地热换热器循环液温度设定对地源热泵系统影响的分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着节约能源与环境保护成为当今科学技术发展的重要方向,建筑领域里对降低空调采暖系统能耗的研究越来越受重视。在这种背景下,地源热泵技术由于利用大地中的大量低品位热能来实现对建筑物的供热制冷,并且高效环保,得到了越来越多的应用。地源热泵与传统空调最大的区别就在于地热换热器,合理的设计地热换热器可以节省初投资,有效的利用土地,并使运行安全可靠,降低系统的运行成本。
     地热换热器是地源热泵系统的重要组成部分,地热换热器循环液进出口温度的设定是否合理,对整个地源热泵系统能否满足要求和正常的使用关系重大。所以对地热换热器循环液进出口温度进行研究非常必要。
     首先,合理准确的建筑负荷计算是地热换热器设计计算的基础。本文将介绍建筑负荷计算的方法和应用计算机技术的建筑负荷模拟软件,并且对建筑逐时负荷进行累加处理,得到放入地热换热器中的累计负荷。
     其次,应用“地热之星v3.0”对济南地区某建筑进行模拟,设定不同的地热换热器循环液进出口温度,对地热换热器的设计长度进行分析讨论,并分析各种温度变化条件下,地埋管每米的平均换热量。对不同构造(单U、双U)的地热换热器换热性能进行了对比模拟。分析对比了两种不同构造(单U、双U)连续运行时的地下循环液温度变化情况。在连续运行过程中,换热器附近温度状况持续恶化,对系统运行不利。通过采取可控间隙运行的方式,让土壤温度有一定的恢复时间,提高换热率以减少换热器数量,可以节省土壤资源和建设成本。在间歇运行的模拟中,分析了对应的地热换热器循环液进出口温度的变化规律。
     再次,以实际地源热泵工程为例,并进行设备的选择以及初投资计算,然后将地源热泵系统的冬季和夏季运行费用累加即得全年总运行费用。并与三种空调形式进行经济分析,运用费用年值指标对几种方案进行比较。结果在循环液温度较为合适时地源热泵方案比其他空调系统更经济合理,具有明显的技术经济优势。
     本文所做的工作,主是设计地源热泵地热换热器循环液最佳的不同进出口温度,循环液出口温度的设定不仅影响系统的效率,同时也影响到系统的初投资,根据本文研究表明:采用浓度为7%的NaCl溶液时,济南夏季地热换热器循环液的最佳出口温度为:27℃-32℃,与此对应的冬季出口温度为:3℃-9℃。这些研究结果对地源热泵项目的设计与施工具有一定的参考价值,能够为本技术的推广提供有力支持。
While the energy-saving and environmental protection becomes an important direction of science and technology development, more and more attention has been paid to reduce the energy consumption in buildings. In this background, more and more ground-source heat pump (GSHP) systems have been used because of their advantages such as making use of the low-grade energy source for building heating and air-conditioning, highly efficiency and environmental protection features. The GSHP system is quietly different from conventional HVAC system in its ground heat exchanger (GHE), which is buried underground to absorb or dissipate heat. Reasonable designing of the GHE would reduce the first cost of the project, make rational use of the field, ensure reliably operate and save operation cost of the project.
     The ground heat exchanger is the important constituent of the ground-source heat pump system. Reasonable inlet and outlet temperature of the circulating fluid in the ground heat exchanger is significant. So it is very necessary to research the ground heat exchanger.
     First, the reasonable accurate building load computation is the foundation of the GHE designing. This thesis introduces methods of the building load computation and the software that using computer technology to simulate. To get the load that put into GHE, we cumulate sum the hourly building load.
     Second, while the "Geothermal Stars v3.0" is applied on a building of the Jinan area to simulate the situation, different inlet and outlet temperatures of circulating fluid in the ground heat exchanger was set to analyze and discuss the designed length of the ground heat exchanger, and then analyze the average heat exchange capacity per meter in a varying temperature conditions. Compared simulation was done to the heat transfer properties of the ground heat exchanger of different styles (single-U, double-U) and backfill materials. And the varying temperature of the underground circulating fluid in the two different styles (single-U, double U) were analyzed and compared. It's negative to the running of the system while the temperature around the heat exchanger continues to deteriorate during the continuous operation process. By the way that adoption of controlled space, which allows the soil temperature has a certain recovery time and improve the heat transfer rate in order to reduce the number of heat exchangers, and it can also save soil resources and construction costs.In the simulation of the intermittent operation, the corresponding inlet and outlet temperatures of circulating fluid in the ground heat exchanger was analyzed.
     Again, take the actual ground-source heat pump project for example, and make the choice of equipment as well as the calculation of the first cost, and then the total annual operating costs was derived from adding up the operating costs in winter and summer of the ground-source heat pump system. And it was analyzed in economic with the other three kinds of air-conditioned form, the annual cost indicators was used to compare these schemes. As a result, the way that the ground-source heat pump when the temperature of the circulating fluid is appropriate was more economic and reasonable than any other air-conditioning systems and it had obvious technical and economic advantages.
     The main work this paper done was to design an optimal different inlet and outlet temperature of the circulating fluid in ground-source heat pump,the enactment of the outlet temperature of the circulating fluid not only affected the efficiency but also the initial investment of the system. According to this article, studies have shown that:With the concentration of 7% NaCl solution the optimal outlet temperature in summer of Jinan is:27℃~32℃,and the corresponding outlet temperature in winter is:3℃~9℃.These researches had a certain reference value on the design and construction of the ground-source heat pump project and they can provide strong support for promotion of this technology.
引文
[1]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社,2006
    [2]张佩芳.地源热泵在国外的发展概况及其在我国应用前景初探[J].制冷与空调,2003,3(3):18-19
    [3]Large Geothermal Heat Pump Plants In The Central Region Of Germany,Sanner B.et al. Geothermies.2003V32.(4-6):589-602
    [4]Padhmanabhna. SankaranarayananaK. Modeling Verification And Optimization Of Hybrid Ground Source Heat Pump Systems In EnergyPlus,OKLAHOMA STATE UNIVERSITY
    [5]斐侠风.地源热泵技术的应用现状及展望[J].制冷与空调,2004,4(3):76-78
    [6]Heat Transfer In Ground Heat Exchangers With Ground Water Advection International Journal Of Thermal Sciences,2004V43(12):1203-1211
    [7]Burkhard Sannera Constantine Karytsasb Dimitrios Mendrinosb Ladislaus Rybachc.Current status of ground source heat pumps and underground thermal energy storage in Uurope:Sanner B.et--al.Geothermics, 2003V32(4-6):579-588
    [8]李新国,陈志豪,赵军等.桩埋管与井埋管实验与数值模拟[J].天津大学学报,2005,38(8):679-683
    [9]杨志波,董华.地源热泵系统在国内外研究状况及其发展前景[J].建筑热能通风空调.2003(3):21-23
    [10]Zogou O.Stamatelos A. Effect Of Climatic Conditions On The Design Optimization Of Heat Pump Systems For Space Heating And Cooling Effect Of Climatic Conditions On the Design Optimization Of Heat Pump Systems For Space Heating And Cooling Fuel And Energy Abstracts,1998V39 (3):216
    [11]吕悦,莫然,周沫等.中国地源热泵技术应用发展情况调查报告(2005-2006)[J].工程建设与设计,2007(9):4-11
    [12]王敏健,叶衍华,彭国荣等.地源热泵的地热能利用方式与工程运用[J].流体机械,2002,79(21):30-33
    [13]王勇,刘宪英,付祥钊等.地源热泵及地下蓄能的实验研究[J].暖通空调,2003,33(5):21-23
    [14]王勇,卢军,丁豪等.中安翡翠湖湖心别墅地源热泵系统分析[J].制冷与空调,2005,33(5):34-36
    [15]李炳熙,王勇镖,姜宝成等.地源热泵小负荷状态下的运行优化[J].太阳能学报,2003,24(5):27-29
    [16]曲云霞.地源热泵系统模型与仿真[D].西安建筑科技大学,博士学位论文,2004
    [17]葛云亭,彦启森,彭雄兵等.制冷空调系统仿真数学模型和仿真研究[J].制冷学报,1995,4(5):32-34
    [18]张琴舜,邹文进,沈秀中等.冷凝器动态数学模型和仿真研究[J].计算机工程,2001,27(2):78-81
    [19]崔萍.地热换热器的传热模型与设计计算.[D].山东建筑工程学院,2002
    [20]周伟,曲云霞,方肇洪等.冷凝器换热模型与仿真[J].山东建筑工程学院学报,2003,18(1):41-45
    [21]赵海波,杨昭.地源热泵系统的热力学分析[J].节能技术,2004(1):29-32
    [22]杨昭,张世钢,孙政等.地下地源热泵的最优化研究[J].太阳能学报,2002,23(6):688-691
    [23]Stefanuk N B M. Aplevich J D. Renksizbulut M. Modeling And Simulation Of Super Heat Controlled Water-To-Water Heat Pump,1992V98 (2):172-184
    [24]付祥钊,王勇,朱照华等.两种地质气候条件对沿途换热器的影响[J].暖通空调,2002,32(2):23-26
    [25]范蕊,马最良.热渗流偶合作用下地下埋管换热器的传热分析[J].暖通空调,2006,36(2):21-25
    [26]葛云亭,彦启森,彭雄兵等.制冷空调系统仿真数学模型的理论与实验研究[J].制冷学报,1995(4):31-35
    [27]Zogou O.Effect Of Climatic Conditions On The Design Optimization Of heat Pump Systems For Space Heating And Cooling Fuel And Energy Abstracts,1998V39(3):216-218
    [28]Padhmanabhan Sankaranarayanan K. Modeling Verification And Optimization Of Hybrid Ground Source Heat Pump Systems In Energy Plus. OKLAHOMA STATE UNIVERSITY.
    [29]Present Status Of Underground Thermal Utilization In Japan.Yasukawa K and Takasugi S.Geothermics 2003V12(5):609-618
    [30]杨卫波,施明恒,董华等.太阳能—地源热泵系统(SESHPS)交替运行性能的数值模拟[J].热科学与技术,2005,4(3):228-232
    [31]胡松涛,张莉,王刚等.太阳能——地源热泵与地板辐射空调系统联合运行方式探讨[J].暖通空调,2005,35(3):12-15
    [32]ASHRAE 1995.Commercial/Institutional Ground-Source Heat Pump Engineering Manual [J]. American Society of Heating,Refrigerating and Air-Conditioning Engineers,Inc.,Atlanta
    [33]Bose J E,Parker J D And McQuiston FC. Design/data Manual For Closed-loop Ground Coupled Heat Pump Systems [J].Oklahoma State University for ASHRAE,1985
    [34]Caneta Research Inc. Commercial/Institutional Ground Source Heat Pump Engineering manual [J]. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE),Atlanta,1995
    [35]中华人民共和国建设部.GB50366—2005.地源热泵系统工程技术规范[S].北京:中国建筑出版社,2005
    [36]Mei V C and Emerson C J. New Approach For Analysis Of Ground Coil Design For Applied Heat Pump Systems [J].ASHRAE Transactions,1985V91(2):1216-1224,
    [37]Mei V C and Baxter V D. Performance Of A Ground-coupled Hest Pump With Multiple Dissimilar U-tube Coils In Series [J].ASHRAE Transactions,1986V92(2):22-25
    [38]Mei V C and Fischer S K. A Theoretical And Experimental Analysis of Vertical Concentric-tube Ground-coupled Heat Exchangers [M].Oak Ridge National Laboratory/CON153,1984
    [39]Mei V C. Horizontal Ground Coil Heat Exchanger Theoretical And Experimental Analysis [M].Oak Ridge National Laboratory/CON193,1986
    [40]Eskilson P. Thermal Analysis Of Heat Extraction Boreholes [D].Doctoral Thesis,University of Lund, Department of mathematical Physics,Lund,Sweden,1987
    [41]Hellstrom G. Ground Heat Storage,Thermal Analysis Of Duct Storage Systems[D].Doctoral Thesis, Department Of Mathematical Physics,University Of Lund,Sweden.1991
    [42]Metz P D. A Simple Computer Program To Model Three-dimensional Underground Heat Flow With Realistic Boundary Conditions [J].ASME Transactions,1983,11(5):11-14
    [43]Andrew J W. Metz P D And Saunders J H. A refined Computer Program For The Transient Simulation Of ground Coupled Heat Pump System [M].Blookhaven National Laboratory,1984V34(18):1120-1127
    [44]Andrew J W.Optimized Ground Heat Pump Design,Phase 1 Final Report[R]. Blookhaven National Laboratory 38869,for U.S. Department of Energy,1985
    [45]Yavuzturk C,Spitler JD and Rees S J. A transient Two-dimensional Finite Volume Model For The Simulation Of Vertical U-tube Ground Heat Exchangers [J].ASHRAE Transactions,1999V105 (2):465-474
    [46]Bi Y H,Chen L G and Wu C. Ground Heat Exchanger Temperature Distribution Analysis And Experimental Verification[J].Applied Thermal Engineering,2002(22):183-189,
    [47]Spitler J D,Liu X B, Rees S J and Yavuzturk C. Simulation and design ground source heat pump systems [J].山东建筑工程学院学报,2003,18(1):1-10,
    [48]王勇.地源热泵研究[J].国外建筑科学,1997(2):32-39
    [49]Zeng H Y, Diao N R and Fang Z H. A Finite Line-source Model For Boreholes In Geothermal Heat Exchangers [J].Heat Transfer-Asian Research,2002V31 (7):558-567,
    [50]曾和义,刁乃仁,方肇洪.地源热泵竖直埋管的有限长线热源模型[J],热能动力工程,2003,18(2):166-169
    [51]Zeng H Y,Diao N R and Fang Z H. Heat Transfer Analysis Of Boreholes In Vertical Ground Heat Exchangers[J].International Journal of Heat and Mass Transfer,2003V46 (23):4467-4481,
    [52]曾和义,方肇洪.双U形埋管地热换热器的传热模型[J].山东建筑工程学院学报,2003,18(1):6-9
    [53]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器钻孔内的热阻[J].煤气与热力,2003,23(3):134-138
    [54]满意.地源热泵负荷系统的研究.[D],山东建筑大学,硕士学位论文,2005
    [55]G K Batchelor.An introduction of fluid dynamics. New York:Cambrage U-niversity Press,2000
    [56]Clement Kleinstreuer. Engineering Fluid DynamicsNew York:Cambridge U-niversity Press,1997
    [57]汪训昌,林海燕,杨书渊等.空调全年逐时动态负荷计算提供什么信息和回答什么问题?——栋办公楼空调全年逐时动态负荷计算的结果及其分析[J],暖通空调,2005,35(10):44-54
    [58]李凡,于立强,张晶明.U形垂直埋管式岩土源热泵制冷性能的实验研究[J].建筑热能通风空调,2000(3):14-17
    [59]江亿.建筑环境系统模拟分析方法——DEST[M].中国建筑工业出版社,1996
    [60].于玮.基于建筑负荷动态模拟的地埋管换热器设计及参数分析[D].山东建筑大学,硕士学位论文,2007
    [61]王勇.动态负荷下地源热泵性能研究[D].重庆大学,硕士学位论文,2006
    [62]崔萍.地热换热器的传热模型及设计计算[D].山东建筑工程学院,硕士学位论文,2002
    [63]Caneta Research Inc. Commercial/institutional Ground Source Heat Pump Engineering Manual, American Society of Heating [M].Refrigerating and Air-Conditioning Engineers (ASHRAE),Atlanta,1995
    [64]曾和义.U形竖直埋管地热换热器传热模型研究[D].山东建筑工程学院,硕士论文,2003
    [65]郎四维,徐伟,冯铁栓.地源热泵设计应用若于问题探讨[J],暖通空调,1996(1):15-19
    [66]刘文学.地源热泵地埋管的传热性能实验研究[D].北京工业大学,硕士学位论文,2000
    [67]徐国波.能源技术经济学[M].’湖南人民出版社,1982
    [68]刘长滨.建筑工程技术经济学[M].北京:中国建筑工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700