新锌指蛋白HZF1的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造血是人一生中不断由多能造血干细胞更新造血祖细胞和成熟血细胞的过程。现在认为造血干细胞分化定向到某一个特定血细胞链系以及进一步分化发育为成熟细胞的过程至少部分地是由链系特异的转录因子和广泛表达的转录因子协同作用所控制。一些包含C2H2锌指模体的转录因子在血细胞的分化和发育过程中扮演了重要角色。例如GATA家族、FOG和EKLF等。
     我组2000年从人骨髓cDNA文库中筛选到一个新的编码锌指蛋白(命名为HZF1)的cDNA(GenBank注册号:AF244088)。本论文在此基础上研究HZF1基因结构、表达、功能和作用机制。
     对hemin诱导的K562细胞中获得的cDNA进行PCR扩增,鉴别到HZF1基因的3种转录物,它们可能由HZF1初级转录物不同的剪接产生。分析发现HZF1基因包含四个外显子和三个内含子。其中一个转录物包含第3、4号外显子,第二个包含第1、3、4号外显子,第三个转录物包含有全部4个外显子。这三种转录物的序列差异仅在5’非翻译区,因此编码的肽链是一致的。HZF1编码区长2010bp,编码670个氨基酸残基,其中包含连续的15个C2H2型和2个C2R2型锌指模体。
     HZF1 mRNA在人的脑、心、骨骼肌、肾、肝、胰腺和胎肝中高表达;在脾、小肠和骨髓组织中等表达;在结肠、胸腺、肺和外周血白血病中少量表达。HZF1mRNA在各种造血细胞系中都有表达。在hemin诱导K562细胞向红系分化过程中HZF1 mRNA表达上调,诱导24h后HZF1 mRNA表达水平到达最高。同样,在PMA诱导K562细胞向巨核系分化过程中HZF1 mRNA表达上升,诱导60h后表达水平达到峰值。
     把HZF1完整读框插入到pEGFP-N1质粒中,构建真核表达载体oEGFP-N1-HZF1,转染NIH3T3细胞,48小时后在荧光显微镜下观察,发现HZF1融合蛋白定位在细胞核中。
Hematopoiesis is a lifelong process responsible for replenishing hematopoietic progenitor cells and mature blood cells from a pool of pluripotent, long-term reconstituting stem cells. Commitment of stem cells to specific hematopoietic lineages and further differentiation and development mature of the committed cells are controlled at least partially through the combinatorial action of lineage-restricted and more widely expressed transcription factors. Some transcription factors containing C2H2 zinc finger motif, such as GATA family, FOG, and EKLF, have been found to play an important part in differentiation and development of blood cells.
    In 2000, we cloned a novel zinc finger cDNA HZF1 (GenBank accession No. AF244088) by screening a human bone marrow cDNA library. Based on that, my works focused on the research of the HZF1 gene construct, expression, functions and the molecular mechanism of HZF1 functions.
    Three different transcripts of HZF1 gene were identified by PCR amplification of cDNAs derived from hemin-induced K562 cells, which may result from different splicing of pre-mRNA of HZF1 gene. HZF1 gene contains four exons and three introns. One transcript contains exon 3 and 4, the second contains exons 1, 3 and 4 and the third contains all four exons. The encoded peptide should be identical because the differences among them are only involved in 5' non-translation region of HZF1 mRNA. The HZF1-coding sequence is 2010bp and the putative protein consists of 670 amino acid residues including 15 typical C2H2 and 2 C2RH zinc finger motifs.
    HZF1 mRNA expression was detected in ubiquitous tissues. The HZF1 mRNA was expressed highly in brain, heart, skeletal muscle, kidney, liver, placenta and fetal liver, moderately in spleen, small intestine and bone marrow, and slightly in colon, thymus,
引文
l.Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 2000, 287:1442-1446.
    
    2.Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol, 2002, 2:162-174.
    
    3.Stoffel R, Ziegler S, Ghilardi N, Ledermann B, de Sauvage FJ, Skoda RC.Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc Natl Acad Sci U S A,1999, 96:698-702.
    
    4.Socolovsky M, Lodish HF, Daley GQ. Control of hematopoietic differentiation:lack of specificity in signaling by cytokine receptors. Proc Natl Acad Sci U S A,1998, 95:6573-6575.
    
    5.Orkin SH. GATA-binding transcription factors in hematopoietic cells. Blood, 1992,80:575-581.
    
    6.Takahashi S, Komeno T, Suwabe N, Yoh K, Nakajima O, Nishimura S, Kuroha T,Nagasawa T, Yamamoto M. Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo. Blood, 1998,92:434-442.
    
    7.Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol, 2005, 25:1215-1227.
    
    8.Sposi NM, Zon LI, Care A, Valtieri M, Testa U, Gabbianelli M, Mariani G, Bottero L, Mather C, Orkin SH,. Cell cycle-dependent initiation and lineage-dependent abrogation of GATA-1 expression in pure differentiating hematopoietic progenitors. Proc Natl Acad Sci U S A, 1992, 89:6353-6357.
    
    9.Martin DI, Zon LI, Mutter G, Orkin SH. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature, 1990, 344:444-447.
    
    10. Ito E, Toki T, Arai K, Kawauchi K, Tsuda H, Yokoyama M. Expression of a lineage specific transcriptional factor GATA-1 in leukaemic blasts from patients with infantile leukaemia. Br J Haematol, 1992, 80:561-563.
    
    11. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet, 2000, 1:57-64.
    12. Perry C, Soreq H. Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. Eur J Biochem, 2002, 269:3607-3618.
    
    13. Miller IJ, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol, 1993, 13:2776-2786.
    
    14. Turner J, Crossley M. Basic Kruppel-like factor functions within a network of interacting haematopoietic transcription factors. Int J Biochem Cell Biol, 1999,31:1169-1174.
    
    15. Kirberg J, Gschwendner C, Dangy JP, Ruckerl F, Frommer F, Bachl J. Proviral integration of an Abelson-murine leukemia virus deregulates BKLF-expression in the hypermutating pre-B cell line 18-81. Mol Immunol, 2005, 42:1235-1242.
    
    16. Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J, 1998,17:5129-5140.
    
    17. Koipally J, Heller EJ, Seavitt JR, Georgopoulos K. Unconventional potentiation of gene expression by Ikaros. J Biol Chem, 2002, 277:13007-13015.
    
    18. Rebollo A, Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol, 2003, 81:171-175.
    
    19. Osawa M, Yamaguchi T, Nakamura Y, Kaneko S, Onodera M, Sawada K,Jegalian A, Wu H, Nakauchi H, Iwama A. Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood, 2002,100:2769-2777.
    
    20. Asano H, Li XS, Stamatoyannopoulos G. FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol Cell Biol, 1999,19:3571-3579.
    
    21. Asano H, Li XS, Stamatoyannopoulos G FKLF-2: a novel Kruppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood, 2000, 95:3578-3584.
    
    22. Hromas R, Morris J, Cornetta K, Berebitsky D, Davidson A, Sha M, Sledge G, Rauscher F, III. Aberrant expression of the myeloid zinc finger gene, MZF-1, is oncogenic. Cancer Res, 1995, 55:3610-3614.
    
    23. Buonamici S, Chakraborty S, Senyuk V, Nucifora G The role of EVI1 in normal and leukemic cells. Blood Cells Mol Dis, 2003, 31:206-212.
    24. Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 1975, 45:321-334.
    
    25. Baliga BS, Mankad M, Shah AK, Mankad VN. Mechanism of differentiation of human erythroleukaemic cell line K562 by hemin. Cell Prolif, 1993, 26:519-529.
    
    26. Tabilio A, Pelicci PG, Vinci G, Mannoni P, Civin CI, Vainchenker W, Testa U, Lipinski M, Rochant H, Breton-Gorius J. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res, 1983,43:4569-4574.
    
    27. Hoovers JM, Mannens M, John R, Bliek J, van H, V, Porteous DJ, Leschot NJ, Westerveld A, Little PF. High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics, 1992, 12:254-263.
    
    28. Spangrude GJ, Smith L, Uchida N, Ikuta K, Heimfeld S, Friedman J, Weissman IL. Mouse hematopoietic stem cells. Blood, 1991, 78:1395-1402.
    
    29. Rutherford TR, Clegg JB, Weatherall DJ. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature, 1979, 280:164-165.
    
    30. Tabilio A, Pelicci PG, Vinci G, Mannoni P, Civin CI, Vainchenker W, Testa U,Lipinski M, Rochant H, Breton-Gorius J. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res, 1983, 43:4569-4574.
    
    31. D'Avino PP, Thummel CS. crooked legs encodes a family of zinc finger proteins required for leg morphogenesis and ecdysone-regulated gene expression during Drosophila metamorphosis. Development, 1998, 125:1733-1745.
    
    32. Ward RE, Reid P, Bashirullah A, D'Avino PP, Thummel CS. GFP in living animals reveals dynamic developmental responses to ecdysone during Drosophila metamorphosis. Dev Biol, 2003, 256:389-402.
    
    33. D'Avino PP, Thummel CS. The ecdysone regulatory pathway controls wing morphogenesis and integrin expression during Drosophila metamorphosis. Dev Biol, 2000,220:211-224.
    
    34. Cunliffe V, Williams S, Trowsdale J. Genomic analysis of a mouse zinc finger gene, Zfp-35, that is up-regulated during spermatogenesis. Genomics, 1990,8:331-339.
    
    35. Cunliffe V, Koopman P, McLaren A, Trowsdale J. A mouse zinc finger gene which is transiently expressed during spermatogenesis. EMBO J, 1990,9:197-205.
    
    36. Sigler PB. Transcriptional activation. Acid blobs and negative noodles. Nature,??1988,333:210-212.
    
    37. Huang Z, Philippin B, O'Leary E, Bonventre JV, Kriz W, Witzgall R. Expression of the transcriptional repressor protein Kid-1 leads to the disintegration of the nucleolus. J Biol Chem, 1999, 274:7640-7648.
    
    38. Witzgall R, Obermuller N, Bolitz U, Calvet JP, Cowley BD, Jr., Walker C, Kriz W, Gretz N, Bonventre JV. Kid-1 expression is high in differentiated renal proximal tubule cells and suppressed in cyst epithelia. Am J Physiol, 1998,275:F928-F937.
    
    39. Witzgall R, O'Leary E, Gessner R, Ouellette AJ, Bonventre JV. Kid-1, a putative renal transcription factor: regulation during ontogeny and in response to ischemia and toxic injury. Mol Cell Biol, 1993, 13:1933-1942.
    
    40. Dean A, Erard F, Schneider AP, Schechter AN. Induction of hemoglobin accumulation in human K562 cells by hemin is reversible. Science, 1981,212:459-461.
    
    41. Andersson LC, Jokinen M, Gahmberg CG Induction of erythroid differentiation in the human leukaemia cell line K562. Nature, 1979, 278:364-365.
    
    42. Villeval JL, Pelicci PG, Tabilio A, Titeux M, Henri A, Houesche F, Thomopoulos P, Vainchenker W, Garbaz M, Rochant H, Breton-Gorius J, Edwards PA, Testa U. Erythroid properties of K562 cells. Effect of hemin, butyrate and TPA induction. Exp Cell Res, 1983, 146:428-435.
    
    43. Colamonici OR, Trepel JB, Neckers LM. Phorbol ester enhances deoxynucleoside incorporation while inhibiting proliferation of K-562 cells. Cytometry, 1985, 6:591-596.
    
    44. Woessmann W, Mivechi NF. Role of ERK activation in growth and erythroid differentiation of K562 cells. Exp Cell Res, 2001, 264:193-200.
    
    45. Ray LB, Sturgill TW. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci U S A, 1987, 84:1502-1506.
    
    46. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 1994, 76:1025-1037.
    
    47. Kyriakis JM, Baneriee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 1994, 369:156-160.48. Sluss HK, Barrett T, Derijard B, Davis RJ. Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Mol Cell Biol, 1994, 14:8376-8384.
    
    49. Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell, 1994, 78:1039-1049.
    
    50. Whalen AM, Galasinski SC, Shapiro PS, Nahreini TS, Ahn NG Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol, 1997,17:1947-1958.
    
    51. Racke FK, Lewandowska K, Goueli S, Goldfarb AN. Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem, 1997,272:23366-23370.
    1. Armstrong, J. A., J. J. Bieker, and B. M. Emerson. 1998. A SWI/SNF-related chromatin remodeling complex, E-RC 1, is required for tissue-specific transcriptional regulation by EKLF in vitro.Cell 95: 93-104.
    2. Asano, H., X. S. Li, and G. Stamatoyannopoulos. 1999. FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol. Cell Biol. 19: 3571-3579.
    3. Asano, H., X. S. Li, and G. Stamatoyannopoulos. 2000. FKLF-2: a novel Kruppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood 95: 3578-3584.
    4. Briegel, K., K. C. Lim, C. Plank, H. Beug, J. D. Engel, and M. Zenke. 1993. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev. 7: 1097-1109.
    5. Buonamici, S., S. Chakraborty, V. Senyuk, and G. Nucifora. 2003. The role of EVil in normal and leukemic cells. Blood Cells Mol. Dis. 31: 206-212.
    6. Cheng, T., H. Shen, D. Giokas, J. Gere, D. G. Tenen, and D. T. Scadden. 1996. Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells. Proc. Natl. Acad. Sci. U. S. A93: 13158-13163.7. Christy, B. A., L. F. Lau, and D. Nathans. 1988. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences. Proc. Natl. Acad. Sci. U. S. A85:7857-7861.
    
    8. Clevers, H. C, M. A. Oosterwegel, and K. Georgopoulos. 1993. Transcription factors in early T-cell development. Immunol. Today 14:591-596.
    
    9. Coghill, E., S. Eccleston, V. Fox, L. Cerruti, C. Brown, J. Cunningham, S. Jane, and A. Perkins. 2001. Erythroid Kruppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood 97:1861-1868.
    
    10. Crispino, J. D., M. B. Lodish, J. P. MacKay, and S. H. Orkin. 1999. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell 3:219-228.
    
    11. Crossley, M, E. Whitelaw, A. Perkins, G Williams, Y. Fujiwara, and S. H. Orkin. 1996. Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol. Cell Biol. 16:1695-1705.
    
    12. Deconinck, A. E., P. E. Mead, S. G Tevosian, J. D. Crispino, S. G Katz, L. I. Zon, and S. H. Orkin.2000. FOG acts as a repressor of red blood cell development in Xenopus. Development 127:2031-2040.
    
    13. Delwel, R., T. Funabiki, B. L. Kreider, K. Morishita, and J. N. Ihle. 1993. Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol. Cell Biol. 13:4291-4300.
    
    14. Donze, D., T. M. Townes, and J. J. Bieker. 1995. Role of erythroid Kruppel-like factor in human gamma- to beta-globin gene switching. J. Biol. Chem. 270:1955-1959.
    
    15. Farrar, J. D., H. Asnagli, and K. M. Murphy. 2002. T helper subset development: roles of instruction, selection, and transcription. J. Clin. Invest 109:431-435.
    
    16. Ferreira, R., K. Ohneda, M. Yamamoto, and S. Philipsen. 2005. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol. Cell Biol. 25:1215-1227.
    
    17. Fox, A. H., K. Kowalski, G F. King, J. P. Mackay, and M. Crossley. 1998. Key residues characteristic of GATAN-fingers are recognized by FOG J. Biol. Chem. 273:33595-33603.
    
    18. Freson, K., K. Devriendt, G Matthijs, H. A. Van, V. R. De, C. Thys, K. Minner, M. F. Hoylaerts, J. Vermylen, and G C. Van. 2001. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 98:85-92.
    
    19. Fujiwara, Y., C. P. Browne, K. Cunniff, S. C. Goff, and S. H. Orkin. 1996. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci.U. S. A 93:12355-12358.20. Funabiki, T., B. L. Kreider, and J. N. Ihle. 1994. The carboxyl domain of zinc fingers of the Evi-1 myeloid transforming gene binds a consensus sequence of GAAGATGAG. Oncogene 9:1575-1581.
    
    21. Furukawa, T., Y. Yang, B. Nakamoto, G. Stamatoyannopoulos, and T. Papayannopoulou. 1996. Identification of new genes expressed in a human erythroleukemia cell line. Blood Cells Mol. Dis.22:11-22.
    
    22. Georgopoulos, K. 2002. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat. Rev. Immunol. 2:162-174.
    
    23. Georgopoulos, K., M. Bigby, J. H. Wang, A. Molnar, P. Wu, S. Winandy, and A. Sharpe. 1994. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:143-156.
    
    24. Georgopoulos, K., S. Winandy, and N. Avitahl. 1997. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu. Rev. Immunol. 15:155-176.
    
    25. Ghirlando, R. and C. D. Trainor. 2003. Determinants of GATA-1 binding to DNA: the role of non-finger residues. J. Biol. Chem. 278:45620-45628.
    
    26. Gregory, R. C, D. J. Taxman, D. Seshasayee, M. H. Kensinger, J. J. Bieker, and D. M. Wojchowski. 1996. Functional interaction of GATA1 with erythroid Kruppel-like factor and Sp1 at defined erythroid promoters. Blood 87:1793-1801.
    
    27. Hahm, K., P. Ernst, K. Lo, G. S. Kim, C. Turck, and S. T. Smale. 1994. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell Biol. 14:7111-7123.
    
    28. Hansen, P. K., J. H. Christensen, J. Nyborg, O. Lillelund, and H. C. Thogersen. 1993. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains. J. Mol. Biol. 233:191-202.
    
    29. Henikoff, S., E. A. Greene, S. Pietrokovski, P. Bork, T. K. Attwood, and L. Hood. 1997. Gene families: the taxonomy of protein paralogs and chimeras. Science 278:609-614.
    
    30. Ho, P. J. and S. L. Thein. 2000. Gene regulation and deregulation: a beta globin perspective. Blood Rev. 14:78-93.
    
    31. Hoovers, J. M., M. Mannens, R. John, J. Bliek, H. van, V, D. J. Porteous, N. J. Leschot, A. Westerveld, and P. F. Little. 1992. High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics 12:254-263.
    
    32. Hoyt, P. R., C. Bartholomew, A. J. Davis, K. Yutzey, L. W. Gamer, S. S. Potter, J. N. Ihle, and M. L. Mucenski. 1997. The Evil proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech. Dev. 65:55-70.33. Hromas, R., J. Morris, K. Cornetta, D. Berebitsky, A. Davidson, M. Sha, G Sledge, and F. Rauscher, III. 1995. Aberrant expression of the myeloid zinc finger gene, MZF-1, is oncogenic. Cancer Res. 55:3610-3614.
    
    34. Huisman, T. H. 1997. Levels of Hb A2 in heterozygotes and homozygotes for beta-thalassemia mutations: influence of mutations in the CACCC and ATAAA motifs of the beta-globin gene promoter. Acta Haematol. 98:187-194.
    
    35. Ikonomi, P., C. E. Rivera, M. Riordan, G. Washington, A. N. Schechter, and C. T. Noguchi. 2000. Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation. Exp. Hematol.28:1423-1431.
    
    36. Katz, S. G, A. B. Cantor, and S. H. Orkin. 2002. Interaction between FOG-1 and the corepressor C-terminal binding protein is dispensable for normal erythropoiesis in vivo. Mol. Cell Biol. 22:3121-3128.
    
    37. Kawabata, H., R. S. Germain, T. Ikezoe, X. Tong, E. M. Green, A. F. Gombart, and H. P. Koeffler.2001. Regulation of expression of murine transferrin receptor 2. Blood 98:1949-1954.
    
    38. Ko, L. J. and J. D. Engel. 1993. DNA-binding specificities of the GATA transcription factor family. Mol. Cell Biol. 13:4011-4022.
    
    39. Krishnaraju, K., B. Hoffman, and D. A. Liebermann. 1998. The zinc finger transcription factor Egr-1 activates macrophage differentiation in Ml myeloblastic leukemia cells. Blood 92:1957-1966.
    
    40. Krishnaraju, K., B. Hoffman, and D. A. Liebermann. 2001. Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages. Blood 97:1298-1305.
    
    41. Labbaye, C, M. Valtieri, T. Barberi, E. Meccia, B. Masella, E. Pelosi, G. L. Condorelli, U. Testa,and C. Peschle. 1995. Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis. J. Clin. Invest 95:2346-2358.
    
    42. Lee, M. S., J. Cavanagh, and P. E. Wright. 1989. Complete assignment of the 1H NMR spectrum of a synthetic zinc finger from Xfin. Sequential resonance assignments and secondary structure. FEBS Lett. 254:159-164.
    
    43. Lee, M. S., G P. Gippert, K. V. Soman, D. A. Case, and P. E. Wright. 1989. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245:635-637.
    
    44. Lee, S. L., Y. Wang, and J. Milbrandt. 1996. Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1). Mol. Cell Biol.16:4566-4572.
    
    45. Leonard, M., M. Brice, J. D. Engel, and T. Papayannopoulou. 1993. Dynamics of GATA??transcription factor expression during erythroid differentiation. Blood 82:1071-1079.
    
    46. Lopingco, M. C. and A. S. Perkins. 1996. Molecular analysis of Evil, a zinc finger oncogene involved in myeloid leukemia. Curr. Top. Microbiol. Immunol. 211:211-222.
    
    47. Mackay, J. P., K. Kowalski, A. H. Fox, R. Czolij, G. F. King, and M. Crossley. 1998. Involvement of the N-finger in the self-association of GATA-1. J. Biol. Chem. 273:30560-30567.
    
    48. Martin, D. I. and S. H. Orkin. 1990. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev. 4:1886-1898.
    
    49. McBryant, S. J., B. Gedulin, K. R. Clemens, P. E. Wright, and J. M. Gottesfeld. 1996. Assessment of major and minor groove DNA interactions by the zinc fingers of Xenopus transcription factor IIIA. Nucleic Acids Res. 24:2567-2574.
    
    50. McBryant, S. J., N. Veldhoen, B. Gedulin, A. Leresche, M. P. Foster, P. E. Wright, P. J. Romaniuk, and J. M. Gottesfeld. 1995. Interaction of the RNA binding fingers of Xenopus transcription factor IIIA with specific regions of 5 S ribosomal RNA. J. Mol. Biol. 248:44-57.
    
    51. Mehaffey, M. G, A. L. Newton, M. J. Gandhi, M. Crossley, and J. G Drachman. 2001. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 98:2681-2688.
    
    52. Merika, M. and S. H. Orkin. 1995. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Spl and EKLF. Mol. Cell Biol.15:2437-2447.
    
    53. Merika, M. and S. H. Orkin. 1995. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Spl and EKLF. Mol. Cell Biol.15:2437-2447.
    
    54. Merika, M. and S. H. Orkin. 1993. DNA-binding specificity of GATA family transcription factors. Mol. Cell Biol. 13:3999-4010.
    
    55. Miller, I. J. and J. J. Bieker. 1993. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol. Cell Biol.13:2776-2786.
    
    56. Miller, J., A. D. McLachlan, and A. Klug. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609-1614.
    
    57. Molkentin, J. D. 2000. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 275:38949-38952.
    
    58. Molnar, A. and K. Georgopoulos. 1994. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol. Cell Biol. 14:8292-8303.
    59. Morris, J. F., R. Hromas, and F. J. Rauscher, III. 1994. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core. Mol. Cell Biol. 14:1786-1795.
    
    60. Morris, J. F., F. J. Rauscher, III, B. Davis, M. Klemsz, D. Xu, D. Tenen, and R. Hromas. 1995. The myeloid zinc finger gene, MZF-1, regulates the CD34 promoter in vitro. Blood 86:3640-3647.
    
    61. Mouthon, M. A., O. Bernard, M. T. Mitjavila, P. H. Romeo, W. Vainchenker, and D. Mathieu-Mahul. 1993. Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 81:647-655.
    
    62. Murai, K., H. Murakami, and S. Nagata. 1997. A novel form of the myeloid-specific zinc finger protein (MZF-2). Genes Cells 2:581-591.
    
    63. Nagamura-Inoue, T., T. Tamura, and K. Ozato. 2001. Transcription factors that regulate growth and differentiation of myeloid cells. Int. Rev. Immunol. 20:83-105.
    
    64. Nguyen, H. Q., B. Hoffman-Liebermann, and D. A. Liebermann. 1993. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 72:197-209.
    
    65. Nichogiannopoulou, A., M. Trevisan, S. Neben, C. Friedrich, and K. Georgopoulos. 1999. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190:1201-1214.
    
    66. Nichols, K. E., J. D. Crispino, M. Poncz, J. G White, S. H. Orkin, J. M. Maris, and M. J. Weiss. 2000. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1.Nat. Genet. 24:266-270.
    
    67. Olopade, O. I., M. Thangavelu, R. A. Larson, R. Mick, A. Kowal-Vern, H. R. Schumacher, M. M. Le Beau, J. W. Vardiman, and J. D. Rowley. 1992. Clinical, morphologic, and cytogenetic characteristics of 26 patients with acute erythroblastic leukemia. Blood 80:2873-2882.
    
    68. Orkin, S. H. 1992. GATA-binding transcription factors in hematopoietic cells. Blood 80:575-581.
    
    69. Orlic, D., S. Anderson, L. G Biesecker, B. P. Sorrentino, and D. M. Bodine. 1995. Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fins and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Proc. Natl. Acad. Sci. U. S. A 92:4601-4605.
    
    70. Osawa, M., T. Yamaguchi, Y. Nakamura, S. Kaneko, M. Onodera, K. Sawada, A. Jegalian, H. Wu,H. Nakauchi, and A. Iwama. 2002. Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood 100:2769-2777.
    
    71. Pandolfi, P. P., M. E. Roth, A. Karis, M. W. Leonard, E. Dzierzak, F. G Grosveld, J. D. Engel, and M. H. Lindenbaum. 1995. Targeted disruption of the GATA3 gene causes severe abnormalities in the??nervous system and in fetal liver haematopoiesis. Nat. Genet. 11:40-44.
    
    72. Perkins, A. 1999. Erythroid Kruppel like factor: from fishing expedition to gourmet meal. Int. J. Biochem. Cell Biol. 31:1175-1192.
    
    73. Perkins, A. C, A. H. Sharpe, and S. H. Orkin. 1995. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375:318-322.
    
    74. Perrotti, D., P. Melotti, T. Skorski, I. Casella, C. Peschle, and B. Calabretta. 1995. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity. Mol. Cell Biol.15:6075-6087.
    
    75. Persons, D. A., J. A. Allay, E. R. Allay, R. A. Ashmun, D. Orlic, S. M. Jane, J. M. Cunningham, and A. W. Nienhuis. 1999. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93:488-499.
    
    76. Pevny, L., M. C. Simon, E. Robertson, W. H. Klein, S. F. Tsai, V. D'Agati, S. H. Orkin, and F. Costantini. 1991. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349:257-260.
    
    77. Rebollo, A. and C. Schmitt. 2003. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol. Cell Biol. 81:171-175.
    
    78. Saleque, S., S. Cameron, and S. H. Orkin. 2002. The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev. 16:301-306.
    
    79. Shi, Y. and J. M. Berg. 1995. Specific DNA-RNA hybrid binding by zinc finger proteins. Science 268:282-284.
    
    80. Shimizu, R., S. Takahashi, K. Ohneda, J. D. Engel, and M. Yamamoto. 2001. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 20:5250-5260.
    
    81. Shivdasani, R. A., Y. Fujiwara, M. A. McDevitt, and S. H. Orkin. 1997. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 16:3965-3973.
    
    82. Shivdasani, R. A. and S. H. Orkin. 1996. The transcriptional control of hematopoiesis. Blood 87:4025-4039.
    
    83. Socolovsky, M., H. F. Lodish, and G Q. Daley. 1998. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc. Natl. Acad. Sci. U. S. A 95:6573-6575.
    
    84. Spadaccini, A., P. A. Tilbrook, M. K. Sarna, M. Crossley, J. J. Bieker, and S. P. Klinken. 1998. Transcription factor erythroid Kruppel-like factor (EKLF) is essential for the erythropoietin-inducedhemoglobin production but not for proliferation, viability, or morphological maturation. J. Biol. Chem.273:23793-23798.
    
    85. Stoffel, R., S. Ziegler, N. Ghilardi, B. Ledermann, F. J. de Sauvage, and R. C. Skoda. 1999. Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc. Natl. Acad. Sci. U. S. A 96:698-702.
    
    86. Sun, L., A. Liu, and K. Georgopoulos. 1996. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 15:5358-5369.
    
    87. Suzukawa, K., T. Taki, T. Abe, H. Asoh, N. Kamada, J. Yokota, and K. Morishita. 1997. Identification of translocational breakpoints within the intron region before the last coding exon (exon 12) of the EVI1 gene in two cases of CML-BC with inv(3)(q21q26). Genomics 42:356-360.
    
    88. Tevosian, S. G, A. E. Deconinck, A. B. Cantor, H. I. Rieff, Y. Fujiwara, G Corfas, and S. H. Orkin. 1999. FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc. Natl. Acad. Sci. U. S. A 96:950-955.
    
    89. Tewari, R., N. Gillemans, M. Wijgerde, B. Nuez, L. M. von, F. Grosveld, and S. Philipsen. 1998. Erythroid Kruppel-like factor (EKLF) is active in primitive and definitive erythroid cells and is required for the function of 5'HS3 of the beta-globin locus control region. EMBO J. 17:2334-2341.
    
    90. Ting, C. N., M. C. Olson, K. P. Barton, and J. M. Leiden. 1996. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384:474-478.
    
    91. Tong, B., H. L. Grimes, T. Y. Yang, S. E. Bear, Z. Qin, K. Du, W. S. El-Deiry, and P. N. Tsichlis. 1998. The Gfi-IB proto-oncoprotein represses p21 WAF1 and inhibits myeloid cell differentiation. Mol.Cell Biol. 18:2462-2473.
    
    92. Trainor, C. D., R. Ghirlando, and M. A. Simpson. 2000. GATA zinc finger interactions modulate DNA binding and transactivation. J. Biol. Chem. 275:28157-28166.
    
    93. Tsai, F. Y, G Keller, F. C. Kuo, M. Weiss, J. Chen, M. Rosenblatt, F. W. Alt, and S. H. Orkin.1994. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221-226.
    
    94. Tsang, A. P., Y. Fujiwara, D. B. Hom, and S. H. Orkin. 1998. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG Genes Dev.12:1176-1188.
    
    95. Tsang, A. P., J. E. Visvader, C. A. Turner, Y. Fujiwara, C. Yu, M. J. Weiss, M. Crossley, and S. H. Orkin. 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109-119.
    
    96. Turner, J. and M. Crossley. 1999. Basic Kruppel-like factor functions within a network of??interacting haematopoietic transcription factors. Int. J. Biochem. Cell Biol. 31:1169-1174.
    
    97. Turner, J. and M. Crossley. 1998. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J.17:5129-5140.
    
    98. Turner, J. and M. Crossley. 1999. Basic Kruppel-like factor functions within a network of interacting haematopoietic transcription factors. Int. J. Biochem. Cell Biol. 31:1169-1174.
    
    99. Visvader, J. E., A. G. Elefanty, A. Strasser, and J. M. Adams. 1992. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J. 11:4557-4564.
    
    100. Wadman, I. A., H. Osada, G G Grutz, A. D. Agulnick, H. Westphal, A. Forster, and T. H. Rabbitts. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16:3145-3157.
    
    101. Wang, J. H., A. Nichogiannopoulou, L. Wu, L. Sun, A. H. Sharpe, M. Bigby, and K. Georgopoulos.1996. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 5:537-549.
    
    102. Weiss, M. J. and S. H. Orkin. 1995. GATA transcription factors: key regulators of hematopoiesis. Exp. Hematol. 23:99-107.
    
    103. Weiss, M. J., C. Yu, and S. H. Orkin. 1997. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol. Cell Biol. 17:1642-1651.
    
    104. Weissman, I. L. 2000. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287:1442-1446.
    
    105. Whyatt, D. J., E. deBoer, and F. Grosveld. 1993. The two zinc finger-like domains of GATA-1 have different DNA binding specificities. EMBO J. 12:4993-5005.
    
    106. Yamamoto, M., L. J. Ko, M. W. Leonard, H. Beug, S. H. Orkin, and J. D. Engel. 1990. Activity and tissue-specific expression of the transcription factor NF-El multigene family. Genes Dev.4:1650-1662.
    
    107. Yamamoto, M., L. J. Ko, M. W. Leonard, H. Beug, S. H. Orkin, and J. D. Engel. 1990. Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev.4:1650-1662.
    
    108. Yamamoto, M., S. Takahashi, K. Onodera, Y. Muraosa, and J. D. Engel. 1997. Upstream and downstream of erythroid transcription factor GATA-1. Genes Cells 2:107-115.
    
    109. Yang, H. Y. and T. Evans. 1992. Distinct roles for the two cGATA-1 finger domains. Mol. Cell Biol. 12:4562-4570.
    110. Zahirieh, A., M. A. Nesbit, A. Ali, K. Wang, N. He, M. Stangou, G Bamichas, K. Sombolos, R. V.Thakker, and Y. Pei. 2005. Functional Analysis of a Novel GATA3 Mutation in a Family with the Hypoparathyroidism, Deafness, and Renal Dysplasia Syndrome. J. Clin. Endocrinol. Metab 90:2445-2450.
    
    111. Zhou, M. and W. Ouyang. 2003. The function role of GATA-3 in Th1 and Th2 differentiation.Immunol. Res. 28:25-37.
    
    112. Zon, L. I., C. Mather, S. Burgess, M. E. Bolce, R. M. Harland, and S. H. Orkin. 1991. Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc. Natl. Acad. Sci. U. S.A 88:10642-10646.
    
    113. Zon, L. I., S. F. Tsai, S. Burgess, P. Matsudaira, G A. Bruns, and S. H. Orkin. 1990. The major human erythroid DNA-binding protein (GF-1): primary sequence and localization of the gene to the X chromosome. Proc. Natl. Acad. Sci. U. S. A 87:668-672.
    
    114. Zon, L. I., Y. Yamaguchi, K. Yee, E. A. Albee, A. Kimura, J. C. Bennett, S. H. Orkin, and S. J. Ackerman. 1993. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 81:3234-3241.
    1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19; 391(6669): 806-11.
    2. Hammond SM, Caudy AA, Harmon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet. 2001Feb; 2(2): 110-9. Review.
    3. Matzke MA, Matzke A J, Pruss O J, Vance VB. RNA-based silencing strategies in plants. Curr Opin Genet Dev. 2001 April(2): 221-6.
    4. Sharp PA. RNA interference-2001. Genes Dev. 2001 Mar 15(5): 485-90. Review.
    5 Michael TM, Sharp. Gene silencing in mammals by small interfering RNAs. Nature Reviews??Genetics. 2002 Oct 1; 3, 737 - 747
    
    6 Hammond SM, Bernstein E, Beach D, Harmon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000 Mar 16;404(6775):293-6.
    
    7. Carmell MA, Xuan Z, Zhang MQ, Hannon GJ. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 2002 Nov 1;16(21):2733-42. Review.
    
    8. Voinnet O, Pinto YM, Baulcombe DC. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 1999 Nov 23;96(24):14147-52.
    
    9. Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM,Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell. 2000 May 26;101(5):533-42.
    
    10. Parrish S, Fleenor J, Xu S, Mello C, Fire A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. 2000 Nov;6(5):1077-87.
    
    11. Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet. 2000 Feb;24(2):1SO-3.
    
    12. Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol. 2000 Aug;18(8):896-8.
    
    13. Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Nat] Acad Sci U S A. 2000 Jun 6;97(12):6499-503.
    
    14. Waterhouse PM, Helliwell CA. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet. 2003 Jan;4(1):29-38. Review
    
    15. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May??24;411(6836):494-8
    
    16. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002 Apr 19;296(5567):550-3.
    
    17. Paul CP, Good PD, Winer I, Engelke DR. Effective expression of small interfering RNA in human cells. Nat Biotechnol. 2002 May;20(5):505-8.
    
    18. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003 Jan 16;421(6920):231-7
    
    19. Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G Oenome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 2003 Jan 16;421(6920):268-72
    
    20. Pothof J, van Haaften G, Thijssen K, Kamath RS, Fraser At, Ahringer J, Plasterk RH, Tijsterman M. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev 2003 Feb 15;17(4):443-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700