小型PDE两相掺混特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小型PDE在给定容积下释放能量,客观上希望单位容积燃料的能量更大,因此液体燃料小型PDE的研究具有重要的意义。要成功起爆首先要解决燃油、空气的喷射与混合问题。采用数值模拟和试验的方法,系统地研究了煤油/空气的掺混特性,进行了小管径PDE可爆混气关键技术的研究。取得了大量的科研成果,为深入研究以液态煤油为燃料,以空气为氧化剂的小型PDE的工作性能提供了依据。
     研究了不同进气温度和燃油温度对煤油/空气混合物混合特性的影响,在进气温度为373k时,能够很好的雾化和蒸发,能够保证形成均匀的可燃混气,保证了点火器的稳定点火,为产生稳定传播的爆震波提供了条件。设计了多种结构的气动阀,分析了不同结构气动阀的工作机理,采用数值模拟和试验的方法进行气动阀研究,数值模拟研究结果验证了气动阀模型的合理性,研究结果表明:在低速进气条件下,采用旋流为主的气动阀PDE有利于形成可燃混气。在较高速进气条件下,采用以直流为主并且部分旋流气动阀PDE有利于提高煤油的雾化质量,利于形成均匀的可燃混气。设计建立了多种PDE计算模型,采用控制方程和k ?εRealizable湍流模型,采用颗粒轨迹模型,对燃油喷射系统性能进行了数值模拟通过求解三维N-S方程和k ?ε湍流模型来分析混合室中煤油、空气的混合流动特性。数值模拟了不同进口压力,不同进气温度、不同煤油温度、煤油的喷射流量等对煤油/空气混合物混合特性的影响,研究结果为实验成功的产生爆震波提供了理论依据。在气动阀后增加预混段,预混段对通过气动阀初步雾化的煤油,起到了进一步强化雾化掺混的作用,把该结构应用到实验中,实验成功的产生了爆震波。
     本文研究了不同结构的气动阀、不同结构的PDE头部结构、以及不同的工况对PDE内煤油/空气掺混特性的影响。通过在气动阀后增加预混段等方法成功的取得了可爆混气,为实验的成功奠定了基础。气动阀不仅可以充当推力臂,还可以对燃油起到很好的雾化作用。头部结构对初步雾化的燃油,起到了二次雾化的作用。不同的进口速度、不同的温度以及不同的进口压力、以及煤油不同的喷射压力等都对煤油/空气的掺混特性起到了至关重要的影响。
Energy releases from the constant volume in small scale PDE, which expects much more energy in units volume,so it has great significance for researching on liquid fuel of small scale PDE. The fuel-air injection and mixing is one of the most important issues on detonation. Researching on the mixing character of kerosene/air ,and the key technology about explosive mixed gas of small scale PDE by numerical simulation and experiment. Achieved a great deal of scientific results,which provided evidence for researching on the performance of micro-PDE using liquid kerosene as fuel and air as oxidant.
     Researching on the effect of mixing character about the different temperature of air and kerosene,oil will be well evaporated and atomizated ,and kerosene/air will become uniform mixed combustible gas when the temperature is at 373k,which will ensure the stablility ignition and stablility spread of the detonation wave. Different aero-valves were designed and their mechanisms were analyzed.Through numerical and experimental methods, numerical simulation results show the rationality of aero-valves model, the results show that: The quality of kerosene atomization of PDE with swirlaero-valve is quite high, and the quality of kerosene atomization of PDE with straight flow aero-valve and partial swirl is best when quite high filling tube speed. Designed and established several PDE model,analyzing mixing character of kerosene/air using Realizable turbulence equation model and particle trajectory model to solve three-dimensional N-S and turbulence model of the fuel injection system performance.Numerical simulation of the different import pressure、different import temperature、different kerosene’s temperature and the flow of kerosene impact of kerosene/air mixed characreristics.The results provide theoretical basis for experiment.Adding the pre-mixed part which play a great role in mixing kerosene/air.Using the structure of the experiment,the experiment get detonation successfully.
     Researching on different aero-valve model,different structure of PDE head,as well as the different condition on the impact of kerosene/air mixed character of PDE.Through adding the pre-mixed part after the aero-valve,we get the explosive mixed gas,which provide the basis of successful experiment.The aero-valve can not only act as a thrust arm, but also played a very good role in the atomization of fuel. The structure of head has played a secondary role in the atomization. The different import speed, different temperatures and different import pressures, as well as the different jet pressures of kerosene, which all played a great role in kerosene/air mixed characteristic.
引文
[1] Sanders S.T., D.W.Mattison,L.Ma,R.K.Hanson,Diode-Laser Sensors for Pulse Detonation Engines, The Second Joint Meeting of the US Sections of the Combustion Institute,Oakland, CA, 2001.
    [2] T.Fontfreyde, F.Levy,J.Dupays, D.Scherrer, L.Serre. Numerical Studies of Pulse Detonation Rocket Engines. AIAA 2004-3873, July 2004.
    [3] G.D.Roy, S.M.Frolov, A.A.Borisov, D.W.Netzer, Pulse detonation propulsion:challenges, current status, and future perspective, progress in Energy and Combustion Science 30(2004) 546-672.
    [4] Hoffmann H. Reaction-Propulsion Produced by Intermittent Detonation Combustion. German Research Institute for Gliding, Rept ATI-52365, Aug 1940.
    [5] Nicholl J A, Wilkinson H R, Morrison R B. Intermittent Detonation as a Thrust-Producing Mechanism. Jet Propulsion 27,1954:534-541.
    [6] Korovin L N, Losev A, Ruban S G, et al Combustion of Natural Gas in a Commercial Detonation Reactor. Fizik Gor.Vztyva,1981,17(3):86.
    [7] Helman D, Shreeve R P, and Eidelman S. Detonation Pulse Engine. AIAA 86-1683,June 1986.
    [8] Eidelman S,Grossmann W, Lottati I Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept. J.Propulsion, 1991,7(6):857-865.
    [9] Roy G. Practical Pulsed Detonation Engines-How far are they? Bangalore, India, September 2001,ISABE 2001-1170.
    [10] Proceedings of the 16’h ONR Propulsion Meeting, Los Angeles, California(Ed.G.D. Roy and M.A. Gundersen), Office of Naval Research,Arlington,VA.June,2003.
    [11] Ma, F. H., Choi, J. Y., and Yang, V.,“Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine,”AIAA Paper 2006-1024, January 2006.
    [12] Tomoaki YATSUFUSA, Masahiro OHIRA, Shin’ichi YAMAMOTO,Development of Liquid-Fuel Initiator for Liquid-Fuel PDE, AIAA 2004-1213,January 2004.
    [13] Jiro Kasahara,Masao Hirano, Flight Experiments Regarding Ethylene-Oxygen Single-Tube Pulse Detonation Rockets,AIAA 2004-3918,July 2004.
    [14] Hidetoshi SHIMADA,Yasuhiro KENMOKU,Hiroyuki SATO,A.Koichi HAYASHI,A New Ignition System for Pulse Detonation Engine, AIAA 2004-308,January 2004.
    [15] J.Kasahara,Y.Tanahashi,M.Hirano,T.Numata, Experiment Investigation of Momentum and Heat Transfer in Pulse Detonation Rockets, AIAA 2004-869,January 2004.
    [16] Takuma Endo,Tomoaki Yatsufusa,Shiro Taki, Homogeneous-Dilution Model of Partially-Fueled Pulse Detonation Engines, AIAA 2004-1214,January 2004.
    [17] T.Fontfreyde,F.Levy,J.Dupays,D.Scherrer,L.Serre, Numerical Studies of PulseDetonation Rocket Engines, AIAA 2004-3873,July 2004.
    [18] Dominique PITON,Alban FRIGENT, Performance of Valveless Air Breathing Pulse Detonation Engine, AIAA 2004-3749,July 2004.
    [19] Chapman D L.Philos.Mag.,1899.47:90~104.
    [20] Jouguet E J.de Math.Pures et Appl.,1905.1:347~425.
    [21]范伟,严传俊,黄希桥,张群,郑龙席,新概念脉冲爆震发动机研究的最新进展,飞机设计第2期,2003年6月.
    [22]严传俊,何立明,范伟,雷恒仁,黄希桥,张群,脉冲爆震发动机的研究与发展,航空动力学报,Vol.16,July 2001.
    [23]韩启祥,王家骅,王波,预混气爆震管中爆燃到爆震转捩距离的研究,推进技术,2003.1,p.63-66.
    [24] HAN Qixiang,WANG Jiahua,Wang Bo,Investigation of Detonative Combustion Characteristics, CHINESE JOURNAL OF AERONAUTICS,2002.2,p.72-76.
    [25]韩启祥,王家骅,王维来,测量爆燃到爆震转捩距离的离子探针技术研究,航空动力学报,2003.1,.97-100.
    [26]何小民,王家骅,气动阀式两相脉冲爆震发动机研究,航空学报,2004年25卷6期,p.529-533.
    [27]范育新,王家骅,李建中,张靖周,脉冲爆震发动机净推力系数研究,南京航空航天大学学报,2004年36卷3期,p.273-277.
    [28]李建中,王家骅,范育新,张靖周,多循环脉冲爆震发动机净推力估算,推进技术,2004年25卷3期,p.241-245.
    [29]李建中,王家骅,范育新,张靖周,张义宁,脉冲爆震发动机最大净推力和最佳工作频率,推进技术,2004年25卷6期,p.543-548.
    [30]范育新,王家骅,李建中,张靖周,脉冲爆震发动机工作过程控制和协调试验,推进技术,2004年25卷6期,p.538-542.
    [31]范育新,王家骅,李建中,张靖周,脉冲爆震发动机供油自适应控制优化设计研究,推进技术,2005年26卷1期.
    [32]李建中,王家骅,范育新,张义宁,张靖周,煤油/空气气动阀式脉冲爆震发动机试验研究,航空动力学报,2005年20卷5期.
    [33]李建中,王家骅,范育新,张义宁,张靖周,煤油/空气气动阀式脉冲爆震发动机爆震波压力特性试验,推进技术,2005年26卷5期.
    [34]李建中,王家骅,范育新,张义宁,张靖周,气动阀式脉冲爆震发动机部分充填机理研究,航空动力学报,2006年21卷1期.
    [35]韩启祥,王家骅,预混气中爆震波衍射特性的试验研究,中国航空学会航空百年学术论坛论文集燃烧分册,2003.10,北京,p.67-73.
    [36]李建中,王家骅,范育新,PDE最大净推力和最佳工作频率的研究,中国航空学会航空百年学术论坛动力分论坛论文集燃烧分册2003.10
    [37]范育新,王家骅,李建中,张靖周,张义宁,PDE内奇异爆震波形成机理研究,第十一届全国激波与激波管学术会议,2004年9月,四川绵阳,p.135-139.
    [38]李建中,王家骅,范育新,张靖周,张义宁,燃用航空煤油脉冲爆震发动机爆震波压力特性,第十一届全国激波与激波管学术会议,2004年9月,四川绵阳,p.140-145.
    [39]韩启祥,王家骅,三管、旋转阀脉冲爆震发动机原理样机研究,新概念发动机研讨会技术交流文集,2004年9月,辽宁沈阳,p.66-77.
    [40]范育新,王家骅,李建中,张靖周,张义宁,PDE加力装置研究,新概念发动机研讨会技术交流文集,2004年9月,辽宁沈阳,p.29-33.
    [41]何小民,王家骅,气动阀式两相脉冲爆震发动机性能初步研究,新概念发动机研讨会技术交流文集,2004年9月,辽宁沈阳,p.54-58.
    [42]李建中,王家骅,范育新,张靖周,张义宁,燃用航空煤油脉冲爆震发动机部分充填机理研究,新概念发动机研讨会技术交流文集,2004年9月,辽宁沈阳,p.59-65.
    [43]张义宁,王家骅,张靖周,两相多循环爆震波特性研究,航空动力学报.(已录用)
    [44]韩启祥,爆震机理及旋转阀脉冲爆震发动机原理样机研究,南京航空航天大学博士论文,2004年2月.
    [45]何小民,气动阀式两相脉冲爆震发动机设计和性能研究,南京航空航天大学博士论文,2004年9月.
    [46]范育新,大管径气动阀式两相脉冲爆震发动机几个关键技术研究,南京航空航天大学博士论文,2005年3月.
    [47]姜宗林,爆轰推进概念与机理研究,科技前沿与学术评论.
    [48]胡宗民,孙宇峰,郭长铭,张德良,气相爆轰波传播特性的数值模拟及实验对照,空气动力学学报.2005年23卷2,P178-182.
    [48]胡宗民,高云亮,张德良,杨国伟,姜宗林,爆轰波在楔面上反射数值分析,力学学报,2004年7月,p385-392.
    [49]胡湘渝,张德良,氢氧混合气体爆轰波的真实化学反应模型数值模拟,爆炸与冲击,2002年1月.
    [50]胡湘渝,张德良,气相爆轰基元反应模型数值模拟,空气动力学学报.2003年21卷1,P59-66.
    [51]腾宏辉,姜宗林,韩肇元,环形激波绕射、反射和聚焦的数值模拟研究,力学学报,2004年1月,第36卷第1期.
    [52]王昌建,郭长铭,徐胜利,气相爆轰在T型管中传播现象的实验研究,力学学报,2004.01,p.16-23.
    [53]李辉煌,杨基明,徐立功,脉冲爆震发动机喷管流动的数值模拟,推进技术,2004年25卷6期,p.553-556.
    [54]Jenkins,J.p.,Sanders,S.T.,Baldwin,J.A.,et al,Diode-Laser Based sensors for Pulsed Detonation Engine Flows,in High-Speed Deflagration and Detonation:Fundamentals and Control,(Ed. G.D.Roy, S.M. Frolov, D.w.Netzer and A.A.Borisov),Moscow 2001.p.177-192.
    [55]Morrell G.,“Breakup of Liquid jets by Transverse Shocks”,Proceedings of the Combustion Institute,Vol.8,pp.1059-1068,Williams and Wilkins, Baltimore,1962.
    [56]Ranger A.A.,Nicholls,J.A.,“Aerodynamic Shattering of Liquid Drops”,AIAA Journal,Vol.7,285-290,1969.
    [57] Dabora E.K.,“A Model for Spray Detonations”Acta Astronautica, Vol.6, pp.269-280,1979.
    [58] Chang E.J.,Kailasanath K.,“Shock Wave Interactions with particles and FuelDroplets”,Shock Waves,Vol.12,No.4,pp.333-342,2003.
    [59] Pierce T.H.,Nicholls J.A.,“Time Variation in the Reaction-Zone Structure of Two-Phase Spray Detonations”Proc.of the Combustion Institute, Vol.14,pp.1277-1284.
    [60] Gubin S.A.,Sichel M.,“Calculation of the Detonation Velocity of a Mixture of Liquid Fuel Droplets and a Gaseous Oxidizer”, Combust. Sci.Tech., Vol.17,pp.109-117(1977).
    [61] Borisov A.A.,Gelfand B.E,Gubin S.A.,Kogarko S.M.,Podgrebenkov A.L.,“The reaction zone of two-phase detonations”,Astronautica Acta, Vol.15, pp.411-417,1970.
    [62] Alekseev V.I.,Dorofeev S.B.,Sidorov V.P.,Chaivanov B.B.,“Experimental Study of Large-Scal Unconfined Fuel Spray Detonations”, Prog. Astro. Aero., Vol.154,pp.95-104,1993.
    [63] Brophy,C.M.,Netzer,D.W.,and Forester,D., Detonation Studies of JP-10 with oxygen and Air for Pulse Detonation Engine Development, AIAA 98-4003,July 1998.
    [64] Brophy,C.M.,Ntzer,D.W.,Sinibaldi,J.O.,and Johnson,R.G., Detonation of a JP-10 Aerosol for Pulse Detonation Engine Applications,pp.207-222 in High-Speed Deflagration and Detonation: Fundamentals and control, ELEX-KM Publishers, Moscow,2001.
    [65] Brophy,C.M., Sinibaldi,J.O., Damphousse, P., Initiator Performance fo Liquid-Fueled Pulse Detonation Engines, AIAA Paper 2002-0472,Jan.2002.
    [66] Brophy,C.M.,Ntzer,D.W.,Sinibaldi,J.O.,and Johnson,R.G., Detonation of a JP-10 Aerosol for Pulse Detonation Engine Applications,pp.207-222 in High-Speed Deflagration and Detonation: Fundamentals and control, ELEX-KM Publishers, Moscow,2001.
    [67] Brophy,C.M., Sinibaldi,J.O., Damphousse, P., Initiator Performance for Liquid-Fueled Pulse Detonation Engines, AIAA Paper 2002-0472,Jan.2002.
    [68]D.Helman,R.P.Shreeve and S.Eidelman,Detonation Pulse Engine. AIAA 86-1683
    [69]Shepherd, J.E., Schultz, E., Akbar, R.,“Detonation Diffraction”, 22nd International Symposium on Shock Waves,Paper 5410, Imperial College, London, UK, July 18-23, 1999.
    [70]K.McManus, E.Furlong, I.Leyva, S.Sanderson.MEMS-based pulse detonation engine for small-scale propulsion applications[R].AIAA 2001-3469, 2001
    [71]Micci Michael M, Ketsdever Andrew D. Micropropulsion for small spacecraft,Progress in Astronautics and Aeronautics Series [M].American Institue of Aeronautics and Astronautics, Inc., Reston, VA,Vol.187,2000.
    [72]Mawid M , Park T,Sekar B. Performance analysis of a pulse detonation device as an Afterburner[R].AIAA 2000-3474
    [73]Shota Kitano, Yuichiro Kimura,et al.Micro-Size Pulse Detonation Engine Performance[R].AIAA 2007-581,2007.
    [74]J.M. Austin, M. Cooper, S. Jackson,et al.Small Scale Detonation Studies[R].Caltech GALCITFM:2000.005,California Institute of Technology, Pasadena, CA,2000.
    [75]New.T.H,Panicker.P.K,et al.Experimental Investigations on DDT Enhancements by Shchelkin Spirals in a PDE[R].AIAA 2006-552,2006.
    [76]李建中,王家骅,范育新,等.煤油/空气气动阀式脉冲爆震发动机试验[J].航空动力学报,2005,20(5):802-806. LI Jian-zhong, WANG Jia-hua,FAN Yu-xin, et al.Experimental Investigation on Kerosene/Air Pneumatic Valve Pulse detonation Engine[J].Journal of Aerospace Power,2005,20(5):802-806. (in Chinese)
    [77]范育新.大管径气动阀式两相脉冲爆震发动机几个关键技术研究[D].南京:南京航空航天大学,2005. Fan YX,Investigation on everal key technologies of two-phase valveless large-seale pulse detonation engine[D]. Nanjing: Nanjing University of Aeronautics & Astronauties, 2005. (In Chinese)
    [78]Baklanov D I, Gvozdeva L G, Kaltayev A, et al.Transition of combustion to detonation in turbulentflow in the pulsating detonation engine [J]. Khimichskaya Fizika, 2005, 24(7): 11-19.
    [79]李建中.煤油/空气气动阀式脉冲爆震发动机研究[D].南京:南京航空航天大学,2006. LI Jianzhong. Investigation on Kerosene/Air Aero-valve Pulse detonation Engine [D]. Nanjing: Nanjing University of Aeronautics & Astronauties, 2006. (In Chinese)
    [80]《航空发动机设计手册》总编委会.航空发动机设计手册第9册:主燃烧室[M].北京:航空工业出版社,2000. Chief Editing Organization of《Aeroengine Design handbook》.The ninth volume of aeroengine design handbook:Main Combustor[M]. Beijing:Aviation Industry Press, 2000;3-4.
    [81]张义宁,王家骅,张靖周.王家骅,张靖周频率30~50Hz两相脉冲爆震发动机研究[J].航空学报,2006,27(6):993-997. ZHANG Yining,WANG Jiahua,ZHANG Jingzhou.Investiga -tion on Two Phase Pulse Detonation Engine at the Frequency 30~50Hz,Aeta Aeronautica et Astronautica Sinica,2006,27(6):993-997.(in Chinese)
    [82]M.A. Mawid, T.W. Park, Turbofan engine thrust augmentation with pulse detonation afterburners-nozzle influence, AIAA 2002-4073, 38th AIAA/ASME/SAE/ASEE Joint Propulsion conference and exhibit,7-10 July 2002, Indianapolis, Indian, USA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700