vol.28, no.6, pp.2727-2738, June 2013.
    [82]Yaosuo Xue, Baoming Ge, FangZheng Peng, "Reliability, Efficiency, and Cost Comparisons of MW Scale Photovoltaic Inverters," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), vol., no., pp.1627-1634,15-20 Sept.2012.
    [83]Seyed Hossein Hosseini, Aida Baghbany Oskouei, Ali Reza Dehghanzadeh, "Multilevel Z-source inverter based SVC algorithm," 201212th International Conference on Control, Automation and Systems (ICCAS), vol., no., pp.1512-1517,17-21 Oct.2012.
    [84]Fang Zheng Peng, Miaosen Shen, K. Holland, "Application of Z-Source Inverter for Traction Drive of Fuel Cell-Battery Hybrid Electric Vehicles," IEEE Transactions on Power Electronics, vol.22, no.3, pp.1054-1061, May 2007.
    [85]H. Abu-Rub, A. Iqbal, Sk. Moin Ahmed, F. Z. Peng, Y. Li, B. Ge, "Quasi-Z-Source Inverter-Based Photovoltaic Generation System With Maximum Power Tracking Control Using ANFIS," IEEE Transactions on Sustainable Energy, vol.4, no.1, pp.11-20, Jan.2013.
    [86]Yushan Liu, Baoming Ge, Fang Zheng Peng, Haitham, A.R., de Almeida, A.T., Ferreira, F.J.T.E., "Quasi-Z-Source inverter based PMSG wind power generation system," 2011 IEEE Energy Conversion Congress and Exposition (ECCE), vol., no., pp.291-297,17-22 Sept.2011.
    [87]P. C. Loh, F. Gao, P.-C. Tan, and F. Blaabjerg, "Three-level AC-DC-AC Z-source converter using reduced passive component count," IEEE Trans. Power Electron., vol.24, no.7, pp.1671-1681, Jul.2009.
    [88]Baoming Ge, Qin Lei, Wei Qian, Fang Zheng Peng, "A Family of Z-Source Matrix Converters," IEEE Transactions on Industrial Electronics, vol.59, no.1, pp.35-46, Jan.2012.
    [89]K. Park, K.-B. Lee, and F. Blaabjerg, "Improving output performance of a Z-source sparse matrix converter under unbalanced input-voltage conditions," IEEE Trans. Power Electron., vol.27, no. 4, pp.2043-2054, Apr.2012.
    [90]M.-K.Nguyen, Y.-C. Lim, andY.-J.Kim, "A modified single-phase Quasi-Z-source AC-AC converter," IEEE Trans. Power Electron., vol.27, no.1, pp.201-210, Jan.2012.
    [91]Shuo Liu, Baoming Ge, Haitham Abu-Rub, FangZ. Peng and Yushan Liu, "Quasi-Z-Source Matrix Converter Based Induction Motor Drives",38th Annual Conference of the IEEE Industrial Electronics Society(IECON 2012), Montreal, Canada, vol., pp.5285-5289,25-28 Oct.2012.
    [92]郑立纹.基于Z源逆变器的感应电机驱动系统[D].北京交通大学,2009.6.
    [93]李杰,王得利,陈国呈,宋丹,马伟炜.直驱式风力发电系统的三相Z源并网逆变器建模与控制[J].电工技术学报,2009,24(2):114-120.
    [94]Honnyong Cha, Fang Zheng Peng, Dong-Wook Yoo, "Distributed Impedance Network (Z-Network) DC-DC Converter," IEEE Transactions on Power Electronics, vol.25, no.11, pp.2722-2733, Nov.2010.
    [95]D. Vinnikov, I. Roasto, "Quasi-Z-Source-Based Isolated DC/DC Converters for Distributed Power Generation," IEEE Transactions on Industrial Electronics, vol.58, no.l, pp.192-201, Jan. 2011.
    [96]Li Y., Jiang S., Cintron-Rivera J., Peng F., "Modeling and control of quasi-Z-source inverter for distributed generation applications," IEEE Trans. Ind. Electronics, vol.60, no.4, pp.1532-1541, April 2013.
    [97]Poh Chiang Loh, Vilathgamuwa D.M., Gajanayake C.J., Yih Rong Lim, Chera Wem Teo, "Transient modeling and analysis of pulse-width modulated Z-source inverter," IEEE Trans. Power Electronics, vol.22, no.2, pp.498-507, March 2007.
    [98]X. Ding, Z. Qian, S. Yang, B. Cui, and F. Peng, "A PID control strategy for dc-link boost voltage in Z-source inverter," in Proc. IEEE 22nd Annu. Appl. Power Electron. Conf,2007, pp. 1145-1148.
    [99]M. J. Rastegar Fatemi, S. Mirzakuchaki, and S. Rastegar Fatemi, "Wide range control of output voltage in Z-source inverter by neural network," in Proc. Int. Conf. Electr. Mach. Syst.,2008, pp. 1653-1658.
    [100]Q.-V. Tran, T.-W. Chun, H.-G. Kim, and E.-C. Nho, "Minimization of voltage stress across switching devices in the Z-source inverter by capacitor voltage control," J. Power Electron., vol. 9, no.3, pp.335-342, May 2009.
    [101]H. Rostami and D. A. Khaburi, "Neural networks controlling for both the DC boost and AC output voltage of Z-source inverter," in Proc. Ist Power Electron. Drive Syst. Technol. Conf., 17-18 Feb.,2010, pp.135-140.
    [102]M. Shen, Q. Tang, and F. Z. Peng, "Modeling and controller design of the Z-source inverter with inductive load," in Proc. IEEE Power Electron.Spec. Conf.,2007, pp.1804-1809.
    [103]陈宗祥,蒋赢,潘俊民,等.基于滑模控制的Z源逆变器在单相光伏系统中的应用[J].中国电机工程学报,2008,28(21):33-39.
    [104]W. Mo, P. C. Loh, and F. Blaabjerg, "Model predictive control for Z-source power converter," in Proc.8th Int. Conf. Power Electron.,May 30-Jun.3,2011, pp.3022-3028.
    [105]Mostafa Mosa, Omar Ellabban, A. Kouzou, Haitham Abu-Rub, Jos6 Rodriguez, "Model Predictive Control Applied for Quasi-Z-Source Inverter", Applied Power Electronics Conference and Exposition (APEC),2013 Twenty-Eighth Annual IEEE, vol., no., pp.165-169,17-21 March 2013.
    [106]X. Ding, Z. Qian, S. Yang, B. Cui, and F. Peng, "A direct DC-link boost voltage PID-like fuzzy control strategy in Z-source inverter," in Proc. IEEE Power Electron. Spec. Conf.,2008, pp. 405-411.
    [107]Quang-Vinh Tran, Tae-Won Chun, Jung-Ryol Ahn, Hong-Hee Lee, "Algorithms for Controlling Both the DC Boost and AC Output Voltage of Z-Source Inverter," Industrial Electronics, IEEE Transactions on, vol.54, no.5, pp.2745-2750, Oct.2007.
    [108]Yu Tang, Jukui Wei, Shaojun Xie, "A new direct peak dc-link voltage control strategy of Z-source inverters," Applied Power Electronics Conference and Exposition (APEC),2010 Twenty-Fifth Annual IEEE, vol., no., pp.867-872,21-25 Feb.2010.
    [109]G. Sen and M. Elbuluk, "Voltage and current programmed modes in control of the Z-source converter," IEEE Irans. Ind Appl., vol.46, no.2, pp.680-686, Mar./Apr.2010.
    [110]O. Ellabban, Joeri Van Mierlo, Philippe Lataire, "A DSP-Based Dual-Loop Peak DC-link Voltage Control Strategy of the Z-Source Inverter," IEEE Transactions on Power Electronics, vol.27, no.9, pp.4088-4097, Sept.2012.
    [111]S. Yang, X. Ding, F. Zhang, F. Z. Peng, and Z. Qian, "Unified control technique for Z-source inverter," in Proc. IEEE Power Electron. Spec.Conf,2008, pp.3236-3242.
    [112]程如岐,赵庚申,郭天勇.Z源逆变器的状态反馈控制策略[J].电机与控制学报,2009,13(5):673-678.
    [113]F. Z. Peng, M. Shen, Z. Qian, "Maximum boost control of the Z-source inverter," IEEE Trans. Power Electronics, vol.20, no.4, pp.833-838, July 2005.
    [114]M. S. Shen, Jin Wang, Joseph A., Fang Zheng Peng, Tolbert L.M., Adams D.J.et al., "Maximum constant boost control of the Z-source inverter," in IAS'2004, vol.1, Oct 3-7,2004, pp.142-147.
    [115]Y. Liu, B. Ge, Ferreira F.J.T.E., de Almeida A.T., Abu-Rub H., "Modeling and SVM control of quasi-Z-source inverter," in 201111th International Conference on Electrical Power Quality and Utilisation (EPQU),17-19 Oct. 2011, pp.1-7.
    [116]Jin-Woo Jung, Keyhani A., "Control of a fuel cell based Z-source converter," IEEE Trans. Energy Conversion, vol.22, no.2, pp.467-476, June 2007.
    [117]蔡春伟,曲延滨,盛况.Z源逆变器的改进型最大恒定升压调制策略[J].电机与控制学报,2011,15(12):14-20.
    [118]Rostami H., Khaburi D.A., "Voltage gain comparison of different control methods of the Z-source inverter," in International Conference on Electrical and Electronics Engineering (ELECO 2009),5-8 Nov.2009, pp.Ⅰ-268-Ⅰ-272.
    [119]Yushan Liu, H. Abu-Rub, Baoming Ge, FangZheng Peng, "Analysis of space vector modulations for three-phase Z-Source/quasi-Z-source inverter," in 38th IEEE Industrial Electronics Society Annual Conference (IECON 2012), vol., no., pp.5268-5273,25-28 Oct.2012.
    [120]O. Ellabban, J. Van Mierlo, P. Lataire, "Experimental study of the shoot-through boost control methods for the Z-source inverter," European Power Electronics and Drives Association Journal, vol.21, no.2, pp.18-29, June 2011.
    [121]S. Rajakaruna and L. Jayawickrama, "Steady-state analysis and designing impedance network of Z-source inverters," IEEE Trans. Ind Electron., vol.57, no.7, pp.2483-2491, Jul.2010.
    [122]J. B. Liu, J. G. Hu, and L. Y. Xu, "Dynamic modeling and analysis of Z-source converter-Derivation of AC small signal model and design-oriented analysis," IEEE Trans. Power Electron., vol.22, no.5, pp.1786-1796, Sep.2007.
    [123]M. Shen and F. Z. Peng, "Operation modes and characteristics of the Z-source inverter with small inductance or low power factor," IEEE Trans. Ind. Electron., vol.55, no.1, pp.89-96, Jan. 2008.
    [124]Dongsen Sun, Baoming Ge, Xingyu Yan, Daqiang Bi, Haitham Abu-Rub, Fang Z. Peng, "Impedance Design of Quasi-Z Source Network to Limit Double Fundamental Frequency Voltage and Current Ripples in Single-Phase Quasi-Z Source Inverter", IEEE Energy Conversion Congress & Exposition (ECCE2013), Denver, USA, vol., pp.2745-2750,15-20 Sept.2013.
    [125]李杰Quasi-Z源逆变器的分析与设计[D].北京交通大学,2009,6.
    [126]徐德鸿,电力电子系统建模及控制[M].北京:机械工业出版社.2007:98-103.
    [127]B. Ge, H. Abu-Rub, F. Peng, Q. Lei, de Almeida A., Ferreira F., D. Sun, Y. Liu, "An energy stored quasi-Z-source inverter for application to photovoltaic power system," IEEE Trans. Ind. Electronics, vol.60, no.10, pp.4468-4481, Oct.2013.
    [128]DSS 17-06CR Si二极管数据表:http://www.mouser.com/ds/2/205/1448-49034.pdf
    [129]TMS320F28335数据表:http://www.ti.com/lit/ds/sprs439m/sprs439m.pdf
    [130]T. Atalik; M. Deniz, E. Koc, C.O. Gercek, B. Gultekin, M. Ermis, I. Cadirci, "Multi-DSP and-FPGA-Based Fully Digital Control System for Cascaded Multilevel Converters Used in FACTS Applications," IEEE Transactions on Industrial Informatics, vol.8, no.3, pp.511,527, Aug.2012.
    [131]李丰林.基于Quasi-Z源逆变器的光伏发电系统[D].北京交通大学,2011,6.
    [132]M. Malinowski, K. Gopakumar, J. Rodriguez, M.A. Perez, "A Survey on Cascaded Multilevel Inverters," IEEE Transactions on Industrial Electronics, vol.57, no.7, pp.2197-2206, July 2010.
    [133]李永东.交流电机数字控制系统.北京:机械工业出版社,2002.
    [134]李建林,王立乔,刘兆燊,张仲超,一种新型的组合变流器错时采样空间矢量调制技术分析J,中国电机工程学报,2004,24(1):142-146.
    [135]Zhenyu Yang, Jianfeng Zhao, Xijun Ni, Jiaming Lu, Bin Chen, "Research on eliminating common-mode voltage of cascaded medium-voltage variable frequency driver with phase-difference SVPWM," 2007 European Conference on Power Electronics and Applications, vol., no., pp.1-10,2-5 Sept.2007.
    [136]王立乔,齐飞,级联型多电平变流器新型载波相移SPWM研究[J],中国电机工程学报,2010,30(3):28-34.
    [137]R. C. Beltrame, J. R. R. Zientarski, M. L. da SilvaMartins, J. R. Pinheiro, and H. L. Hey, "Simplified zero-voltage-transition circuits applied to bidirectional poles:Concept and synthesis methodology," IEEE Trans. Power Electron, vol.26, no.6, pp.1765-1176, Jun.2011.
    [138]Qian Zhang, Haibing Hu, Dehua Zhang, Xiang Fang, Z.J. Shen, I. Bartarseh, "A Controlled-Type ZVS Technique Without Auxiliary Components for the Low Power DC/AC Inverter," IEEE Transactions on Power Electronics, vol.28, no.7, pp.3287-3296, July 2013.
    [139]R.-S. Lai, K.D.T. Ngo, "A PWM method for reduction of switching loss in a full-bridge inverter," IEEE Transactions on Power Electronics, vol.10, no.3, pp.326-332, May 1995.
    [140]Tsu-Hua Ai, Jiann-Fuh Chen, Tsorng-Juu Liang, "A random switching method for HPWM full-bridge inverter," IEEE Transactions on Industrial Electronics, vol.49, no.3, pp.595-597, Jun 2002.
    [141]C. Govindaraju, K. Baskaran, "Efficient Sequential Switching Hybrid-Modulation Techniques for Cascaded Multilevel Inverters," IEEE Transactions on Power Electronics, vol.26, no.6, pp.1639-1648, June 2011.
    [142]M. Mardaneh, Z. Hashemi, "A random switching method for PWM-cascaded H-bridge multi-level inverter," 2012 IEEE International Conference on Circuits and Systems (ICCAS), vol., no., pp.76-79,3-4 Oct.2012.
    [143]H. Bayat, J.S. Moghani, S.H. Fathi, M. Taheri, "Reduction of switching frequency using reference phase disposition PWM technique in multilevel H-bridge inverters," 20112nd Power Electronics, Drive Systems and Technologies Conference (PEDSTC), vol., no., pp.27-31,16-17 Feb.2011.
    [144]H. Fujita, "A three-phase voltage-source solar power conditioner using a single-phase PWM control method," in 2009 IEEE Energy Conversion Congress and Exposition(ECCE), vol., no., pp.3748-3754,20-24 Sept. 2009.
    [145]H. Fujita, "Switching loss analysis of a three-phase solar power conditioner using a single-phase PWM control method," in 2010 IEEE Energy Conversion Congress and Exposition (ECCE), pp.618-623.
    [146]Xianhao Yu, Qin Lei, Fang Zheng Peng, "Boost converter-Inverter system using PWAM for HEV/EV motor drive," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), vol., no., pp.946-950,5-9 Feb.2012.
    [147]Qin Lei, Fang Zheng Peng, "Space Vector Pulsewidth Amplitude Modulation for a Buck-Boost Voltage/Current Source Inverter," IEEE Transactions on Power Electronics, vol.29, no.l, pp.266-274, Jan.2014.
    [148]Qin Lei, Peng, F.Z., Baoming Ge, "Pulse-Width-Amplitude-Modulated voltage-fed quasi-Z-source direct matrix converter with maximum constant boost," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), vol., no., pp.641-646,5-9 Feb.2012.
    [149]Hoda Ghoreishy, Ali Yazdian Varjaniy, Shahrokh Farhangi, and Mustafa Mohamadian, "A Novel Pulse-Width and Amplitude Modulation (PWAM) Control Strategy for Power Converters," Journal of Power Electronics, vol.10, no.4, pp.374-381,2010.
    [150]M.H. Bierhoff and Fuchs F.W., "Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation," in IEEE 35th Annual Power Electronics Specialists Conference, PESC 04,2004.
    [151]SCS240AE2 SiC二极管数据表:http://rohmfs.rohm.com/en/products/databook/datasheet/discrete/sic/sbd/scs240ae2.pdf
    [152]葛宝明.单级升/降压储能型光伏并网发电控制系统.中国.CN101917017A.2010年12月15日.2-18.
    [153]Dongsen Sun, Baoming Ge, H. Abu-Rub, F.Z. Peng, A.T. de Almeida, "Power flow control for quasi-Z source inverter with battery based PV power generation system," 2011 IEEE Energy Conversion Congress and Exposition (ECCE), vol., no., pp.1051-1056,17-22 Sept.2011.
    [154]Fenglin Li, Baoming Ge, Dongsen Sun, Daqiang Bi, Fang Zheng Peng, Haitham A.R., "Quasi-Z source inverter with battery based PV power generation system," 2011 International Conference on Electrical Machines and Systems (ICEMS), vol., no., pp.1-5,20-23 Aug.2011.
    [155]Yushan Liu, Baoming Ge, Haitham Abu-Rub, FangZ. Peng, "Modeling and Controller Design of Quasi-Z-Source Inverter with Battery based Photovoltaic Power System," IEEE Energy Conversion Congress & Exposition(ECCE2012), North Carolina, USA, vol., pp.3119-3124, 15-22 Sept.2012.
    [156]M.A.G. de Brito, L. Galotto, L.P. Sampaio, G. de Azevedo e Melo, C.A. Canesin, "Evaluation of the Main MPPT Techniques for Photovoltaic Applications," IEEE Transactions on Industrial Electronics, vol.60, no.3, pp.1156-1167, March 2013.
    [157]J.I. Leon, S. Vazquez, J.A. Sanchez, R. Portillo, L.G. Franquelo, J.M. Carrasco, E. Dominguez, "Conventional Space-Vector Modulation Techniques Versus the Single-Phase Modulator for Multilevel Converters," IEEE Trans. Ind. Electronics, vol.57, no.7, pp.2473-2482, July 2010.
    [158]Zmood D.N., Holmes D.G., "Stationary frame current regulation of PWM inverters with zero steady-state error," IEEE Transactions on Power Electronics, vol.18, no.3, pp.814-822, May 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700