血管钠肽抗慢性低氧大鼠心脏重构及舒张人乳内动脉的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     钠尿肽(natriuretic peptides,NPs)是一组具有利钠、利尿、舒血管和抗细胞增殖效应的多肽,具有抗心力衰竭、心肌肥厚和移植血管再狭窄的重要作用。钠尿肽受体(natriuretic peptide receptor,NPR)可分为鸟苷酸环化酶(guanyl cyclase,GC)耦联受体和非耦联受体。其中A、B受体亚型(NPR-A,NPR-B)是GC耦联受体,介导NPs发挥重要的生物学功能;而C受体亚型不与GC耦联,属于清除受体,主要影响体内NPs的半衰期。
     血管钠肽(vasonatrin peptide,VNP)是人工设计、合成的钠尿肽家族新成员,是心房钠尿肽(atrial natriuretic peptide,ANP)和C-型钠尿肽的嵌合体。已证实,VNP可有效地防治大鼠低氧性肺动脉高压和右心室肥厚,但其作用机制还不明了。NPR-C是直接影响NPs功能的重要因素,低氧时NPR-C水平的变化仍存在争议,VNP与NPR-C的关系也尚未见报道。内皮素-1(endothelin-1,ET-1)是机体缺血、缺氧时,血管内皮、平滑肌、心肌以及心成纤维细胞合成与释放的一种效应很强的缩血管多肽,能引起冠状动脉强烈收缩,造成心肌缺血,甚至坏死。ET-1还促进冠脉平滑肌增生,使管腔狭窄,进一步加重心肌缺氧。VNP对低氧心脏ET-1水平的影响如何,还不十分清楚。本研究首次应用慢性低氧大鼠模型,初步探讨VNP对低氧大鼠右心室NPR-C和ET-1的影响。
     人乳内动脉(human internal mammary artery,HIMA)是心脏搭
    
     宽四军区大学博士学位论大
    桥手术的主要供体血管之一。临床资料表明,移植后血管的痉挛
    程度是影响手术疗效的重要原因。己发现,VNP对大鼠主动脉和
    肺动脉具有显著的舒张作用,而VN’I,对HIMA的舒张作用还未见
    报道。本研究还首次探讨VN’P对HIMA的舒张作用及机制。为开
    发VN’P成为治疗冠脉搭桥术后血管痉挛的药物提供理论依据。
     方 法
     *)采用减压低氧的方法,模拟 5,500 m的高原低氧环境,饲
     养低氧大鼠。对照大鼠在常压、常氧的条件下饲养。
     O) 分别用定量PCR和原位杂交的方法分析右心室NPR(与
     ETI 的InRNA水平,并用放射免疫测定法测量右心室
     ET-1 蛋白含量的变化。同时也观察血浆ANP、右心室
     CGMP水平的变化。
     o) 采用离体血管灌流的方法,观察VNP对内皮完整和去内
     皮HIMA的舒张作用,以及8-Br-cGW、NPR-A,B选择
     性抑制剂HS1 八、鸟着酸环化酶选择性抑制剂美蓝
     (methylene blue,MB)和*”激活 K十通道(CaZ”-activated
     矿山annel,KC*的选择性抑制剂hA对这一过程的影响。
     门 采用全细胞膜片钳技术观察VN’I,对大鼠肠系膜动脉血管
     平滑肌(vascular smooth muscle cells,VSMCs)KC。的作用,
     以及8Er七GMP、HS八 *和MB对这一过程的影响。
     结 果
     (1)可氧7~28 d心脏N’P又C InRNInRNA水平显著升高(P<0*5),
     一 5——Mp 2003
    
     第四军区大学协士学位论X
    一
     并呈现时间依赖性。每日腹腔注射 50~75 pg/kg的 VNP可
     剂量依赖性地减弱低氧心脏NP*-C的表达(P<0刀5)。血浆
     ANP浓度在低氧 28 d后显著升高(P<0.05),VNP(75卜g/kg)
     使AN P浓度进一步升高(P<0刀1)。
     O)VNP门5 pg/kg)使低氧诱导的心脏ET1 的水平显
     著降低(P<0刀5)。CGMP基础水平未见显著性差异,VNP
     (7 pg/kg)使低氧心脏的CGMP7k平略高于相应的常氧组,
     但无显著性差异(P>0刀5)。
     (3)VNP(10”口一106mo凡)可剂量依赖性地舒张HIMA,该作
     用无内皮依赖性。吕一Br-cGMP (l”’~10-’mo讥)可模拟 VNP
     的血管舒张效应。HS-142一l(2 x 10”5 mo凡)或 MB(10-’
     moUL)完全阻断 VNP舒张作用。TEA门“‘。of/L)减弱
     VNP的舒血管作用。
     *)VNP显著增强大鼠肠系膜动脉VSMCS的KcyVNP的这
     一效应可以由8-Br-CGMP模拟,而被HS-142J或MB完
     全阻断。
     结 论
     *)VNP抑制慢性低氧导致大鼠右心室NPR七时间依赖性的表
     达增加,由此促进血浆内源性ANP水平进一步增加。VNP
     还抑制慢性低氧导致大鼠右心室ET.l的表达增加,此过程
     与细胞内。GMP水平的变化没有相关性。结果提示,抑制
     NPR-C(清除受体)进而增加 NPs的活性和减弱 ET-l的表
     达可能是VNP抗慢性低氧作用的重要机制。
     一 6——Mp 2003
    
     第四不巨大学博士学位论又
     o)VNP对H例具有不依赖内皮的舒张作用,其作用主要是
     通过作用于NPR-A,B,即钠尿肽GC受体,引起细胞内的
     CGMP水平升高实现的。Kc。可能是其舒张作用的重要效应
     分子。
     该结果为应用VNP防治慢性低氧性心脏重构和血管移
     植术后的痉挛提供了重要的
Natriuretic peptides (NPs) are a family of polypeptides possessing natriuretic, diuretic, vasodilative and anti-proliferation actions. In recent years, increasing attention has been paid to their inhibitory effects on heart failure, cardiac hypertrophy and restenosis of transplanted blood vessels in both basic research and clinical application. Natriuretic peptides receptor-A and B (NPR-A, B), which are membrane bound guanylate cyclase coupled to the production of 3', 5' cyclic guanosine monophophate (cGMP), mediate the biological actions of NPs, while natriuretic peptides receptor-C (NPR-C) uncoupled with cGMP acts as a clearance receptor by binding with and internalizing NPs.
    Vasonatrin peptide (VNP) is a new man-made member of natriuretic peptide family, It is a chimera from atrial natriuretic peptide and C-type natriuretic peptide. Recent studies have demonstrated that VNP is effective in preventing and treating hypoxic pulmonary hypertension and right ventricular hypertrophy, however the mechanism is not well understood. NPR-C plays an important role in
    May, 2003
    
    
    
    
    the regulation of the activity of NPs. The expression of NPR-C in hypoxic heart remains controversial, and the relationship between VNP and NPR-C is still unknown. During hypoxia, ET-1 is strongly synthesized and released by endothelial cells, vascular smooth muscle cells(VSMCs), cardiac myocytes and cardiac fibroblasts. It induces strong contraction and spasm of coronary artery, and results in myocardial ischemia and even necrosis. ET-1 also promotes proliferation of VSMCs, which induces stenosis of coronary artery and more severe hypoxia. However, it is not clear whether VNP affects hypoxia-stimulated increase of ET-1. Therefore, the purpose of this study is firstly to determine the effect of VNP on the expression of NPR-C and ET-1 in chronic hypoxic rats.
    The human internal mammary artery (HIMA) acts as the donor for coronary artery bypass grafting. Clinical data demonstrate that the spasm of transplanted blood vessel is an important factor reducing the curative effect of coronary artery bypass grafting. It has been found that VNP has strong relaxing effect on rat aorta and pulmonary artery, but there is little report about its effect on HIMA. So the next project is to investigate the vasorelaxing effect of VNP on HIMA and reveal its underlying mechanism.
    Methods
    (1) Hypoxia on the elevation of 5,500m was mimicked with low atmospheric pressure.
    (2) The mRNA level of NPR-C and ET-1 in right ventricle was
    ?9 ? May, 2003
    
    
    
    detected by the means of quantitative PCR and in situ hybridization respectively. Radioimmunoassay was used to determine the protein level of ET-1. It was also used to measure the plasma concentration of ANP and the level of cGMP in right ventricle.
    (3) The vasorelaxing effect of VNP on HIMA with and without endothelium was observed by perfusion in vitro. Effects of 8-Br-cGMP, HS-142-1, the selective inhibitor of NPR-A and B, methylene blue (MB), the selective inhibitor of GC, and tetraethylammonium (TEA), the selective inhibitor of Ca2+-activated K+ channel (Kca), were also investigated.
    (4) The effect of VNP on Kca in VSMCs from rat mesentery arteries was detected by whole-cell patch clamp technique.
    Results
    (1) Hypoxia for 7~28 d significantly increased NPR-C mRNA of right ventricle in a time dependent manner (.P<0.05). VNP (50-75 #g/kg, i.p.) significantly reduced the NPR-C mRNA level in a dose dependent manner (PO.05). The plasma concentration of ANP in hypoxic (28 d) rats was significantly higher than that in normoxic group (P<0.05), and VNP at 75 #g/kg made it more higher (P<0.01).
    (2) VNP at 75 #g/kg significantly inhibited the increase of ET-1 and its mRNA in hypoxic rat hearts (PO.05). Compared with the corresponding normoxic group, the level of cGMP induced by VNP was slightly increased (P>0.05).
    ?10 ? May, 2003
    
    
    
    (3) VNP from 10-10 to 10-6 mol/L induced a concentr
引文
[1] Alioua A, Huggins P, Rousseau E. PKG-I phosphorylates the α-subunit and upregulates reconstituted GK_(ca) channels from tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 1995;268(6):L1057-L1063.
    [2] Anand-Srivastava MB, Sehl PD, Lowe DG. Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase.Involvement of a pertussis toxin-sensitive G protein.J Biol Chem. 1996;271(32):19324-19329.
    [3] Andreassi MG, Del Ry S, Palmieri C, Clerico A, Biagini A, Giannessi D. Up-regulation of 'clearance' receptors in patients with chronic heart failure: a possible explanation for the resistance to biological effects of cardiac natriuretic hormones. Eur J Heart Fail. 2001;3(4):407-714.
    [4] Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S.Cloning and expression of a cDNA encoding an endothelin receptor. Nature.1990;348(6303): 730-732.
    [5] Arai M, Goto F, Takei Y. Effect of eel ventricular natriuretic peptide on the kidney and cardiovascular system in the dog. Endocr J.1996;43 (2):205-210.
    [6] Aramori I, Nakanishi S. Coupling of two endothelin receptor subtypes to differing signal transduction in transfected Chinese hamster ovary cells. J Biol Chem. 1992;267(18):12468-12474.
    [7] Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA. 1994;91(16): 7583-7587.
    
    
    [8] Arjona AA, Hsu CA, Wrenn DS, Hill NS. Effects of natriuretic peptides on vascular smooth muscle cells derived from different vascular bed. Gen Pharmacol. 1997; 28(3): 387-392.
    [9] Bettencourt P. Brain natriuretic peptide (nesiritide) in the treatment of heart failure. Cardiovasc Drug Rev.2002;20(1):27-36.
    [10] Borland JA, Chester AH, Crabbe S, Parkerson JB, Catravas JD, Yacoub MH. Differential action of angiotensin Ⅱ and activity of angiotensin-converting enzyme in human bypass grafts. J Thorac Cardiovasc Surg. 1998;116(2): 206-212.
    [11] Brandt RR, Mattingly MT, Clavell AL, Barclay PL, Burnett JC Jr. Neutral endopeptidase regulates C-type natriuretic peptide metabolism but does not potentiate its bioactivity in vivo. Hypertension. 1997;30(2): 184-190.
    [12] Brown LA, Nunez DG, Wilkins MR. Differential regulation of natriuretic peptide receptor messenger RNAs during the development of cardiac hypertrophy in the rat. J Clin Invest. 1993;92(6):2702-2712.
    [13] Burnett JC Jr, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS. Atrial natriuretic peptide elevation in congestive heart failure in the huma. Science. 1986;231(4742): 1145- 1147.
    [14] Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide and cyclic GMP inhibit the growthpromoting effects of norepinephine in cardiac myocytes and fibroblasts. J Clin Invest. 1998; 101 (4):812-818.
    [15] Cao L, Wu J, Gardner DG. Atrial natriuretic peptide suppresses the transcription of its guanylyl cyclase-linked receptor. J Biol Chem. 1995;270(42): 24891-24897.
    
    
    [16] Cao L, Gardner DG. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts.Hypertension, 1995;25(4):227-234.
    [17] Cao L, Zlock DW, Gardner DG. Differential regulation of natriuretic peptide receptor activity in vascular cells. Hypertension.1994;24(3): 329-338.
    [18] Cavallini L, Coassin M, Borean A, Alexandre A. Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J Biol Chem. 1996;271(10): 5545-5551.
    [19] Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases.Nature. 1989;341 (6237):68-72.
    [20] Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989;338(6210):78-83.
    [21] Chiou S, Vesely DL. Kaliuretic peptide: the most potent inhibitor of Na~+-K~+ ATPase of the atrial natriuretic peptides. Endocrinology. 1995;136(5): 2033-2039.
    [22] Collins SP, Uhler MD. Cyclic AMP-and cyclic GMP-dependent protein kinases differ in their regulation of cyclic AMP response element-dependent gene transcription. J Biol Chem. 1999;274(13):8391-8404.
    [23] Corti R, Burnett JC Jr, Rouleau JL, Ruschitzka F, Luscher TF. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease?Circulation.2001; 104(15): 1856-1862.
    [24] Emori T, Hirata Y, Imai T, Eguchi S, Kanno K, Marumo F. Cellular
    
    echanism of natriuretic peptides-induced inhibition of endothelin-1 biosynthesis in rat endothelial cells. Endocrinology. 1993; 133(6):2474-2480.
    [25] Erhardt P, Troppmair J, Rapp UR, Cooper GM. Differential regulation of Raf-1 and B-Raf and Ras-dependent activation of mitogen-activated protein kinase by cyclic AMP in PC12 cells. Mol Cell Biol.1995;15(10):5524-5530.
    [26] Florkowski CM, Richards AM, Espiner EA, Yandle TG, Sybertz E, Frampton CM Low-dose brain natriurtic peptide infusion in normal men and the influence of endopeptidase inhibition. Clin Sci.1997;92(3):255-260.
    [27] Fujisaki H, Ito H, Hirata Y, Tanaka M, Hata M, Lin M, Adachi S, Akimoto H,Marumo F, Hiroe M. Natriuretic peptides inhibit angiotensin Ⅱ-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J Clin Invest. 1995;96(2): 1059-1065.
    [28] Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD. Cyclic GMP-dependent protein kinase activates cloned BK_(ca) channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem. 1999;274(16):10927-10935.
    [29] Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones.J Biol Chem. 1988;263(19):9395-9401.
    [30] Golovina VA. Cell proliferation is associated with enhanced capacitative Ca~(2+) entry in human arterial myocytes.Am J Physiol.1999;277(2): C343-C349.
    [31] Gudi T, Huvar I, Meinecke M, Lohmann SM, Boss GR, Pilz RB. Regulation of gene expression by cGMP-dependent protein kinase.
    
    Transactivation of the c-fos promoter. J Biol Chem. 1996;271(9):4597-4600.
    [32] Gudi T, Lohmann SM, Pilz RB. Regulation of gene expression by cyclic GMP-dependent protein kinase requires nuclear translocation of the kinase: identification of a nuclear localization signal. Mol Cell Bio1.1997; 17(9):5244-5254.
    [33] Haby C, Lisovoski F, Aunis D, Zwiller J. Stimulation of the cyclic GMP pathway by NO induces expression of the immediate early genes c-fos and junB in PC12 cells.J Neurochem. 1994;62(2):496-501.
    [34] Haug LS, Jensen V, Hvalby O, Walaas SI, Ostvold AC. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent protein kinases in vitro and in rat cerebellar slices in situ. J Biol Chem. 1999;274(11):7467-7473.
    [35] Hisa H. Control mechanisms of renal functions: effects of cardiovascular drugs on vasoconstrictive and antinatriuretic stimuli in the in vivo kidney. Yakugaku Zasshi.2000; 120(12): 1395-1407.
    [36] Hobbs RE, Miller LW, Bott-Silverman C, James KB, Rincon G, Grossbard EB. Hemodynamic effects of a single intravenous injection of synthetic human brain natriuretic peptide in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol.1996;78(8): 896-901.
    [37] Hoenderop JG, Vaandrager AB, Dijkink L, Smolenski A, Gambaryan S, Lohmann SM, de Jonge HR, Willems PH, Bindels RJ. Atrial natriuretic peptide-stimulated Ca~(2+) reabsorption in rabbit kidney requires membrane-targeted, cGMP-dependent protein kinase type Ⅱ.Proc Natl Acad Sci U S A.1999;96(11):6084-6089.
    
    
    [38] Hofmann F, Ammendola A, Schlossmann J. Rising behind NO: cGMP-dependent protein kinase. J Cell Sci.2000; 113(10): 1671-1676.
    [39] Hood J, Granger HJ. Protein kinase G mediates vascular endothelial growth factor-induced Raf-1 activation and proliferation in human endothelial cells. J Biol Chem. 1998;273(36):23504-23508.
    [40] Horio T, Nishikimi T, Yoshihara F, Matsuo H, Takishita S, Kangawa K. Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension.2000;35(1): 19-24.
    [41] Hu RM, Levin ER, Pedram A, Frank HJ. Atrial natriuretic peptide inhibits the production and secretion of endothelin from cultured endothelial cells. Mediation through the C receptor. J Biol Chem. 1992;267(24): 17384-14389.
    [42] Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE. Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res. 1997;35(1): 158-167.
    [43] Idriss SD, Gudi T, Casteel DE, Kharitonov VG, Pilz RB, Boss GR. Nitric oxide regulation of gene transcription via soluble guanylate cyclase and type I cGMP-dependent protein kinase. J Biol Chem.1999;274(14): 9489-9493.
    [44] Iimura O, Kusano E, Homma S, Takeda S, Ikeda U, Shimada K, Asano Y. Atrial natriuretic peptide enhances IL-1 beta-stimulated nitric oxide production in cultured rat vascular smooth muscle cells. Kidney Blood Press Res. 1998;21(1):36-41.
    [45] Ikeda M, Kohno M, Yasunari K, Yokokawa K, Horio T, Ueda M, Morisaki N, Yoshikawa J. Natriuretic peptide family as a novel antimigration factor of vascular smooth muscle cells.Arterioscler Thromb Vasc Bio1.1997;17(4):
    
    731-736.
    [46] Kalra PR, Tigas S. Regulation of lipolysis: natriuretic peptides and the development of cachexia. Int J Cardiol.2002;85(1): 125-132.
    [47] Kashiwagi M, Katafuchi T, Kato A, Inuyama H, Ito T, Hagiwara H, Takei Y, Hirose S. Cloning and properties of a novel natriuretic peptide receptor, NPR-D.Eur J Biochem. 1995;233 (1): 102-109.
    [48] Keating GM, Goa KL. Nesiritide: a review of its use in acute decompensated heart failure. Drugs.2003;63(1):47-70.
    [49] Kiemer AK, Lehner MD, Hartung T, Vollmar AM. Inhibition of cyclooxygenase-2 by natriuretic peptides.Endocrinology.2002;143(3): 846-852.
    [50] Kicmer AK, Vollmar AM. The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages.Ann Rheum Dis. 2001;60 (Suppl 3):ⅲ68-70.
    [51] Kim SZ, Cho KW, Kim SH. Modulation of endocardial natriuretic peptide receptor in right ventricular hypertrophy. Am J Physiol (Heart and Circulatory Physiology).1999;277(6):H2280-H2289.
    [52] Kimura, K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase).Science. 1966;273(34): 245-248.
    [53] Kinlay S, Behrendt D, Wainstein M, Beltrame J, Fang JC, Creager MA, Selwyn AP, Ganz P. Role of endothelin-1 in the active constriction of humanatherosclerotic coronary arteries. Circulation.2001;104(10):1114-1118.
    
    
    [54] Kishimoto I, Nakao K, Suga S, Hosoda K, Yoshimasa T, Itoh H, Imura H. Downregultaion of C-receptor by natriuretic peptides via ANP-B receptor in vascular smooth muscle cells. Am J Physiol. 1993;265(4):H1373-H1379.
    [55] Kishimoto I, Saito Y, Li Y, Nakao K. Cross-talk between the natriuretic peptide system and the angiotensin system.Nippon Rinsho.2002;60(10): 1923-1928.
    [56] Klinger JR, Arnal F, Warburton RR, Ou LC, Hill NS. Downregulation of pulmonary atrial natriuretic peptide receptors in rats exposed to chronic hypoxia. J Appl Physiol. 1994;77(3): 1309-1316.
    [57] Kohno M, Yokokawa K, Yasunari K, Kano H, Minami M, Ueda M, Yoshikawa J. Effect of natriuretic peptide family on the oxidized LDL-induced migratin of human coronary artery smooth muscle cells.Circ Res. 1997;8(4):585-590.
    [58] Kone BC.Molecular biology of natriuretic peptides and nitric oxide synthases.Cardiovasc Res.2001;51(3):429-441.
    [59] Labrecque J, Mc Nicoll N, Marquis M, De Lean A. A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction. J Biol Chem. 1999;274(14): 9752-9759.
    [60] Lafontan M, Berlan M, Stich V, Crampes F, Riviere D, De Glisezinski I, Sengenes C, Galitzky J. Recent data on the regulation of lipolysis by catecholamines and natriuretic peptides.Ann Endocrinol (Paris).2002;63(2): 86-90.
    [61] Lafontan M, Sengenes C, Galitzky J, Berlan M, De Glisezinski I, Crampes F, Stich V, Langin D, Barbe P, Riviere D. Recent developments on lipolysis
    
    regulation in humans and discovery of a new lipolytic pathway. Int J Obes Relat Metab Disord.2000;24(Suppl 4):S47-S52.
    [62] Lainchbury JG, Nicholls MG, Espiner EA, Ikram H, Yandle TG, Richards AM. Regional plasma levels of cardiac peptides and their response to acute neutral endopeptidase inhibition in man. Clin Sci (Colch).1998,95(5): 547-555.
    [63] Lakshminrusimha S, D'Angelis CA, Russell JA, Nielsen LC, Gugino SF, Nickerson PA, Steinhorn RH. C-type natriuretic peptide system in fetal ovine pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol.2001;281(2):L361-L368.
    [64] Lerman A, Gibbons RJ, Rodeheffer RJ, Bailey KR, McKinley LJ, Heublein DM, Burnett JC Jr. Circulating N-terminal atrial natriuretic peptide as a marker for symptomLess left-ventricular dysfunction. Lancet. 1993;341(8853): 1105-1110.
    [65] Levin ER, Frank HSL. Natriuretic peptides inhibit rat astroglial proliferation: mediation by C-receptor. Am J Physiol. 1991;261(2):R453-R457.
    [66] Levin ER. Natriuretic peptide C-receptor: more than a clearance receptor. Am J Physio. 1993;264(4):E483-E489.
    [67] Li H, Oparil S, Meng QC, Elton TS, Chen YF. Selective downregulation of ANP-clearance-receptor gene expression in lung of rats adapted to hypoxia. Am J Physiol. 1995;268(Lung Cell. Mol. Physiol. 12):L328-L335.
    [68] Liming ZH, Tao H, Newman WH. Regulation of atrial natriuretid peptide receptors in vascular smooth muscle cells: role of cGMP. Am J Physiol. 1993;264(Heart Circ Physiol.33): H1753-H1759.
    [69] Lin X, Hanze J, Heese F, Sodmann R, Lang RE. Gene expression of
    
    natriuretic peptide receptors in myocardial cells.Circ Res.1995;77(4):750-758.
    [70] Lincoln TM, Dey N, Sellak H. cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol.2001;91(3): 1421-1430.
    [71] Lincoln TM, Dey, NB, Boerth NJ, Cornwell TL, Soff GA. Nitric oxide-cyclic GMP pathway regulates vascular smooth muscle cell phenotypic modulation: implications in vascular diseases.Acta Physiol Scand. 1998; 164(4):507-515.
    [72] Lisy O, Jougasaki M, Heublein DM, Schirger JA, Chen HH, Wennberg PW, Burnett JC. Renal actions of synthetic dendroaspis natriuretic peptide. Kidney Int. 1999;56(2):502-508.
    [73] Luo DL, Nakazawa M, Ishibashi T, Kato K, Imai S. Putative selective inhibitors of the sarcoplasmic reticulum Ca~(2+)-pump ATPase inhibit relaxation by nitroglycerine and atrial natriuretic factor of the rabbit aorta contracted by phenylephrine.J Pharmacol Exp Ther. 1993;265:1187-1192.
    [74] Mann JM, Mclntosh CL, Roberts WC. Spasm of saphenous veins used as conduits for aortocoronary bypass grafting. Am J Cardiol.1987;59(9): 1000-1002.
    [75] Marcus LS, Hart D, Packer M, Yushak M, Medina N, Danziger RS, Heitjan DF, Katz SD. Hemodynamic and renal excretory effects of human brain natriuretic peptide infusion in patients with congestive heart failure: a double-blind, placebo-controlled, randomized crossover trial. Circulation. 1996; 94(12):3184-3189.
    [76] Margulies KB, Burnett JC Jr. Neutral endopeptidase 24,11: a modulator
    
    natriurtic peptides. Semin Nephrol.1993;13(1):71-77.
    [77] Masciotra S, Picard S, Deschepper CF. Cosegregation analysis in genetic crosses suggests a protective role for atrial natriuretic factor against ventricular hypertrophy. Circ Res. 1999;84(12): 1453-1458.
    [78] Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O.The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system.Proc Natl Acad Sci U S A. 1999;96(13):7403-7408.
    [79] Mills RM, Hobbs RE, Young JB. "BNP" for heart failure: role of nesiritide in cardiovascular therapeutics. Congest Heart Fail.2002;8(5):270-273.
    [80] Misono KS. Natriuretic peptide receptor: structure and signaling. Mol Cell Biochem.2002;230(1-2):49-60.
    [81] Mistry SK, Chatterjee PK, Weerackody RP. Evidence for atrial natriuretic factor induced natriuretic peptide receptor subtype switching in rat proximal tubular cells during cultrue. Exp Nephrol. 1998; 6(2): 104-111.
    [82] Mitani Y, Maruyama J, Yokochi A, Maruyama K, Yoshimoto T, Naruse M, Sakurai M. Modulated vasodilator responses to natriuretic peptides in rats exposed to chronic hypoxia. Eur Respir J.2000; 15(2):400-406.
    [83] Moreno H, Vega-Saenz de Miera E, Nadal MS, Amarillo Y, Rudy B. Modulation of Kv3 potassium channels expressed in CHO cells by a nitric oxide-activated phosphatase. J Physiol.2001;530(3):345-358.
    [84] Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, Rutter WJ. Insulin-like growth factor Ⅱ receptor as a multifunctional binding protein. Nature. 1987;329(6137):301-307.
    [85] Morishita Y, Sano T, Ando K, Saitoh Y, Kase H, Yamada K, Matsuda Y,
    
    Microbial polysaccharide,HS-142-1,competitively and selectively inhibits ANP binding to its guanylyl cyclase-containing receptor. Biochem Biophys Res Commun. 1991; 176 (3):949-957.
    [86] Mundian-Weilenmann C, Vittone L, Rinaldi G, Said M, deCingolani GC, Mattiazzi A. Endoplasmic reticulum contribution to the relaxant effect of cGMP-and cAMP-elevating agents in feline aorta. Am J Physiol Heart Circ Physiol.2000;278:H1856-H1865.
    [87] Murthy KS, Makhlouf GM. Interaction of cA-kinase and cG-kinase in mediating relaxation of dispersed smooth muscle cells. Am J Physiol Cell Physiol. 1995;268:C171-C180.
    [88] Nambi P, Clozel M, Feuerstein G. Endothelin and heart failure. Heart Fail Rev.2001;6(4):335-340.
    [89] Nathisuwan S, Talbert RL. A review of vasopeptidase inhibitors: a new modality in the treatment of hypertension and chronic heart failure. Pharmacotherapy.2002;22(1):27-42.
    [90] Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science(5236). 1995;270:633-637.
    [91] Neuser D, Stasch JP, Knorr A, Kazda S. Inhibition by atrial natriuretic peptide of endothelin-1 stimulated proliferation of vascular smooth muscle cells.J Cardiovasc Pharmacol. 1993;22(supp18):S257-S261.
    [92] Niddlekauff HR, Mark Al. The treatment of heart failure: the role of neurohumoral activation. Intern Med. 1998;37(2): 112-122.
    [93] Noll G, Wenzel RR, Luscher TF. Endothelin and endothelin antagonists: potential role in cardiovascular and renal disease. Mol Cell Biochem.
    
    1996; 157(1-2):259-267.
    [94] Nuglozeh E, Mbikay M, Stewart DJ, Legault L. Rat natriuretic peptide receptor genes are regulated by glucocorticoids in vitro. Life Sci. 1997;61(22):2143-2155.
    [95] Nunez DJR, Dickson MC, Brown MJ. Natriuretic peptide receptor mRNAs in the rat and human heart. J Clin Invest. 1992;90(5): 1966-1971.
    [96] Ohyama Y, Miyamoto K, Morishita Y, Matsuda Y, Saito Y, Minamino N, Kangawa K, Matsuo H. Stable expression of natriuretic peptide receptors: effects of HS-142-1, a non-peptide ANP antagonist. Biochem Biophys Res Commun. 1992; 189(1):336-342.
    [97] Okamura H, Kelly PA, Chabot JG, Morel G, Belles-Isles M, Heisler S. Atrial natriuretic peptide receptors are present in brown adipose tissue.Biochem Biophys Res Commun. 1988; 156(2): 1000-1006.
    [98] Peacock WF. The B-type natriuretic peptide assay: a rapid test for heart failure.Cleve Clin J Med.2002;69(3):243-251.
    [99] Phillips MI. Gene therapy for hypertension: the preclinical data. Hypertension.2001;38(3):543-548.
    [100] Porter JG, Catalano R, McEnroe G, Lewicki JA, Protter AA. C-type natriuretic peptide inhibits grouth factor dependent DNA systhesis in smooth muscle cells.Am J Physiol. 1992;263(5):C 1001-C1006.
    [101] Porter, VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, Lederer WJ, Nelson MT. Frequency modulation of Ca sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol Cell Physiol. 1998;274:C1346-C1355.
    [102] Potter LR, Garbers DL. Dephosphorylation of the guanylyl cyclase-A
    
    receptor causes desensitization.J Biol Chem. 1992;267(21): 14531-14534.
    [103] Potter LR, Hunter T. Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol. 1998; 18(4):2164-2172.
    [104] Quaschning T, Ruschitzka F, Luscher TF. Vasopeptidase inhibition: effective blood pressure control for vascular protection. Curr Hypertens Rep. 2002;4(1):78-84.
    [105] Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC Jr. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coil Cardiol.2002;40(5):976-982.
    [106] Redondo J, Bishop JE, Wilkins MR. Effect of atrial natriuretic peptide and cyclic GMP phosphodiesterase inhibition on collagen synthesis by adult cardiac fibroblasts.Br J Pharmacol. 1998; 124(7): 1455-1462.
    [107] Sano T, Imura R, Morishita Y, Matsuda Y, Yamada K. HS-142-1, a novel polysaccharide of microbial origin, specifically recognizes guanylyl cyclase-linked and receptor in rat glomeruli. Life Sci. 1992;51(18):1445-1451.
    [108] Sarcevic B, Brookes V, Martin TJ, Kemp BE, Robinson PJ. Atrial natriuretic peptide-dependent phosphorylation of smooth muscle cell particulate fraction proteins is mediated by cGMP-dependent protein kinase.J Biol Chem. 1989;264(34):20648-20654.
    [109] Sarzani R, Paci VM, Zingaretti CM, Pierleoni C, Cinti S, Cola G, Rappelli A, Dessi-Fulgheri P. Fasting inhibits natriuretic peptides clearance receptor expression in rat adipose tissue. J Hypertens. 1995; 13(11): 1241-1246.
    [110] Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G,
    
    Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P. Regulation of intracellular calcium by a signalling complex of IRAG, IP_3 receptor and cGMP kinase Iβ.Nature.2000;404(6774): 197-201.
    [111] Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes.FASEB J. 2000;14(10):1345-1351.
    [112] Silberbach M, Gorenc T, Hershberger RE, Stork PJ, Steyger PS, Roberts CT Jr. Extracellular signal-regulated protein kinase activation is required for the anti-hypertrophic effect of atrial natriuretic factor in neonatal rat ventricular myocytes.J Biol Chem. 1999;274(35):24858-24864.
    [113] Silberbach M, Roberts CT Jr. Natriuretic peptide signalling: molecular and cellular pathways to growth regulation. Cell Signal.2001;13(4):221-231.
    [114] Stanek B, Frey B, Hulsmann M, Berger R, Sturm B, Strametz-Juranek J, Bergler-Klein J, Moser P, Bojic A, Hartter E, Pacher R. Prognostic evaluation of neurohumoral plasma levels before and during beta-blocker therapy in advanced left ventricular dysfunction. J Am Coll Cardiol. 2001;38(2):436-442.
    [115] Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, Arai H, Saito Y, Kambayashi Y, Inouye K. Receptor selectivity of natriuretic peptide family, atrial natriurtic peptide, brain natriuretic peptide and C-type natriuretic peptide. Endocrinology. 1992; 130(1):229-239.
    [116] Sugden PH, Clerk A. Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signal.1997;9(5):337-351.
    [117] Sugimoto T, Haneda M, Togawa M, Isono M, Shikano T, Araki S,
    
    Nakagawa T, Kashiwagi A, Guan KL, Kikkawa R. Atrial natriuretic peptide induces the expression of MKP-1, a mitogen-activated protein kinase phosphatase, in glomerular mesangial cells.J Biol Chem.1996;271(1): 544-547.
    [118] Sugimoto T, Kikkawa R, Haneda M, Shigeta Y. Atrial natriuretic peptide inhibits endothelin-1-induced activation of mitogen-activated protein kinase in cultured rat mesangial cells. Biochem Biophys Res Commun. 1993;195(1): 72-78.
    [119] Suhasini M, Li H, Lohmann SM, Boss GR, Pilz RB. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway. Mol Cell Biol. 1998; 18(12):6983-6994.
    [120] Sun JZ, Chen SJ, Li G, Chen YF. Hypoxia reduces atrial natriuretic peptide clearance receptor gene expression in ANP knockout mice.Am J Physiol Lung Cell Mol Physiol.2000;279(3):L511-L519.
    [121] Supaporn T, Wennberg PW, Wei CM, Kinoshita M, Matsuda Y, Burnett JC. Role of the endogenous natriuretic peptide system in the control of basal coronary vascular tone in dogs.Clin Sci. 1997;90(5):357-362.
    [122] Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha. Science. 1999;286 (5444):1583-1587.
    [123] Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S. A novel natriuretic peptide isolated from eel cardiac ventricles. FEBS Lett. 1991;282(2):317-320.
    [124] Takei Y, Ueki M, Nishizawa T. Eel ventricular natriuretic peptide: cDNA
    
    cloning and mRNA expression.J Mol Endocrinol. 1994; 13(3):339-345.
    [125] Takei Y. Does the natriuretic peptide system exist throughout the animal and plant. kingdom? Comp Biochem Physiol B Biochem Mol Biol.2001;129(2-3):559-573.
    [126] Tamirisa P, Frishman WH, Kumar A.Endothelin and endothelin antagonism: roles in cardiovascular health and disease. Am Heart J. 1995; 130(3):601-610.
    [127] Thorpe DS, Morkin E. The carboxyl region contains the catalytic domain of the membrane form of guanylate cyclase.J Biol Chem. 1990;265(20): 14717-14720.
    [128] Torrecillas G, Diez-Marques ML, Garcia-Escribano C, Bosch RJ, Rodriguez-Puyol D, Rodriguez-Puyol M. Mechanisms of cGMP-dependent mesangial cell relaxation: a role for myosin light chain phosphatase activation. Biochem J.2000;346(1): 217-222.
    [129] Toyo-oka T, Aizawa T, Suzuki N, Hirata Y, Miyauchi T, Shin WS, Yanagisawa M, Masaki T, Sugimoto T. Increased plasma level of endothelin-1 and coronary spasm induction in patients with vasospastic angina pectoris. Circulation. 1991;83(2):476-483.
    [130] Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide.J Clin Invest. 1995;95(4): 1798-1807.
    [131] Vaandrager AB, Smolenski A, Tilly BC, Houtsmuller AB, Ehlert EM, Bot AG, Edixhoven M, Boomaars WE, Lohmann SM, de Jonge HR. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl-channel activation. Proc Natl Acad
    
    Sci U S A.1998;95(4):1466-1471.
    [132] Van Riper DA, McDaniel NL, Rembold CM. Myosin light chain kinase phosphorylation in nitrovasodilator induced swine carotid artery relaxation. Biochim Biophys Acta. 1997;1355(3): 323-330.
    [133] Vollmar AM, Kiemer AK. Immunomodulatory and cytoprotective function of atrial natriuretic peptide.Crit Rev Immunol.2001;21(6):473-485.
    [134] Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJ. cAMP activates MAP kinase and Elk-1 through a B-Raf-and Rap1-dependent pathway. Cell. 1997;89(1):73-82.
    [135] Wada A, Tsutamoto T, Matsuda Y, Kinoshita M. Cardiorenal and neurohumoral effects of endogenous atrial natriuretic peptide in dogs with severe congestive heart failure using a specific antagonist for guanylate cyclase-coupled receptors. Circulation. 1994;89(5):2232-2240.
    [136] Walther T, Schultheiss HP, Tschope C, Stepan H. Natriuretic peptide system in fetal heart and circulation.J Hypertens.2002;20(5):785-791.
    [137] Watanabe S, Buffington CW, Moresea G. Comparison of myocardial ischemia induced by endothelin vs. mechanical stenosis in pigs.Am J Physiol. 1995;268(3):H1276-H283.
    [138] Watanabe T, Suzuki N, Shimamoto N, Fujino M, Imada A. Contribution of endogenous endothelin to the extension of myocardial infarct size in rats.Circ Res. 1991;69(2):370-377.
    [139] Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83(6): 1849-1865.
    [140] Wei CM, Kim CH, Khraibi AA, Miller VM, Burnett JC Jr. Atrial natriuretic
    
    peptide and C-type natriuretic peptide in spontaneously hypertensive rats and their vasorelaxing actions in vitro. Hypertension. 1994;23(6):903-907.
    [141] Wei CM, Kim CH, Miller VM, Burnett JC Jr. Vasonatrin peptide: a unique synthetic natriuretic and vasorelaxing peptide. J Clin Inves. 1993;92(4): 2048-2052.
    [142] White R, Lee A, Shcherbatko AD, Lincoln TM, Schonbrunn A, Armstrong DL. Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature. 1993;361(6409): 263-266.
    [143] Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes.J Biol Chem.1997;272(23): 14860-14866.
    [144] Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.Science. 1995; 270(5240):1326-1331.
    [145] Yokota N, Bruneau BG, Kuroski de Bold ML, de Bold AJ. Atrial natriurtic tactor Significantly contributes to the mineralocorticoid escape phenomenon: evidence for a guanylate cyclase-mediated pathway. J Clin Invest. 1994;94(5):1938-1946.
    [146] Yoshimoto T, Naruse M, Naruse K, Fujimaki Y, Tanabe A, Muraki T, Itakura M, Hagiwara H, Hirose S, Demura H. Modulation of vascular natriurtic peptide receptor gene expression in hypertensive and obese hyperglycemic rats.Endocrinology. 1995;136(6):2427-2434.
    [147] Yoshimoto T, Naruse M, Naruse K, Shionoya K, Tanaka M, Tanabe A, Hagiwara H, Hirose S, Muraki T, Demura H. Angiotensin Ⅱ-dependent down-regulation of vascular natriuretic peptide type C receptor gene
    
    expression in hypertensive rats. Endocrinology. 1996; 137(3): 1102-1107.
    [148] Yoshimura M, Yasue H, Ogawa H. Pathophysiological significance and clinical application of ANP and BNP inpatients with heart failure.Can J Physiol Pharmacol.2001;79(8):730-735.
    [149] Yu SM, Hung LM, Lin CC. cGMP-elevating agents suppress proliferation of vascular smooth muscle cells by inhibiting the activation of epidermal growth factor signaling pathway. Circulation. 1997;95(5): 1269-1277.
    [150] Zhou XB, Ruth P, Schlossmann J, Hofmann F, Korth M. Protein phosphatase 2A is essential for the activation of Ca~(2+)-activated K~+ currents by cGMP-dependent protein kinase in tracheal smooth muscle and Chinese hamster ovary cells. J Biol Chem. 1996;271(33): 19760-19767.
    [151] 安君,阎德民,张林.内皮素对家犬肺静脉的作用机制.中国药理学通报.2001;17(4):440-442.
    [152] 陈幼辉.心房利钠钛在心肺疾病中作用的研究进展.岭南心血管病杂志.2001;7(6):414.
    [153] 崔建华,张西洲,何富文等.高原低氧与循环内皮细胞计数及内皮素-1和心钠素含量的相关性研究.高原医学杂志.1999;9(3):28-30.
    [154] 董明清,朱妙章,于军,冯华松,施溥涛.钠尿肽抑制SD乳鼠心肌细胞增殖.第四军医大学学报.2000;21(4):443-445.
    [155] 董明清,朱妙章,于军,商立军,冯华松.三种钠尿肽抑制大鼠肺动脉平滑肌细胞增殖效应的比较.生理学报.2000;52(3):252-254.
    [156] 冯华松,段蕴铀,臧益民,朱妙章,王跃民,张勇,施溥涛.血管钠肽对慢性低氧性肺动脉高压的治疗作用.第四军医大学学报.2001;22(18):1656-1659.
    [157] 冯华松,臧益民,朱妙章,裴建明,王跃民,王琳,施博涛.血管钠肽
    
    对慢性缺氧大鼠离体血管条的舒张作用.第四军医大学学报.1998;19(4):398-401.
    [158] 冯华松,臧益民,朱妙章,裴建明,王跃民,王琳,施溥涛.血管钠肽、C型钠尿肽和心房钠尿肽舒血管作用的对比.生理学报.1999;51(5):515-520.
    [159] 冯华松,臧益民,朱妙章,王跃民,王琳,施溥涛.血管钠肽、C型钠尿肽和心房钠尿肽降低慢性低氧性肺动脉高压作用的比较研究.中华结核和呼吸杂志.2000;23(7):427-428.
    [160] 郭海涛,朱妙章,吕顺艳,于军,董明清,高瞻,施溥涛.血管钠肽抑制低氧对成纤维细胞内钙浓度的升高作用.生理学报.2001;53(4):286-290.
    [161] 林杰,郑德琳,李庭富.心力衰竭患者血浆脑钠素浓度与心功能的关系.临床心血管病杂志.2001;17(10):454-458.
    [162] 刘颖,任运生,邵根泽,温博贵.人脑钠素基因工程菌的的发酵条件及产物纯化研究.汕头大学医学院学报.1999;12(1):10-12.
    [163] 刘贵京,张军丽,张禄其.急性心肌梗死患者内皮素肾素血管紧张素心钠素的测定及其临床意义.中国临床医学.2001;8(4):332-335.
    [1] 吕顺艳,朱妙章,郭海涛,于军.血管钠肽抑制低氧诱导的心肌成纤维细胞的增殖和胶原合成.第四军医大学学报.2002;23(10):884-886.
    [164] 吕顺艳,朱妙章,郭海涛,于军.血管钠肽对中度低氧诱导的心肌细胞蛋白合成有抑制作用.生理学报.2002;54(1):7-11.
    [165] 陶霞,缪朝玉,程勇,苏定冯.高血压血管结构改变及其逆转的研究进展.中国药理学通报.1998;14(2):112-115.
    [166] 王嘉陵,赵志方,曹琼,喻晶,冯秀玲.洛土辛对血管收缩功能及血小板环核苷酸含量的影响.中药药理与临床.1999;15(4):14-17.
    
    
    [167] 王晓红,林桂亭,李淑莲,彭旭,曹静,庞永正,唐朝枢.C型利钠利尿肽在球囊血管损伤中的作用.北京医科大学学报.1999;31(6):343-346.
    [168] 王晓红,欧和生,符民桂,李淑莲,庞永政,唐朝枢,刘乃奎.脂质体携载C型利钠利尿肽对血管效应的影响.中国药理学通报.1999;15(5):404-407.
    [169] 于军,董明清,吕顺艳,朱妙章,臧益民,冯华松,商立军,施溥涛.血管钠肽减弱去甲肾上腺素对心肌细胞生长的刺激作用.心功能杂志.1999;11(3):145-148.
    [170] 于军,朱妙章,董明清,吕顺艳,冯华松.VNP减弱NE刺激的心肌细胞c-fos表达.中国应用生理学杂志.2000;16(2):100-103.
    [171] 于中和,孔筠,钱桂生,李继成,刘晓联.低氧性肺动脉高压大鼠血浆3种血管舒张肽的实验研究.第三军医大学学报.2001;23(2):143-145.
    [172] 臧益民,裴建明,冯华松,牛国保,朱妙章.利钠利尿肽的生理作用和临床意义.心功能杂志.1998;10(2):89-90.
    [173] 曾强,王培勇,唐朝枢,苏加林,常英姿,张肇康.心钠素前体分子内调控对心肌Na~+-K~+-ATP酶的作用.中国应用生理学杂志.1999;15(2):115-118.
    [174] 张晋,王晓良.内皮源性血管活性因子的研究进展.中国药理学通报.2000;16(1):11-15.
    [175] 赵永进,刘晋黎.血浆心房钠尿肽水平、右心压力及心功能分级的相关性.心脏杂志.2000;12(6):469-470.
    [176] 郑永芳,王国勇.细胞膜钙通道与钾通道.韩启德,文允镒主编.血管生物学,第一篇第四章,北京:北京医科大学,中国协和医科大学联合出版社,1997:50-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700