高性能直流变换器系统稳定性问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着电源、负载特性需求的不同,越来越多的DC-DC变换器采用高阶化拓扑或者采用分布式级联方式相互连接形成高性能的直流变换器系统,以满足不同的设计要求。直流变换器系统的稳定性一直以来是人们研究的热点。变换器的小信号模型参数是影响变换器系统稳定性的重要因素,本文针对影响变换器系统稳定性的关键参数:被控对象模型传递函数、音频敏感率、输入阻抗以及输出阻抗进行分析,并提出相应的优化方法以改善变换器系统的稳定性。
     目前已有大量文献对基本的二阶变换器拓扑进行了深入分析,已解决了稳定性问题,但是在包含太阳能电池板、蓄电池等装置的场合,为了满足输入输出电流连续的要求,往往需要加入额外的滤波器或者采用含有多个电感电容元件的高阶变换器。高阶变换器的模型中含有多个零极点,尤其当模型中存在右半平面零点时,被控对象传递函数的相频曲线容易较早穿越.180。,限制反馈环路增益的带宽。本文归纳了优化高阶变换器被控对象的阻尼设计方法,针对广泛应用于航天电源系统的Superbuck变换器拓扑,提出一种RC阻尼设计方法,从而避免其被控对象传递函数中存在右半平面零点,保证其模型满足最小相位系统的条件,从而提高变换器的稳定性。
     采用输入电压前馈的方法可以在理论上实现变换器的音频敏感率(输入电压扰动.输出电压扰动传递函数,audio susceptibility)等于零。但是当变换器模型的阶次较高时,理论所需的前馈控制器传递函数较为复杂且计算过程繁琐。为了简化求解过程,本文提出一种简化变换器电路模型的方法,而不会影响所得前馈控制器的准确性。此外,本文提出采用比例控制器代替理论所需的前馈控制器进行控制的方法,并分析了在这种控制方式下音频敏感率能够大幅度衰减的有效频率范围与主电路参数之间的关系,指出了比例前馈控制器仅取决于变换器的稳态电压增益比的规律。
     在级联系统中,即使变换器单独能够稳定工作,级联时也未必稳定,这是由于级联的前后级变换器阻抗存在相互作用。为了提高级联系统的稳定性,需要减小前后级变换器的阻抗交截范围,对于DC-DC变换器而言,一方面希望降低前级变换器的输出阻抗,另一方面希望增大后级变换器的输入阻抗。
     本文基于DC.DC变换器的一般性小信号模型,提出了以平均输入电流环为内环、输出电压环为外环的双环控制方法,分析了在这种控制方式下影响变换器输入阻抗的因素,并给出了改变内环电流采样系数前后变换器输入阻抗的量化计算过程。分析表明,当电流内环的截止频率大于电压外环截止频率时,增大电流采样系数,能够提高电流内环环路增益,有效增大变换器的输入阻抗。从而在级联系统中,能够有效减小负载变换器的输入阻抗与源变换器输出阻抗的交集,提高级联系统的稳定性。
     同样的,为了优化变换器的输出阻抗,提出了一种在变换器输出端口模拟出并联虚拟电阻的控制方法,可以适用于模型中不含右半平面零点的变换器拓扑。这种控制方法在不改变变换器稳态工作点的基础上仅改变了交流小信号模型,因此不会带来额外的功率损耗。通过采用有源阻尼控制器的方法,可以有效降低变换器输出阻抗的谐振峰值,改善品质因数,达到优化变换器输出阻抗特性的目的。
With different demands of source and load, high order topologies and cascaded connection are widely used in DC-DC converter system to realize high performance. The stability issues of DC-DC converter system are always focused on. The small signal model parameters are the important factors which affect the stability of DC-DC converter system. In this paper the key parameters, which are summarized as controlled object, audio susceptibility, input impedance and output impedance, are analyzed and the corresponding improvements are proposed.
     Many literatures have focused on the basic second-order converters and the stability problems have been solved. But when these converters are used as the interface connected with the solar array and battery, the extra filter should be added into the topologies to meet the continuous current demand. The high-order converter topology with continuous input or output current is another solution. By these means, there are many poles and zeros in the model. Especially when there are right-half-plane (RHP) zeros, the phase of bode plots may pass through-180°in low frequency, therefore the bandwidth of closed-loop system may be limited. In this paper, the damping optimizations for controlled object in high-order converter topologies are summarized. A simple parameter design method for damping networks of Superbuck topology to avoid right-half-plane (RHP) zeros is presented. By this method the controlled object can be considered as a minimum phase system.
     The feedforward control can realize zero audio-susceptibility in converters. But when the order of the model is high, the desired feedforward controller is complicated and the derivation is redundancy. A method for simplification of the converter when computing the feedforward controller is presented so that the related components of the circuit can be easily established. In this paper, the proportional feedforward controller instead of the accurate form is used to realize zero audio susceptibility in certain frequency range. It shows that the proportional feedforward controller only depends on the DC gain of the converter.
     Because of the impedance interaction of source converter and load converter, the cascaded system may be not stable when the converters are stable independently. To improve the stability of cascaded system, the intersection range of output impedance and input impedance should be decreased. One side, the output impedance of source converter should be decreased, the other, the input impedance of load converter should be increased.
     Based on the unified small signal model of DC-DC converter, the double loop control method with input current inner loop and output voltage outer loop is proposed. The input impedance is analyzed under this situation and the paper gives the quantization of the input impedance when the current sampling factor is changed. It is shown that when the cross over frequency of current loop is larger than that of the voltage loop, the input impedance can be significant increased when the current sampling factor is increased. Therefore the impedance intersection of source and load converters can be decreased so to improve the stability.
     Similarly, to improve the output impedance of the converter, an active damping method to emulate a virtual resistor, which is connected in parallel with the output of the converter's small signal model, is presented. This method can be applied into the converter whose model has no RHP zeros. The small signal model is improved but the steady-state operating point is not affected. By this means, the resonant peaks of output impedance can be decreased and the output impedance can be improved.
引文
[I]Boroyevich D, Cvetkovic I, Dong D, et al. Future electronic power distribution systems a contemplative view:Optimization of Electrical and Electronic Equipment (OPTIM),2010 12th International Conference on,2010[C].
    [2]Wilson T G. The evolution of power electronics[J]. Power Electronics, IEEE Transactions on, 2000,15(3):439-446.
    [3]Blaabjerg F, Zhe C, Kjaer S B. Power electronics as efficient interface in dispersed power generation systems[J]. Power Electronics, IEEE Transactions on,2004,19(5):1184-1194.
    [4]Osifchin N. A telecommunications buildings/power infrastructure in a new era of public networking:Telecommunications Energy Conference,2000. INTELEC. Twenty-second International,2000[C].
    [5]Emadi A, Young-Joo L, Rajashekara K. Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles[J]. Industrial Electronics, IEEE Transactions on, 2008,55(6):2237-2245.
    [6]Rosero J A, Ortega J A, Aldabas E, et al. Moving towards a more electric aircraft[J]. Aerospace and Electronic Systems Magazine, IEEE,2007,22(3):3-9.
    [7]Ericsen T, Khersonsky Y, Steimer P K. PEBB Concept Applications in High Power Electronics Converters:Power Electronics Specialists Conference,2005. PESC '05. IEEE 36th,2005[C].
    [8]McCoy T J, Amy J V. The state-of-the-art of integrated electric power and propulsion systems and technologies on ships:Electric Ship Technologies Symposium,2009. ESTS 2009. IEEE, 2009[C].
    [9]Luo S. A review of distributed power systems part I:DC distributed power system[J]. Aerospace and Electronic Systems Magazine, IEEE,2005,20(8):5-16.
    [10]Gholdston E W, Karimi K, Lee F C, et al. Stability of large DC power systems using switching converters, with application to the International Space Station:Energy Conversion Engineering Conference,1996. IECEC 96., Proceedings of the 31st Intersociety,1996[C].
    [II]Lindman P, Thorsell L. Applying distributed power modules in telecom systems:Applied Power Electronics Conference and Exposition,1994. APEC '94. Conference Proceedings 1994., Ninth Annual,1994[C].
    [12]张犁,孙凯,冯兰兰,等.一种模块化光伏发电并网系统一张犁[J].中国电机工程学报,2011,31(1):26-31.
    [13]Williams B W. DC-to-DC Converters With Continuous Input and Output Power[J]. Power Electronics, IEEE Transactions on,2013,28(5):2307-2316.
    [14]Miwa B A, Otten D M, Schlecht M F. High efficiency power factor correction using interleaving techniques:Applied Power Electronics Conference and Exposition,1992. APEC '92. Conference Proceedings 1992., Seventh Annual,1992[C].
    [15]Po-Wa L, Lee Y S, Cheng D K W, et al. Steady-state analysis of an interleaved boost converter with coupled inductors[J]. Industrial Electronics, IEEE Transactions on,2000,47(4):787-795.
    [16]Cuk S. New magnetic structures for switching converters[J]. Magnetics, IEEE Transactions on, 1983,19(2):75-83.
    [17]Cuk S. A new zero-ripple switching DC-to-DC converter and integrated magnetics[J]. Magnetics, IEEE Transactions on,1983,19(2):57-75.
    [18]Manias S N, Kostakis G. Modular DC-DC convertor for high-output voltage applications[J]. Electric Power Applications, IEE Proceedings B,1993,140(2):97-102.
    [19]Jeong-il K, Chung-Wook R, Gun-Woo M, et al. Phase-shifted parallel-input/series-output dual converter for high-power step-up applications[J]. Industrial Electronics, IEEE Transactions on, 2002,49(3):649-652.
    [20]Du Qing, Qi Bojin, Wang Tao, et al. A High-Power Input-Parallel Output-Series Buck and Half-Bridge Converter and Control Methods[J]. Power Electronics, IEEE Transactions on, 2012,27(6):2703-2715.
    [21]Jung-Won K, Jung-Sik Y, Cho B H. Modeling, control, and design of input-series-output-parallel-connected converter for high-speed-train power system[J]. Industrial Electronics, IEEE Transactions on,2001,48(3):536-544.
    [22]Patel M R. Spacecraft Power Systems[M].韩波,陈琦,崔晓婷,译.中国宇航出版社.
    [23]胡寿松.自动控制原理[M].科学出版社,2005.
    [24]Middlebrook R D, Cuk S. A general unified approach to modeling switching-converter power stages:IEEE Power Electronics Specialists Conference,1976[C].
    [25]Wester G W, Middlebrook R D. Low-Frequency Characterization of Switched dc-dc Converters[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1973,AES-9(3):376-385.
    [26]Vorperian V. Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1990,26(3):490-496.
    [27]Vorperian V. Simplified analysis of PWM converters using model of PWM switch. Ⅱ. Discontinuous conduction mode[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1990,26(3):497-505.
    [28]Erickson R W. Fundamentals of Power Electronics[M]. USA:Kluwer Academic Publishers, 2000.
    [29]Tse C K. Linear circuit analysis[M]. Harlow, U.K.:Addison-Wesley-Longman Ltd.,1988.
    [30]Ridley R B. A new, continuous-time model for current-mode control [J]. Power Electronics, IEEE Transactions on,1991,6(2):271-280.
    [31]Ridley R B. A new continuous-time model for current-mode control with constant frequency, constant on-time, and constant off-time, in CCM and DCM:Power Electronics Specialists Conference,1990. PESC '90 Record.,21st Annual IEEE,1990[C].
    [32]Bhinge A, Mohan N, Giri R, et al. Series-parallel connection of DC-DC converter modules with active sharing of input voltage and load current:Applied Power Electronics Conference and Exposition,2002. APEC 2002. Seventeenth Annual IEEE,2002[C].
    [33]Ayyanar R, Giri R, Mohan N. Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC converters using dynamic input-voltage reference scheme[J]. Power Electronics, IEEE Transactions on,2004,19(6):1462-1473.
    [34]Giri R, Choudhary V, Ayyanar R, et al. Common-duty-ratio control of input-series connected modular DC-DC converters with active input voltage and load-current sharing[J]. Industry Applications, IEEE Transactions on,2006,42(4):1101-1111.
    [35]van der Merwe J W, du T Mouton H. An investigation of the natural balancing mechanisms of modular input-series-output-series DC-DC converters:Energy Conversion Congress and Exposition (ECCE),2010 IEEE,2010[C].
    [36]Giri R, Ayyanar R, Ledezma E. Input-series and output-series connected modular DC-DC converters with active input voltage and output voltage sharing:Applied Power Electronics Conference and Exposition,2004. APEC '04. Nineteenth Annual IEEE,2004[C].
    [37]Sha Deshang, Deng Kai, Liu Xiaozhong. Duty Cycle Exchanging Control for Input-Series-Output-Series Connected Two PS-FB DC-DC Converters[J]. Power Electronics, IEEE Transactions on,2012,27(3):1490-1501.
    [38]Irving B T, Jovanovic M M. Analysis, design, and performance evaluation of droop current-sharing method:Applied Power Electronics Conference and Exposition,2000. APEC 2000. Fifteenth Annual IEEE,2000[C].
    [39]Jung-Won K, Hang-Seok C, Bo H C. A novel droop method for converter parallel operation[J]. Power Electronics, IEEE Transactions on,2002,17(1):25-32.
    [40]Panov Y, Jovanovic M M. Loop gain measurement of paralleled dc-dc converters with average-current-sharing control:Applied Power Electronics Conference and Exposition,2008. APEC 2008. Twenty-Third Annual IEEE,2008[C].
    [41]Chang-Shiarn L, Chen C. Single-wire current-share paralleling of current-mode-controlled DC power supplies[J]. Industrial Electronics, IEEE Transactions on,2000,47(4):780-786.
    [42]Panov Y, Rajagopalan J, Lee F C. Analysis and design of N paralleled DC-DC converters with master-slave current-sharing control:Applied Power Electronics Conference and Exposition, 1997. APEC'97 Conference Proceedings 1997., Twelfth Annual,1997[C].
    [43]Rajagopalan J, Xing K, Guo Y, et al. Modeling and dynamic analysis of paralleled DC/DC converters with master-slave current sharing control:Applied Power Electronics Conference and Exposition,1996. APEC '96. Conference Proceedings 1996., Eleventh Annual,1996[C].
    [44]Mazumder S K, Tahir M, Acharya K. Master-Slave Current-Sharing Control of a Parallel DC-DC Converter System Over an RF Communication Interface[J]. Industrial Electronics, IEEE Transactions on,2008,55(1):59-66.
    [45]Thottuvelil V J, Verghese G C. Analysis and control design of paralleled DC/DC converters with current sharing[J]. Power Electronics, IEEE Transactions on,1998,13(4):635-644.
    [46]Thottuvelil V J, Verghese G C. Stability analysis of paralleled DC/DC converters with active current sharing:Power Electronics Specialists Conference,1996. PESC '96 Record.,27th Annual IEEE,1996[C].
    [47]Suntio Teuvo.开关变换器动态特性:建模,分析与控制[M].机械工业出版社,2011.
    [48]张卫平.开关变换器的建模与控制[M].中国电力出版社,2006.
    [49]徐德鸿.电力电子系统建模及控制[M].机械工业出版社,2010.
    [50]Kiam H A, Chong G, Yun L. PID control system analysis, design, and technology[J]. Control Systems Technology, IEEE Transactions on,2005,13(4):559-576.
    [51]Yun L, Kiam H A, Chong G.C.Y. PID control system analysis and design[J]. Control Systems, IEEE,2006,26(1):32-41.
    [52]Dixon L H. Average current-mode control of switching power supplies[J]. Unitlaode Power Supply Design Seminar Handbook,1990.
    [53]Tang W, Lee F C, Ridley R B. Small-signal modeling of average current-mode control[J]. Power Electronics, IEEE Transactions on,1993,8(2):112-119.
    [54]Young-Seok J, Jun-Young L, Myung-Joong Y. A new small signal modeling of average current mode control:Power Electronics Specialists Conference,1998. PESC 98 Record.29th Annual IEEE,1998[C].
    [55]Kuang-Yao C, Feng Y, Mattavelli P, et al. Characterization and performance comparison of digital V2-type constant on-time control for buck converters:Control and Modeling for Power Electronics (COMPEL),2010 IEEE 12th Workshop on,2010[C].
    [56]Kuang-Yao C, Feng Y, Mattavelli P, et al. Digital enhanced V2-type constant on-time control using inductor current ramp estimator for a buck converter with small ESR capacitors:Energy Conversion Congress and Exposition (ECCE),2010 IEEE,2010[C].
    [57]Feng Y, Lee F C. Design oriented model for constant on-time V2 control:Energy Conversion Congress and Exposition (ECCE),2010 IEEE,2010[C].
    [58]Middlebrook R D. Input filter consideration in design and application of switching regulators: IEEE IAS Annu. Meeting,1976[C].
    [59]Kelkar S S, Lee F C. Stability Analysis of a Buck Regulator Employing Input Filter Compensation[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1984,AES-20(1):67-77.
    [60]Kelkar S S, Lee F C. Adaptive Input Filter Compensation for Switching Regulators[J]. Aerospace and Electronic Systems, IEEE Transactions on,1984,AES-20(1):57-66.
    [61]Lee F C, Yu Y. An Adaptive-Control Switching Buck Regulator-Implementation, Analysis, and Design[J]. Aerospace and Electronic Systems, IEEE Transactions on,1980,AES-16(1):84-99.
    [62]Kohut C R. Input filter design criteria for switching regulators using current-mode programming[J]. Power Electronics, IEEE Transactions on,1992,7(3):469-479.
    [63]Karppanen M, Arminen J, Suntio T, et al. Dynamical Modeling and Characterization of Peak-Current-Controlled Superbuck Converter[J]. Power Electronics, IEEE Transactions on, 2008,23(3):1370-1380.
    [64]Leppa X, Aho J, Suntio T. Dynamic Characteristics of Current-Fed Superbuck Converte[J]. Power Electronics, IEEE Transactions on,2011,26(1):200-209.
    [65]Spiazzi G, Mattavelli P. Design criteria for power factor preregulators based on Sepic and Cuk converters in continuous conduction mode:Industry Applications Society Annual Meeting, 1994., Conference Record of the 1994 IEEE,1994[C].
    [66]Cantillo A, DeNardo A, Femia N, et al. SEPIC design-part II:Capacitive damping:Industrial Electronics,2009. IECON'09.35th Annual Conference of IEEE,2009[C].
    [67]Cantillo A, De Nardo A, Femia N, et al. Stability Issues in Peak-Current-Controlled SEPIC[J]. Power Electronics, IEEE Transactions on,2011,26(2):551-562.
    [68]Calvente J, Martinez-Salamero L, Garces P, et al. Zero dynamics-based design of damping networks for switching converters[J]. Aerospace and Electronic Systems, IEEE Transactions on, 2003,39(4):1292-1303.
    [69]Calderone L, Pinola L, Varoli V. Optimal feed-forward compensation for PWM DC/DC converters with 'linear' and 'quadratic' conversion ratio[J]. Power Electronics, IEEE Transactions on,1992,7(2):349-355.
    [70]Redl R, Sokal N O. Near-Optimum Dynamic Regulation of DC-DC Converters Using Feed-Forward of Output Current and Input Voltage with Current-Mode Control[J]. Power Electronics, IEEE Transactions on,1986,PE-1 (3):181-192.
    [71]Maranesi P G, Tavazzi V, Varoli V. Two-part characterization of PWM voltage regulators at low frequencies[J]. Industrial Electronics, IEEE Transactions on,1988,35(3):444-450.
    [72]Otto D V. Reduction of switching regulator audiosusceptibility to zero[J]. Electronics Letters, 1986,22(8):441-442.
    [73]Kazimierczuk M K, Starman L A. Dynamic performance of PWM DC-DC boost converter with input voltage feedforward control[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,1999,46(12):1473-1481.
    [74]Kazimierczuk M K, Massarini A. Feedforward control of DC-DC PWM boost converter[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on, 1997,44(2):143-148.
    [75]Mossoba J T. Null audio susceptibility of current-mode buck converters:small signal and large signal perspectives:Power Electronics Specialist Conference,2003. PESC '03.2003 IEEE 34th Annual,2003 [C].
    [76]Kelkar S S, Lee F C. A Novel Feedforward Compensation Canceling Input Filter-Regulator Interaction[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1983,AES-19(2):258-268.
    [77]Karppanen M, Suntio T, Sippola M. Dynamical Characterization of Input-Voltage-Feedforward-Controlled Buck Converter[J]. Industrial Electronics, IEEE Transactions on,2007,54(2):1005-1013.
    [78]Suntio T, Leppaaho J, Huusari J. Issues on solar-generator-interfacing with voltage-fed converter:Industrial Electronics,2009. IECON '09.35th Annual Conference of IEEE,2009[C].
    [79]Grigore V, Kyyra J. A step-down converter with low ripple input current for power factor correction:Applied Power Electronics Conference and Exposition,2000. APEC 2000. Fifteenth Annual IEEE,2000[C].
    [80]Croci L, Marana C, Polli A. ARTEMIS Power Subsystem Design and Performances:Fourth European Space Power Conference (ESPC),1995[C].
    [81]Jensen H, Laursen J. Power Conditioning Unit for Rosetta/Mars Express:Sixth European Space Power Conference (ESPC),2002[C].
    [82]Weaver W W, Krein P T. Analysis and Applications of a Current-Sourced Buck Converter: Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE,2007[C].
    [83]ESA. ECSS-E-20A Space engineering electrical and electronic[S]. ESA Publications Division, 1999.
    [84]Wildrick C M, Lee F C, Cho B H, et al. A method of defining the load impedance specification for a stable distributed power system[J]. Power Electronics, IEEE Transactions on, 1995,10(3):280-285.
    [85]Feng Xiaogang, Ye Zhihong, Xing Kun, et al. Individual load impedance specification for a stable DC distributed power system:Applied Power Electronics Conference and Exposition, 1999. APEC'99. Fourteenth Annual,1999[C].
    [86]Emadi A, Khaligh A, Rivetta C H, et al. Constant power loads and negative impedance instability in automotive systems:definition, modeling, stability, and control of power electronic converters and motor drives[J]. Vehicular Technology, IEEE Transactions on, 2006,55(4):1112-1125.
    [87]吴涛,阮新波.分布式供电系统中负载变换器的输入阻抗分析[J].中国电机工程学报,2008,28(12):20-25.
    [88]吴涛,阮新波.分布式供电系统中源变换器输出阻抗的研究[J].中国电机工程学报,2008,28(3):66-72.
    [89]姚雨迎,张东来,徐殿国.级联式DC/DC变换器输出阻抗的优化设计与稳定性[J].电工技术学报,2009,24(3):147-152.
    [90]Abe S, Hirokawa M, Shoyama M, et al. Optimal bus capacitance design for system stability in on-board distributed power architecture:Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008.13th,2008[C].
    [91]Erich S Y, Polivka W M. Input filter design for current-programmed regulators:Applied Power Electronics Conference and Exposition,1990. APEC '90, Conference Proceedings 1990., Fifth Annual,1990[C].
    [92]王建华,张方华,龚春英,等.电压控制型Buck DC/DC变换器输出阻抗优化设计[J].电工技术学报,2007,22(8):18-23.
    [93]Ahmadi R, Paschedag D, Ferdowsi M. Closed-loop input and output impedances of DC-DC switching converters operating in voltage and current mode control:IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society,2010[C].
    [94]Cespedes M, Lei X, Jian S. Constant-Power Load System Stabilization by Passive Damping[J]. Power Electronics, IEEE Transactions on,2011,26(7):1832-1836.
    [95]Xing Lei, Sun Jian. Optimal Damping of Multistage EMI Filters [J]. Power Electronics, IEEE Transactions on,2012,27(3):1220-1227.
    [96]Mitchell D M. Damped EMI Filters for Switching Regulators[J]. Electromagnetic Compatibility, IEEE Transactions on,1978,EMC-20(3):457-463.
    [97]Erickson R W. Optimal single resistors damping of input filters:Applied Power Electronics Conference and Exposition,1999. APEC '99. Fourteenth Annual,1999[C].
    [98]Spiazzi G, Pomilio J A. Interaction between EMI filter and power factor preregulators with average current control:analysis and design considerations[J]. Industrial Electronics, IEEE Transactions on,1999,46(3):577-584.
    [99]Abe S, Hirokawa M, Zaitsu T, et al. Stability Comparison of Voltage Mode and Peak Current Mode Control for Bus Converter in On-Board Distributed Power System:Telecommunications Energy Conference,2006. INTELEC '06.28th Annual International,2006[C].
    [100]Karppanen M, Hankaniemi M, Suntio T, et al. Dynamical Characterization of Peak-Current-Mode-Controlled Buck Converter With Output-Current Feedforward[J]. Power Electronics, IEEE Transactions on,2007,22(2):444-451.
    [101]Rahimi A M, Emadi A. Active Damping in DC/DC Power Electronic Converters:A Novel Method to Overcome the Problems of Constant Power Loads[J]. Industrial Electronics, IEEE Transactions on,2009,56(5):1428-1439.
    [102]Xinyun L, Forsyth A J, Cross A M. Negative Input-Resistance Compensator for a Constant Power Load[J]. Industrial Electronics, IEEE Transactions on,2007,54(6):3188-3196.
    [103]Weaver W W, Krein P T. Mitigation of power system collapse through active dynamic buffers: Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004[C].
    [104]Weaver W W, Krein P T. Optimal Geometric Control of Power Buffers[J]. Power Electronics, IEEE Transactions on,2009,24(5):1248-1258.
    [105]Wang X Y, Vilathgamuwa D M, Choi S S. Decoupling Load and Power System Dynamics to Improve System Stability:Power Electronics and Drives Systems,2005. PEDS 2005. International Conference on,2005 [C].
    [106]Jiabin W, Howe D. A Power Shaping Stabilizing Control Strategy for DC Power Systems With Constant Power Loads[J]. Power Electronics, IEEE Transactions on,2008,23(6):2982-2989.
    [107]Khaligh A, Emadi A. Modified Pulse Adjustment Technique with Variable States to Control DC-DC Converters Operating in Discontinuous Conduction Mode and Driving Constant Power Loads:Industrial Electronics and Applications,2006 1ST IEEE Conference on,2006[C].
    [108]Zhang Xin, Ruan Xinbo, Kim H, et al. Adaptive Active Capacitor Converter for Improving Stability of Cascaded DC Power Supply System[J]. Power Electronics, IEEE Transactions on, 2013,28(4):1807-1816.
    [109]Jusoh A B. The instability effect of constant power loads:Power and Energy Conference,2004. PECon 2004. Proceedings. National,2004[C].
    [110]Dahono P A. A control method for DC-DC converter that has an LCL output filter based on new virtual capacitor and resistor concepts:Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004[C].
    [111]Spiazzi G, Rossetto L, Pomilio J. Analysis of EMI filter induced instabilities in boost power factor preregulators:Power Electronics Specialists Conference,1998. PESC 98 Record.29th Annual IEEE,1998[C].
    [112]Maset E, Ferreres A, Ejea J B, et al.5kW Weinberg Converter for Battery Discharging in High-Power Communication Satellites:Power Electronics Specialists Conference,2005. PESC '05. IEEE 36th,2005[C].
    [113]陈骞,郑琼林,李艳.单电感电流连续型推挽类拓扑的推衍和特性研究[J].中国电机工程学报,2013,33(6):85-92.
    [114]Maset E, Ejea J B, Ferreres A, et al. High-efficiency Weinberg converter for battery discharging in aerospace applications:Applied Power Electronics Conference and Exposition,2006. APEC '06. Twenty-First Annual IEEE,2006[C].
    [115]Ejea-Marti J B, Sanchis-Kilders E, Maset E, et al. Peak current control instabilities at narrow duty cycles:Power Electronics Specialists Conference,2008. PESC 2008. IEEE,2008[C].
    [116]Hankaniemi M, Karppanen M, Suntio T. Load-imposed instability and performance degradation in a regulated converter[J]. Electric Power Applications, IEE Proceedings -, 2006,153(6):781-786.
    [117]Karppanen M, Suntio T, Sippola M. PCM-controlled superbuck converter with super performance and surprises:Power Electronics Specialists Conference,2008. PESC 2008. IEEE, 2008[C].
    [118]Tonicello F. The Control Problem of Maximum Point Power Tracking in Power Systems: Seventh European Space Power Conference (ESPC),2005[C].
    [119]Capel A, Spruyt H, Weinberg A, et al. A versatile zero ripple topology:Power Electronics Specialists Conference,1988. PESC'88 Record.,19th Annual IEEE,1988[C].
    [120]Leppaaho J, Huusari J, Suntio T. Dynamic analysis of PCM-controlled coupled-inductor superbuck converter:Power Electronics and Applications,2009. EPE '09.13th European Conference on,2009[C].
    [121]Bao Zhiyun, Hu Jie, Wang Mingyan. Low input current ripple Battery Charging Regulator based on coupled-inductor:Power System Technology (POWERCON),2010 International Conference on,2010[C].
    [122]任小永.高效率高功率密度通信模块电源技术的研究[D].南京航空航天大学电力电子与电力传动,2008.
    [123]Tymerski R, Vorperian V. Generation and classification of PWM DC-to-DC converters[J]. Aerospace and Electronic Systems, IEEE Transactions on,1988,24(6):743-754.
    [124]Abe S, Hirokawa M, Ninomiya T. Output Impedance Design Consideration of Three Control Schemes for Bus Converter in On-Board Distributed Power System:Power Electronics and Drive Systems,2007. PEDS '07.7th International Conference on,2007[C].
    [125]Abe S, Hirokawa M, Zaitsu T, et al. Design consideration of full-regulated bus converter for system stability of on-board distributed power system:Power Electronics, Electrical Drives, Automation and Motion,2006. SPEEDAM 2006. International Symposium on,2006[C].
    [126]Panov Y, Jovanovic M. Practical issues of input/output impedance measurements in switching power supplies and application of measured data to stability analysis:Applied Power Electronics Conference and Exposition,2005. APEC 2005. Twentieth Annual IEEE,2005 [C].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700