发动机进气道沿程结冰参数变化数值模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在航空发动机进口部件积冰的数值模拟中,一般都是将大气参数作为发动机进口截面上的结冰参数,而实际情况下,由于进气道对气流的调节作用,发动机进口处的结冰参数是不同于其在大气环境中的分布的。针对这个问题,本文以FLUENT商业软件为平台,数值模拟了空气-过冷水滴两相流在经过进气道沿程时,结冰参数的变化过程,为发动机进口部件的结冰数值模拟提供了较准确的结冰参数分布。
     在研究过程中,首先了解了两相流数值计算时常用的两种基本计算方法:拉格朗日法和欧拉法。而后针对本研究所模拟工况下稀疏两相流动的特点,分析FLUENT软件中几个多相流模型的适用条件、控制方程,计算过程,并进行了探索计算,通过对计算结果的分析对比,最终确定了基于拉格朗日法的计算模型作为本文研究中所采用的模型。在应用该模型计算时,为了满足过冷水滴在大气中的分布状态,对模型中喷射源类型、喷射源数量、边界条件、颗粒轨道数量等设置条件进行了大量的探索性研究,总结出一套利用该模型模拟大气结冰状态下两相流动的方法。然后针对二维进气道支板模型,计算了不同结冰参数变化对颗粒运动轨迹、水滴浓度场分布以及局部水收集系数的影响,并将计算结果与参考文献进行了定性的对比,验证了该方法的可行性。
     在二维计算方法的基础上,针对复杂的三维S弯进气道模型,计算了空气-过冷水滴两相流的运动,并分析了喷射源、边界条件等的设定方法。得到了包括温度,速度,过冷水滴浓度场等主要结冰参数在进气道沿程的变化过程。
At present, the atmospheric icing parameters have been direct used for the icing accretion numerical simulation of the Aeroengine entrance parts. Actually, the icing parameters of the engine entrance is different from the atmospheric icing parameters due to the inlet effect. The purpose of this thesis is to find an effective method for simulate the two phase flow of the air-supercooled water droplet and get the outlet icing parameters by the use of FLUENT software.
     Firstly, we were known that there are two kinds of basic models for the multiphase flow, i.e. Lagrangian model and Euler model. According to the characteristic of the sparse two-phase flow, we analyse the conditions, governing equations and computational process of the different multiphase models in FLUENT. Through the compare of the calculation results, we determine to use the model which is based on the Lagrangian method for numerical simulation. In order to find an effective method to simulate the two-phase flow by the Lagrangian model, we did much research on the effects of various jet sources, number of jet sources, boundary conditions and number of particle trajectories. We found the relationship between particle trajectories, droplet concentration and the local water collection efficiency through a 2D simulation. At last, we thought that the Lagrangian method is feasible to simulate the two-phase flow in this thesis..
     For a three-dimensional S-Duct inlet model, according to the numerical simulation methods of 2D model, we use discrete-phase model to solve the air flow field firstly, then calculate the supercooled water droplets movement along the inlet, At last, we get the parameters variation along the inlet which including temperature, velocity and concentration of supercooled water droplets.
引文
[1] McVey, Oliver, Pullen, Ramani et al, Inclement weather & aircraft engine icing, GE Aviation, 2007
    [2]袁燮纲,飞机防冰系统,航空专业教材编审组出版,1996
    [3]金维明,王炳仁,刘建文.飞机发动机积冰原因探讨
    [4]赵坚行,燃烧的数值模拟,科学出版社,2002
    [5] Maltezos, D. G., Osonitsch, C., Shaw, R. J. et al, Particle trajectory computer program for icing analysis of axisymmetric bodies(a progress report), AIAA 1987-0027, 1987
    [6] Caruso, S. C., LEWICE droplet trajectory calculations on a parallel computer, AIAA 1993-0172, 1993
    [7] Bourgault, Y., Habashi, W. G., Dompierre, J. et al, An Eulerian approach to supercooled droplets impingement calculations, AIAA 1997-0176, 1997
    [8] Tong, X-L and Luke, E.A., Eulerian simulations of icing collection efficiency using a singularity diffusion model, AIAA 2005-1246, 2005
    [9] Luliano, E., Brandi, V., Mingione, G. et al, Water impingement prediction on multi-element airfoils by means of Eulerian and Lagrangian approach with viscous and inviscid air flow, AIAA 2006-1270, 2006
    [10] Sutikno Wirogo & Shashidhar Srirambhatla,An Eulerian Method To Calculate The Collection Efficiency On Two And Three Dimensional Bodies AIAA-2003-1073 ,2003
    [11] A.Hamed,K.Das,D.Basu Numerical simulations of ice droplet trajectories and collection efficiency on aeroengine rotating machinery,AIAA 2205-1248,2005
    [12] Bidwell, C. S., Collection efficiency and ice accretion calculations for a Boeing 737-300 inlet, NASA TM-107347, 1996
    [13] Farag, K. A. and Bragg, M. B., Three dimensional droplet trajectory code for propellers of arbitrary geometry, AIAA 1998-0197, 1998
    [14] Nathman, J. K. and McComas, A., Icing collection efficiency from direct simulation, AIAA 2007-0505, 2007
    [15] Scott Bartlett,Mike Stringfield and Tom Tibbals,Determination of Liquid Water Content in the AEDC Engine Test Cell,AIAA-92-0165,1992
    [16] Michael Papadakis and Kuohsing E.Hung et al,Experimental Investigation of Water Droplet Impingement on Airfoils,Finite Wings,and S-Duct Engine Inlet,NASA/TM-02-211700,2002
    [17] C.Scott Bartlett and William J.Phares Sverdrup Technology,Icing Testing of a Large Full-Scale Inlet at the Arnold Engineering Development Center,AIAA-93-0299,1993
    [18] M.Papadakis,Wichita KSR.Elangovan,G.A.Freund et al,Experimental Water Droplet Impingement Data on Two-Dimensional Airfoils,Axisymmetric Inlet and Boeing 737-300 Engine Inlet,AIAA-87-0097,1987
    [19] J.Luttrell and T.West,F-22 Inlet Shed Ice Particle Sizing Test,AIAA 2001-0091,2001
    [20] C.S.Bidwell,S.R.Mohler et al,Collection Efficiency and Ice Accretion Calculations for a Sphere,a Swept MS(1)-317 Wing,a Swept NACA-0012 Wing Tip,an Axisymmetric Inlet,and a Boeing 737-300 Inlet,AIAA-95-0755,1995
    [21]杨倩,常士楠,袁修干,水滴撞击特性的数值分析方法研究,航空学报,2002,23(2):173-176
    [22]杨倩,常士楠,袁修干,发动机进气道水滴撞击特性分析,北京航空航天大学学报,2002,28(3):362-365
    [23]张大林,杨曦,昂海松,过冷水滴撞击结冰表面的数值模拟,航空动力学报,2003,18(1):87-91
    [24]王世忠,航空发动机进口支板的积冰机理和数值模拟研究,南京航空航天大学硕士学位论文,2003年
    [25]陈宝,李长坤,翼型结冰过程中过冷水滴运动的数值模拟研究,气动研究与实验,2006,3:23-1
    [26] Guo R W,SEDDON J.Swirl characteristics of an S-shaped air intake with both horizontal and vertical offsets[J].Aeronatical Quarterly,1983,(5):121-149
    [27] SEDDON J,GOLDSMITH E L.Intake aerodynamics[M].London:Blackwell Science,1999
    [28] Wellborn S R,Reichert B A,Okiishi T H.Experimental investigation of the flow in a diffusing S-duct[R].AIAA,1992
    [29]林麒,郭荣伟.大攻角下S弯进气道内的气流特性,南航科技报告NHJB-87-4370
    [30] Stock C P,Bissinger N C.The Design and Development of the Tornado Engine Air Intake.AGARD Symposium on Aerodynamic of power Plant Installation,Papaer10,May,1981
    [31] Guo R W,Seddon J.The Swirl in an S-duct of Typical Air Intake proportions.The Aeronautics Quarterly,May,1983,Part 2
    [32] Guo R W,Seddon J.Characteristics of an S-Shaped Air Intake with Both Horizontal and Vertiacl Offsets.The Aeronautics Quarterly,May,1983,Par
    [33] Stocks,C.P.Bissinger,N.C.The design and Development of the Tornado Engine Air Intake.AGARD Symposion on“Aerodynamics of Power Plant Installation”,Paper 10,May,19
    [34]林麒,郭荣伟.S弯进气道内旋流的有源涡控研究[J]航空学报.1989,10(1) A35-40
    [35]翁小侪,郭荣伟.一种腹下S弯进气道低速大攻角下气动特性实验,航空动力学报,1000-8055(2008)09-1573-06,2008
    [36] S.Lee,E.Loth,A.Broeren et al,Simulation of Icing on a Cascade of Stator Blades,AIAA-2006-208,2006
    [37] Marlin D.Breer and Mark P.Goodman,Three-Dimensional Water Droplet Trajectory Code Validation Using an ECS Inlet Geometry,NASA-cr-191097,1993
    [38] D.G.Maltezos,SUNY,Farmingdale,Particle Trajectory Computer Program for Icing Analysis of Axisymmetric Bodies,AIAA87-0027,1987
    [39] G.Mingione and V.Brandi,A 3D Ice Accretion Simulation Code,AIAA99-16159,1999
    [40] Mark A.Reissig,Ice Accumulation Potential Of An Aircraft Screen Inlet,AIAA99-0622,1999
    [41] M.Milanez,G.F.Naterer,Eulerian Formulation For Droplet Tracking In Dispersed Phase Of Turbulent Myltiphase Flow,AIAA 2002-3182,2002
    [42] M.Quero,D.W.Hammond,R.Purvis et al,Analysis of Super-cooled Water Droplet Impact on a Thin Water Layer and Ice Growth,AIAA 2006-466,2006
    [43] Stanton, D. W. and Rutland, C. J.. Modeling fuel film formation and wall interaction in diesel engines, SAE Paper 1996-0628, 1996
    [44] Stanton and, D. W. and Rutland, C. J., Multi-dimensional modeling of thin liquid films and spray-wall interactions resulting from impinging sprays, International Journal of Heat and Mass Transfer, 41:3037-3054, 1998
    [45]圆截面S形进气道中的流动,计算飞航导弹,1993年第9期,1993
    [46]郭东明,超音速S型进气道流场数值模拟,西北工业大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700