IN718合金熔模精铸3D-Kagome结构的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3D-Ka gome夹芯结构是近年来提出的一种力学性能十分优异的新型点阵夹芯结构。与金字塔型、四面体型芯子结构相比,3D-Ka gome芯子结构有更高的强度、更好的抗屈曲性能和各向同性特性。
     本文以3D-Ka gome夹芯结构为研究对象,采用AnyCasting铸造模拟软件对Inconel718镍基高温合金熔模精密铸造3D-Ka gome夹芯结构的过程进行数值模拟仿真,分析了浇注系统、型壳预热温度及浇注温度对铸件成形性的影响,并研究了合金的显微组织及力学性能。
     针对3D-Ka gome结构的特点,设计了3种缝隙式浇注系统,分别对3种浇注系统的充型凝固过程进行数值模拟,并采用Niya ma判据对凝固过程中可能产生的缩孔、缩松缺陷进行了预测分析。
     Inconel718镍基高温合金的充型及凝固过程的缺陷预测表明,同一种浇注系统,在型壳预热温度不变的条件下,缺陷出现的概率随着浇注温度的提高而降低,但是浇注温度过高,出现缺陷的概率反而更高;在浇注温度不变的条件下,型壳预热温度提高有利于铸件的成形,但是过高的型壳预热温度增大了缩孔、缩松缺陷的趋势;随着缝隙式浇道的宽度及浇道数量的增加,出现缺陷的概率亦随之减少。
     因此对浇注系统、型壳预热温度及浇注温度进行了正交实验分析,发现采用双缝隙式浇注系统,浇注温度为1460℃,型壳预热温度为860℃的情况下,缺陷出现的概率最小。本文在优化后的工艺参数条件下,用Inconel718镍基高温合金对3D-Ka gome结构进行真空熔模精密铸造,浇注后的铸件充型完好,表面光滑。
Sand wich structure with 3D-Ka gome truss core, a new truss core structurewith superior mecha nica l, is brought forward in recent years. Compared withpyra mida l and tetra hed ral truss cores, 3D-Ka gome truss core possesses the higherstrength, grea t resista nc e to plastic buck ling and the excellent isotropicperforma nce.
     In this paper, 3D-Ka gome truss core was considered as the object of study,based on AnyCasting of casting process simula tion softwa re. The numerica lsimula tion process of the 3D-Ka gome truss core on Inconel718 supera lloyinvestment casting was ana lysied. The effects of ga ting system, parameters(pouringtemperature and prehea ted temperature of shell mould ) to the figura tion of trusscore were also resea rched , and studied the microstructures and mecha nica lproperty of Inconel718 supera lloy.
     To understa nd the characteristics of investment casting of 3D-Ka gome trusscore, different ga ting systems were designed. In addition, the defect of the trusscore panels was pred icted by the criterion of Niya ma: the poles in the midd le of thetruss core panels were the most likely to form shrinka ge cavity and porosity.
     The defect pred iction in filling seq uence and solid ifica tion seq uence ofsupera lloy Inconel718 showed tha t the probability of defect decreased with theincreasing of the pouring temperature when the prehea ted temperature of the shellmould was content, ho wever the probability of defect increased when pouringtemperature was too high; higher prehea ted temperature of shell mould was benefitfor figura tion of truss core when the pouring temperature was fixed, but theprobability of defects increased if the prehea ted temperature of shell mould was toohigh; the probability of defects decreased with wid th and increasing qua ntity of slotga ting system, too. Therefore, the effects of slot ga ting system, pouring temperatureand prehea ted temperature of shell mould based on orthogona l test were disscussed,we obta ined tha t the optimum combina tion was when the pouring temperature was1460℃, prehea ted temperature of shell mould was 860℃with double slot ga tingsystem.
     The 3D-Ka gome truss core was successfully cast on Inconel718 supera lloy invacuum ind uction furnace on the cond ition sta ted above.
引文
1 Gibson L. J, Ashby M. F.多孔固体结构与性能.清华大学出版社. 2003:2~3
    2 A. G. Eva ns, J. W. Hutchinson, N. A. Fleck. et al. The Topologica l Designof Multifunctiona l Cellula r Meta ls. Progress in Materia ls Science.2001, 46:309~327
    3 M. F. Ashby, A. G. Eva ns, N. A. Fleck. Meta l Forms. A DesignGuide.Butterworth-Heinema nm. 2000, 2:9~11
    4卢天健,何德坪,陈常青等.超轻多孔金属材料的多功能特性及应用.力学进展. 2006, 36(4):517~535
    5范华林,杨卫.轻质高强点阵材料及其力学性能研究进展.力学进展.2007,37(1):99~112
    6 Wadley H N G. Multifunctiona l period ic cellula r meta ls.Phil Tra ns R SocA.2006,364(1838):31~68
    7卢天健,张钱城,王春野等.轻质材料和结构在机床上的应用.力学与实践.2007, 29(6):1~10
    8卢天健,刘涛,邓子辰.多孔金属材料多功能化设计的若干进展.力学与践,2008,30(1):1~9
    9 Lu T J, Liu T, Deng Z C. Thermoelastic properties of pin-reinforced sand wichfoa m cores. Sci China Ser E-Tech Sci. 2008, 51(2):1-16
    10范华林,杨卫,方岱宁等.新型碳纤维点阵复合材料技术研究.航空材料学报,2007,26(1):73~ 77
    11张东利,陈振茂,徐明龙等.涡流检测超轻夹层栅格材料的有效性.无损检测. 2008, 30(7):704~ 711
    12郑华勇. Kagome点阵夹芯板的抗冲击性能研究.工程力学.2007, 24:86.
    13董建新. INCONEL718高温合金的发展.兵器材料科学与工程.1996, 19(2):46.
    14 J. Wang, A. G. Eva ns, K. Dha rmasena, H. N. G. Wadley. On the performa nce ofTruss Panels with Kagome Cores. Interna tiona l Journa l of Solids and Structures.2003, 40:6981~6988
    15赵明汉等.高温合金精密铸造工艺技术的发展.热加工工艺技术与装备.2005,10:37
    16陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望.航空材料学报.2000, 20(1):55~61
    17郑运荣.我国低Cr高W系列铸造镍基高温合金的发展应用.航空材料学报.2003, 23(10):227~232
    18马岳,胡尧和等.对美国Howmet公司铸造高温合金生产技术及发展的评述.材料工程. 1998, 3:46~ 49
    19陈荣章.北京航空材料研究院铸造高温合金发展40年.材料工程. 1998,4:3~6
    20 20 C. Pierre, K. Tasadd uq. Evolution of Ni-based Supera lloys for Single Crysta lGas 16 C. T. SIMS, W. C. HAGEL. The Super-a lloys. John Wiley & Sons. 1972
    21西姆斯C T,斯特劳夫N S,里格尔W C.高温合金.大连理工大学出版社.1991
    22 R. E. Scha frik, D. D. Ward, J.R.Groh. Supera lloys 718,625a nd VariousDeriva tives. TMS. 2001:1~11
    23 E. A. Loria. Journa l of Meta ls. 1988:36
    24 J. X. Dong. Alloy design and development of INCONEL718 type all Materia lsscience and Engineer. 2009:216
    25郑运荣.我国低Cr高W系列铸造镍基高温合金的发展应用.航空材料学报.2003, 23(10):227~232
    26方岱宁,郭海成等.轻质点阵材料的力学行为分析,首届全国航空航天领域中的力学问题学术研讨会论文集(下册). 2004:22~24
    27徐胜利,王博等.多层桁架类夹层结构与蜂窝夹层结构的比较和优化.首届全国航空航天领域中的力学问题学术研讨会论文集(下册). 2004:263~26
    28 T. J. Lu. Hea t transfer efficiency of meta l honeycombs. Interna tiona l Journa l ofHea t and Mass Tra nsfe. 1999, 42:2031~2040
    29 T. J. Lu, L. Valdevit, A. G. Eva ns. Active cooling by meta llicsand wich structures with period ic cores. Progress in Materia ls Science. 2005,50:789~815
    30 A. G. Eva ns, J. W. Hutchinson, N. A. Fleck,et al. The topologica l design ofmulifuntiona l cellula r meta ls. Progress in Materia ls Science 2001, 46:309~327
    31 Wadley H N G, Fleck N A, Eva ns A G. Composites Science and Technology.2003, 63:2331
    32 A.G.Eva ns, J.W.H.utchinson, N.A.Fleck, M.F.Ashby, H.N.G.Wadley, Thetopologica l design of multifunctiona l cellula r meta ls. Progress in Materia lsScience 2001,46:309-327
    33 H. N. G. Wadley, N. A. Fleck, A. G. Eva ns. Fabrica tion and structura lperforma nce of period ic cellula r meta l sand wich structure. Composites Scienceand Technology. 2003, 63:2331~2343
    34 Crupi V. Monta nini R Aluminium foa m sand wiches colla pse modes under sta ticand dyna mic three—point bend ing. Int J Impact Eng. 2007, 34(3):509
    35 Basir sha fiq, eta l. Fatigue characteristices of foa m core sand wich Composites.Int J Fatigue. 2006, 28(2):96
    36 Nitin Kulka rni, eta l. Fatigue crack growth and life pred iction of foa m coresand wich composites under flexura l load ing. Comp Struct. 2003, 59(4):499
    37张卫红,吴琼,高彤.周期性金属桁架夹芯板的力学性能研究进展.昆明理工大学学报. 2005, 30(6):24~28
    38 N. Wicks. Optimiza tion and actua tion truss structures. Ph.D.Thesis, Harva rdUniversity. 2003: 18~20
    39董建新,梁强,孟维钢,谢锡善. Inconel718合金组织的电镜观察.兵器材料科学与工程. 1991, 10:16~19
    40 Kooistra G. W, Deshpa nde V. S, Wadley H. N. G. Compressive beha vior of ageha rdenable tetra hed ral la ttice truss structure made from aluminum. ActaMATERIALia. 2004, 52:4229~4237
    41 Wallach J. C, Gibson L. J. Defect sensitivity of a 3D truss ma teria. ScriptaMateria lia. 2001, 45:639~644
    42 Nitin Kulka rni, eta l. Fatigue crack growth and life pred iction of foa m coresand wich composites under flexura l load ing. Comp Struct. 2003, 59(4):499
    43 N.Wicks, S.D.Guest. Single member actua tion in la rge repetitive trussstructures. Int.J.SolidsStruct. 2004, 41:965~978
    44 GK. Upad hya, S. Das. Modelling the Investment Casting Process. A NovelApproch for View Factor Calcula tiongs and Deffect Pred iction. AppliedMathema tica l Modelling. 1995, 19:354~362
    45 S.V. Shepel, S. Paolucci. Numerica l Simula tion of Filling and Solid ifica tion ofPerma nent Mold Casting. Applied Therma l Engineering. 2002, 22:229~248
    46 S. M. H. Mirbagheri, H.Esmaeileia n. Simula tion of Melt Flow in Coated MouldCasting in the Casting Process. Journa l of Materia ls Processing Technology.2003, 142:493~507
    47 J. Christophe, Gebelin. Modeling of the Investment Casting Process. Journa l ofMateria ls Processing Technology. 2003, 135:291~300
    48 D. Z. Li, J. Campbell. Filling System for Investment Cast Ni-base TurbineBlades. Journa l of Materia ls Processing Technology. 2004, 148:310~316
    49王文清,李响.铸造过程计算机数值模拟技术.重型机械科技.2001,(1,2):14~18
    50 H. J. Lin, W.S. Hua ng. Combined Fluid Flow and Heat Rransfer Ana lysis forthe Filling of Castings. AFS Tra ns. 1988, 96:447~ 458
    51 Y.Jia ng, Y. P. Zha ng. Development of Numerica l Simula tion of FillingProcesses of Castings. Hot Working Technology. 2006, 35(1):70~72
    52 K. I. Suzuki, K. Nishika wa, S. Watakabe. Mold Filling and Solid ifica tion duringCentrifuga l Precision Casting of Ti6A14V Alloy. Materia ls Tra nsaction, JIM.1996, 37(12):1793
    53 M. Wu, M. Augthun, I. Wagner. Casting of Ti Prostheses and Impla nts with theAid of Numerica l Simula tion. Journa l of the Minera ls Meta ls and Materia lsSociety. 2001, 53:36~38
    54 C. Beckerma nn. Moldelling of Future Needs Macrosegrega tion. Applica tion andFutrue Needs. 2002, 47:243~261
    55 W. J. Boettinger, M. E. Willia ms, S. R. Coriell. Alpha Case Thick nessModeling in Investment Castings. Meta ll Materia l Tra nsaction B. 2000,31B:1419~1427
    56 D. Mahoney, D.J. Browne. Use of Experiment and an Inverse Method to Stud yInterface Heat Tra nsfer during Solid ification in the Investment Casting Process.Experimenta l Therma l and Fluid Science. 2000, 22:111~122
    57徐达鸣,李鑫.钛合金离心精密铸造充型过程计算机模拟. 2002,51(1):39~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700