滴膜交替流动现象及其对液液萃取性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在液液萃取过程中,分散相液滴在连续相中的流动方式对传质效率有着重要的影响,研究发现,当分散相呈现液滴-液膜-液滴-液膜……交替流动(简称滴膜交替流动)时,传质效率可以得到大大提高,为此开发了一种可以实现滴膜交替流动的组合规整填料并对其传质性能进行了研究。
     论文首先采用实验的方法对新型规整填料的萃取性能进行了测试。实验在φ150mm的填料萃取塔中进行,实验体系为30%磷酸三丁酯(简称TBP)+煤油-醋酸-水。实验测定了不同操作条件下不同填料的表观传质单元高度,结果表明:在相同的操作条件下,组合规整填料的表观传质单元高度较鲍尔环填料平均降低了58%。
     第二,本文还通过计算流体力学(CFD)方法,对滴膜交替流动现象进行了流动与传质性能模拟,作为对比,同样模拟了传统规整填料的单液滴传质。采用的物系为中等界面张力的乙酸丁酯-丙酮-水。模拟结果表明:采用滴膜交替流动的方式,计算所得进出口浓度差比波纹板要大10.8%,从另一个角度说明采用滴膜交替流动方式具有一定的优越性。
     在实验室研究及理论研究的基础上,利用新型填料进行了初步的工业实验,对某药厂的醋酸废水的进行了萃取实验。初步实验结果表明,当废水中醋酸浓度大于3%时,新型填料优势并不明显,但当废水中醋酸浓度低于3%时,采用新型填料的萃取率最高比原工业装置的350Y填料高21%。工业实验发现固定油水两相流量比为1:1,当两相流量均为0.15m3/h时的萃取率最高。
For liquid-liquid extraction process, the flow pattern of the dispersed phase is of great importance in determining the mass transfer efficiency. Primary experiment revealed that the mass transfer efficiency improved dramatically when dispersed phase realized droplet-film alternate flow rather than only droplet flow. Based on this phenomenon, a novel hybrid structured packing that suitable for liquid-liquid extraction was developed and the mass transfer performance of the packing was investigated.
     Firstly, the mass transfer performance of different packings including the novel hybrid structured packing was measured by experiment. Experiment was carried out in a 150mm in diameter extraction column. 30% TBP (kerosene)-acetic acid-water was selected as the test system. The apparent height of mass transfer unit (HTU) of different packings was calculated using the experimental data. Result showed that in the same operating condition, novel structured packing can get the best mass transfer efficiency, and the HTU of which was 58% lower than pall ring in average.
     Secondly, mass transfer and flow pattern of droplet-film alternate flow were simulated using the computational fluid dynamic (CFD) method. In order to compare the mass transfer efficiency of this kind of flow, flow pattern occurred in traditional structured packing was also simulated. Butyl-acetate-acetone-water with medium surface tension was selected as the test system. Results showed that the concentration difference between inlet and outlet of droplet-film alternate flow was 10.8% higher than traditional structured packing. It showed that the simulated result was coincident with the experiment.
     Based on laboratory and theoretical research, the novel hybrid packing was applied to carry out industrial experiment. Acetic-acid was separated from the waste water of a pharmaceutical factory. Primary result showed that the advantage of novel hybrid packing was not obvious when the mass concentration of acetic-acid in waste water was larger than 3%. When the concentration was lower than 3%, the extraction ratio of novel hybrid packing was 21% higher than Mellapac 350Y. Fix the two phase flow rate ratio as 1:1, the extraction ratio reached highest when both of the two phases flow rate were 0.15m3/h.
引文
[1]费维扬,面向21世纪的溶剂萃取技术,化工进展,2000,19(1):11~13,31
    [2] Thornton J D. Science and Practice of Liquid-Liquid Extraction. Vol 2 Oxford: Clarendon Press,1993
    [3]汪家鼎,陈家镛,溶剂萃取手册,北京:化学工业出版社,2002.180
    [4] Lo T C, Hanson C, Band M H L. Handbook of Solvent Extraction New York: John Weley & Sons,1983
    [5] Book of Abstracts, ISEC, Solvent Extraction for the 21th Century, Barcelona: University Publication of Catalunya, 1999
    [6] Sole K C. Proceeding of ISEC’02 Vol.2. South Africa, Cape Town,2002: 1033~1038
    [7]费维扬,任钟旗,萃取塔设备强化的研究和应用,化工进展,2004,23(1):12~17
    [8] Hanson C Proceeding of International Symposium on Solvent Extraction in Metallurgical Processes.Proc.Int.Symp On Solvent Extraction in Metallurgical Processes, Antwerp of Belgium,1972,6~10
    [9] Humpbrey J.L., Fair J, The essential of extraction. Chem. Eng., 1984, 91(19): 76~95
    [10]周静,乔玉琼,对稀土萃取混合澄清槽的改进研究,西南民族学院学报:自然科学版,1995,21(2):154~158
    [11]齐鸣斋,戴杰,转盘萃取塔的改进,化工学报,2000,51(3),399~403
    [12]费维扬,王运东,一种装有级间转动挡板的转盘萃取塔,中国专利,ZL99 106151.9.1999
    [13]时钧,汪家鼎,余国琮等,化学工程手册(第二版),北京:化学工业出版社,1996,15:93~110
    [14]兰昭洪,金属丝网波纹填料及其在化工生产中的应用,贵州化工,2005,30(1):13~14
    [15]张海霞,朱彭玲,固相萃取,分析化学,2000,28(9):1172~1180
    [16]阎吉昌,环境分析,化学工业出版社,2002:742~752
    [17]高巍,武中平,徐春祥等,固相萃取技术研究,江苏食品与发酵,2006,3:17~21
    [18] TeGrotenhuis, W.E.; Cameron, R.J.;Butcher,M.G.et al. Microchannel devices for efficient contacting of liquids in solvent extraction. Separation Science and Technology, v 34,n 6~7,Apr~May,1999,p 951~974
    [19]陈大昌,魏建华,刘乃鸿等,塔填料的工业应用及评价,化学工程,1995,23(3):15~35,64
    [20]李天文,刘鸿生,散装填料的发展趋势,化工设备与管道,2000,37(6):17~20
    [21]叶咏恒,何建斌,高效散装填料的新构型,化学工程,1997,25(3):27~31
    [22]费维扬,陈德宏,温晓明,内弯弧形筋片扁环填料的特点和应用前景,化工进展,1997,16(2):36~40
    [23]费维扬,温晓明,房诗宏等,性能优异的QH-1型扁环填料,炼油设计,1993,23(11):34~37
    [24]黄洪,共轭环填料萃取塔的性能研究及数学模型:[博士学位论文],广州;华南理工大学,1997
    [25]曹纬,国外填料塔最新发展,石油化工设备,2000,29(2):34~37
    [26]朱慎林,顾永生,蜂窝型格栅规整填料萃取塔,中国专利,91207863.4,1991-12-11
    [27]朱慎林,张宝清,许成政,VKB型填料抽提塔的流体力学和传质性能的研究,石油炼制与化工,1994,25(11):10~15
    [28]朱慎林,陈德宏,费维扬,蜂窝(FG)型规整填料萃取塔的性能研究,化学工程,1993,21(1):15~21
    [29]朱慎林,王刚,朴香兰等,驼峰筛板萃取塔的性能研究及应用,石油炼制与化工,2001,32(12):38~42
    [30]尹国玉,规整填料萃取塔的流体力学和传质性能研究:[硕士学位论文],北京;清华大学,1988
    [31] Annette Eckstein, J?rg Koch, Alfons Vogelpohl, et al. Applicability of the Sulzer OPTIFLOW Structure for the Liquid-Liquid Extraction-Investigation of Single Drops.Chem.Eng.Techol,1999,22(11):909~912
    [32]王岩,张彬德,复合填料在润滑油溶剂精制萃取塔中的应用,石油炼制与化工,1999,30(1):37~43
    [33]费维扬,任钟旗,萃取塔设备强化的研究和应用,化工进展,2004,23(1):13
    [34] Stevens G.W., Chap8, in“Liquid-Liquid Extraction Equipment”, ed by Godfrey J.C., Slater M.J., Wiley, New York,1994
    [35]尹国玉,规整填料萃取塔的流体力学与传质特性研究:[硕士学位论文],北京;清华大学化工系,1988
    [36]李群生,周媛,经过表面处理的BHB250Y型填料在液-液萃取中的应用,化学工程,2006,34(6):77~78
    [37] Misek.T, Berger.R, Schroter.J, Standard Test Systems for Liquid Extraction, Rugby, England, 1985
    [38]杨廷钊,杨永会,孙国新等,不同稀释剂中TBP萃取醋酸的研究,高等学校化学学报,1996,17(4):515~518
    [39]徐晨,醋酸稀溶液络合萃取过程研究:[硕士学位论文],南京;南京工业大学,2004
    [40]许林妹,华韬,TBP络合萃取醋酸稀溶液的特性,江南大学学报(自然科学版)2004,3(3):299~303
    [41]汪家鼎,陈家镛,溶剂萃取手册,北京:化学工业出版社,2001:100~102
    [42]陈涛,张国亮,化工传递过程基础(第二版),北京:化学工业出版社,2002:208
    [43]刘春江,胡雪沁,高峰等,采用滴膜交替流动过程的新型萃取工艺及采用的组合式规整填料,中国专利,200810152768.5,2008-11-3
    [44]汪家鼎,陈家镛,溶剂萃取手册,北京:化学工业出版社,2001:222
    [45] D.Chen, W.Fei, H.R.C.Pratt. Impacts of packing section on mass transfer to drop swarms. Solvent Extraction and Ion Exchange,2001,19(1):167~179
    [46] Shword Pigford. et al.传质学,化学工业出版社,1988
    [47]雷夏,费维扬,汪家鼎等,化工学报,1982(4):368
    [48]傅德薰,马延文,计算流体力学,北京:高等教育出版社, 2002
    [49] B. G. M. van Wachem, A. E. Almstedt, Methods for multiphase computational fluid dynamics, Chemical Engineering Journal, 2003, 96: 81~98
    [50] Delnoij E., Lammers F. A., Kuipers J. A. M., et al, Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model, Chem. Eng. Sci., 1997, 52(9): 1429~1458
    [51] Delnoij E., Kuipers J. A. M., van Swaaij W. P. M., Dynamic simulation of gas-liquid two-phase flow: effect of column aspect ratio on the flow structure, Chem. Eng. Sci., 1997, 52(21-22): 3759~3772
    [52]杨芬芬,新型网架填料萃取塔的性能研究:[硕士学位论文],天津;天津大学,2007
    [53]李健,新型萃取填料的性能测试及研究:[硕士学位论文],天津;天津大学,2007
    [54]侯贵军,液滴破碎现象及其对液液传质影响的实验研究:[硕士学位论文],天津;天津大学,2008
    [55] M. Wegener; J. Grunig; J. Stuber et al. Transient rise velocity and mass transfer of a single drop with interfacial instabilities-experimental investigations. Chemical Engineering Science,62(2007),2967~2978
    [56]陈德宏,QH-1型填料萃取塔性能和数学模型的研究:[博士学位论文],北京;清华大学,1997
    [57]古凤才,肖衍繁,基础化学实验教程,北京:科学出版社,2000:140~143
    [58]夏成,圆环法测定磷酸三辛酯对水的界面张力,黎明化工,1990,(3):36~39
    [59]中化化工标准化,GB615-88,化学试剂沸程测定通用方法,中华人民共和国国家标准,北京:中国标准出版社,2006
    [60]冯亚云,冯朝伍,张金利,化工基础实验,北京:化学工业出版社,1999:178~179,199
    [61]时钧,汪家鼎,余国琮等,化学工程手册(第二版),北京:化学工业出版社,1996,15~22
    [62]王树楹,现代填料塔技术指南,北京:中国石化出版社,1998:275
    [63] Kazuyasu Sugiyama, Shu Takagi, Yoichiro Matsumoto, Multi-scale analysis of bubbly flows, Computer Methods in Applied Mechanics and Engineering, 2001, 191: 689~704
    [64] Delnoij, E., Kuipers, J. A. M., van Swaaij, W. P. M., Computational fluid dynamics applied to gas–liquid contactors, Chem. Eng. Sci., 1997, 52(21-22): 3623-3638
    [65]汪家鼎,陈家镛,溶剂萃取手册,北京:化学工业出版社,2001:216~222
    [66]刘国杰,贺网兴,正常沸点下液体摩尔体积的基团贡献法,化学工程,1990:18(4):62~66
    [67]翁燕,吴国玢,赵学端,流体粘度对涡轮流量计性能影响的理论预测,上海机械学院学报,1990,12(2):11~22
    [68]夏清,陈常贵,化工原理(修订版),天津:天津大学出版社,2005:145~148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700