曝气生物流化池处理微污染水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物流化池反应器(MBBR)是将传统活性污泥法和生物膜法相结合并引入流态化技术应用于水处理的一种新型生物膜水处理工艺。它具有处理效率高、容积负荷大、抗冲击能力强、设备紧凑占地少等优点。论文依托国家水体污染控制与治理科技重大专项(2008ZX07422003),以生物流化池反应器为研究对象,对人工模拟微污染水进行预处理研究,并对试验填料流化状态及流化池设计优化进行了研究。
     本论文首先以两级串联生物流化池反应器为研究对象,研究了流化池反应器自然挂膜和接种挂膜启动方式对比,并通过改变填充比、曝气强度和水力停留时间,考察不同条件下,MBBR对微污染水中有机物和氨氮的去除效果,提出了反应器最佳运行条件。试验结果表明:(1)两种挂膜方式启动过程中,在温度为25±5℃,从CODCr和氨氮的去除效果上看,MBBR1和MBBR2均在16天左右完成挂膜启动,不添加接种污泥不会造成挂膜启动时间的延长,采用自然挂膜生物膜相比接种挂膜厚;(2)常温下,水力停留时间2h,曝气强度5m3/m2时,处理效果最佳。氨氮和CODMn的去除率分别达到96%和70%,出水氨氮低于0.5mg/L,符合国家饮用水卫生标准要求;(3)低温条件下(T=6-10℃),CODMn和氨氮的去除效果明显下降。氨氮去除率由96%下降到70%,CODMn去除率由70%下降到40%。(4)低温条件下,反应器停止运行,重新启动需要6天左右。常温下,反应器的重新启动时间只需4天。
     为了进一步研究影响生物流化池反应器去除效果的因素,本文又对四种不同粒径悬浮填料流化状态,以及通过CFD软件模拟流化池内部气液两相流动优化流化池设计运行条件进行了研究。研究结果表明:(1)通过给填料配重,增大填料密度,可以有效改善填料流化效果;填料密度越接近于水,流化越容易。(2)流化实验结果表明,10mm柱状填料流化效果良好,所需曝气强度小,且在预处理微污染水实验中能有效去除有机物和氨氮,可以在水厂生物预处理工艺中推广使用。(3)可以考虑开发一种新型填料,填料密度选择在0.96-0.98g/cm3左右比较适合。(4)通过Fluent软件模拟曝气生物流化池中气液两相之间的相互作用。比较了不同纵横比、不同孔径、不同曝气速度流化池内气液两相的流速分布,对比数值模拟结果,发现曝气速度越大,曝气孔径越大,紊动强度和环流强度越大,有利于流化传质,提高去除率。(5)可以运用Fluent软件模拟反应器运行情况来解决设计和运行过程中遇到的问题。
Moving Bed Biofilm Reactor (MBBR) is a new type of membrane water treatment process that combined with the traditional activated sludge,biofilm and fluidization technology. It has many advantages,such as high treatment effieiency, volumetric loading large, strong impactand the advantages of small footprint and so on. This paper depends on the National water pollution control and management technology major projects (2008ZX07422003), MBBR was used in advanced treatment of artificial simulation of micro-polluted water and the experimental filler fluid status and fluid design optimization Pool studied.
     First of all, the treatment effects of the MBBR were well studied. Two-stage biological fluidized reactor were used in series. The status of the two-stage biological fluidized reactor natural biofilm formation and inoculated biofilm formation, which was studied in order to help to accelerate the start-up. Through changes in reaction parameters such as the filling ratio, aeration intensity and hydraulic retention time, the carbonaceous and nitrogenous removal capacity of MBBR in the micro-polluted water was investigated. The best reactor operating condition which is based on the experimental results of the analysis. The results showed that:(1) Biofilm formation of two ways during startup,under the temperature of 25±5, from CODMn and NH4+-N removal efficiency point of view, MBBR1 and MBBR2 were completed in 16 days biofilm formation and start, Don't add activated sludge will not cause biofilm formation and start time, compared with the two ways linked membrane biofilm thickness; (2) Under the conditions of ambient temperature, when HRT was 2h, aeration intensity was 5m3/m2, the removal of reactor reached the best. The removal rates of NH4+-N and CODMn reached 96% and 70%, and the effluent ammonia below 0.5mg/L, to meet standards for drinking water quality. (3) Under the conditions of low temperature(T=6-10℃), CODMn and NH4+-N removal efficiency decreased. NH4+-N removal rate decreased from 96% to 70%, CODMn removal rate decreased from 70% to 40%.(4) Under the conditions of low temperature, the reactor stops running, restart needs 6 days. Under the conditions of normal temperature, taking only 4 days to restart the reactor.
     To further study the impact of biological fluidized reactor pool removal of factors, this paper has suspended filler particle size on the four different streams of the state, and by CFD software to simulate the flow of pool within the gas-liquid two-phase flow to optimize the design and operation of pool conditions were studied. The results showed that:(1) To increasing weight of the packing, increasing packing density, can effectively improve the flow of packing effect; packing density is close to the water, streaming easier.(2) The flow of experimental results show that,10mm cylindrical packing fluid works well, it required low-intensity aeration, and can effectively remove CODMn and NH4+-N in the pretreatment experiments for micro-polluted water, it should be widespread used in water plant biological pretreatment. (3) Considering the development of a new packing, choose more suitable density of about 0.96-0.98g/cm3.(4) Fluent software to simulate aeration of Health through the logistics of the pool liquid two-phase interaction.Comparison of different aspect ratios, different diameter, different aeration tanks of gas and liquid flow rate of two-phase velocity distribution, compared to simulation results and found that the greater the aeration rate, aeration larger the circulation the greater the intensity of turbulence intensity and conducive to fluid mass transfer, increase the removal rate.(5) Simulated using Fluent software to encountered in the process to solve the operation of the reactor design and operation of the problems.
引文
[l]张忠祥,钱易.城市可持续发展与水污染防治对策[M].北京,中国建筑工业出版社,1994:6-7
    [2]国家环保局.2001年环境公报.中国环境科学出版社,2002:1-3
    [3]金传良等主编.水量与水质技术实用手册.中国标准出版社,1996
    [4]国家环保局.2008年环境公报.中国环境科学出版社,2009:3-6
    [5]贺瑞敏,朱亮,谢曙光.微污染水源水处理技术现状及发展[J].陕西环境,2003,10(1):2-3
    [6]宁海丽,朱琨.微污染水处理技术研究进展[J].2006,32(2)98-100
    [7]Rebhun M, LurieM.Control of organic matter by coagulation and floc separation[J].water Sei.&Teehnol,1993,27(11):1-11
    [8]娄涛.沸石粉强化处理微污染水源研究[D].长沙:湖南农业大学,2006
    [9]郝晓地,张自杰.水体氮污染及其防治对策[J].环境污染与防治,1990,vol.12(4):25-27
    [10]郑平,冯考善.饮用水的生物脱氮[J].环境污染与防治,1997,19(1):32
    [11]徐志霞.生物滤池处理微污染水源研究[D].上海:同济大学,2007
    [12]杨启峰,李鑫,刘秀芝.地下水中铁、锰的危害及去除方法[J].黑龙江环境通报,1999,23(4)
    [13]朱亮.供水水源保护与微污染水体净化[M].化学工业出版社.2005
    [14]李圭白等.用高锰酸钾去除和控制受污染水源水水中的致突变物[J].给排水,1992,18(2):15-18.
    [15]熊正为,陈春宁.微污染水源水传统处理工艺的强化措施[J].中国锰业,2001,19(1):13-14.
    [16]陈莉,范跃华.微污染原水的处理技术发展与探讨[J].重庆环境科学,2002,24(6):67-69.
    [17]马军,盛力等.改性石英砂滤料强化过滤处理含藻水[J].中国给水排水,2002,18(10)
    [18]于万波.臭氧一生物活性炭技术在微污染饮用水处理中的应用[J].西南给排水,2003,25(2):8212.
    [19]史晓燕,肖波,杨家宽.粉末活性炭处理焦化废水酚的研究[J].环境技术,2004,1:15-18.
    [20]Camel V, Bermond A.The use of ozone and associated oxidation processes in drinking water treatment [J].Water Research,1998,32, (11):320823222.
    [21]Gunten U.Ozonation of drinking water Part Ⅰ:Oxidation kinetics and product formation [J].Water Research,2003,37:144321467.
    [22]黄晓东,王占生.氯化反应条件对三氯甲烷生成量的影响[J].中国给水排水,2002,18(6):14-17.
    [23]许景翼,贾霞珍.含藻微污染水的高锰酸钾预处理研究[J].中国给水排水,1999,15(1):56-58.
    [24]章琪,姚萱.高锰酸钾复合药剂预处理巢湖微污染原水[J].中国给水排水,2002,18(8):36-39
    [25]刘伟,马军.高铁酸钾预氧化处理受污染水库水[J].中国给水排水,2001,17(7):70-73
    [26]王晓昌.臭氧处理的副产物[J].给水排水,1998,24(12)
    [27]王栋,包俊.二氧化氯在水处理中的应用[J].西南给水排水,2001,23(4):12-14
    [28]夏四清,高延耀,周增炎.受污染饮用水水源生物预处理技术[J].上海环境科学,2000,19(6):285-287.
    [29]张燕,王志奇,陈英旭.微污染水源水的控制技术[J].环境污染与防治,2001,23(2):69-71.
    [30]李德生,张金萍.微污染水源水中污染物质的控制和净化技术[J].甘肃环境研究与监测,2007,13(3):18-22
    [31]潘碌亭,肖锦,赵建夫等.氧化偶合絮凝法处理微污染原水的初步研究[J].水处理技术,2003,29(5):301-303.
    [32]吴红伟,刘文君,张淑琪等.提供生物稳定饮用水的最佳工艺[J].环境科学,2000,21(3):64-67.
    [33]Dunlop P S M, Byrne J A. The photocatalytic removalof bacterial pollutant sfrom drinking water. Journal ofphotochemistry and photobiology A:Chemist ry,2002,148:3552363.
    [34]翟砚章.膜技术处理饮用水是当代重大技术突破—当代水处理新技术[J].净水技术,1998,18(1):38-40.
    [35]侯立安.纳滤膜分离技术处理饮用水的应用研究[J].给水排水,2000,26(2):21-23.
    [36][美]I-S范.气液固流态工程[M].(俞芷青,译)北京:中国石化出版社,1989
    [37]晏安.三相好氧生物流化池污水处理技术应用研究进展[J].四川环境,2001,20(3),5-9
    [38]韦朝海.生物好氧流化池废水处理技术研究进展[J].环境科学与技术.1998,(4),5-9
    [39]周平,王世和等.生物膜厚度对流化池反应器性能影响的分析[J].环境科学,1994,16(2),1-6
    [40]C T M J Frijters. Extensive nitrojen removal in a new type of air-lift reactor[J].Wat Sci technol,2000, 41(4-5):97-103
    [41]Jahren Sigrun J, Rintala Jukka A. Degaard Hallvard.Aerobic biological fluidized beds reactor treating thermomechanical pulping whitewater under themophilic conditons[J].water research,2002,36(4):1067-1075
    [42]TatsuhikoSuzuki. A new sewage treament system with fluidized pellet bed separator[J]. WAT Sci Technol,2003,27(11):185-192.
    [43]Cooper P F, Williams S C. High-Rate Nitrification in a Biological Fluidized Bed[J].Wat Sci Tech, 1999,22(1-2):431-442
    [44]F.Fdez-Polanco F, et al. Behaviour of an Anaerobic/Aerobic Pilot Scale Fluidized Bed for the Simultaneous Removal of Carbon and Nitrogen[J]. Water Science Technology,2004,29(10-11)
    [45]Leo H Vredenbregt, et al. Fluid bed biological nitrification and denitrification in high salinity wastewater[J].Water Science Technology,2002,36(1):93-100
    [46]叶正芳,李彦锋,李贤真等.中国环境科学[J].2002,22(1):32-35
    [47]陈怡,卢建国.曝气生物流化池处理高浓氨氮废水[J].中国给水排水,2003,4(19)
    [48]韦朝海,吴锦华,慎义勇等.优势菌种与三重环流三相流化池耦合处理油制气厂废水[J].环境科学学报,2002,22(2):171-176
    [49]徐斌,夏四清,高廷耀等.生物流化池预处理黄浦江原水中试研究[J].工业水处理,2003,2,23(2)
    [50]于鑫,李旭东,杨俊仕.微污染原水的生物流化池预处理技术试验研究[J].环境工程,1999,10,17(5)
    [51]张宝军,于鑫,李寿泉.微污染原水生物流化池预处理工艺研究[J].徐州建筑职业技术学院院报,2001,9,1(3).
    [52]耿英慧,张明,徐亚同等.移动床生物膜反应器预处理微污染原水挂膜过程研究[J].北方环境,2003,1
    [53]张庄.沉沙池水力特性与悬浮物去除率[J].水动力学研究与进展:A辑,1997,12(2):217-225
    [54]季民,董广瑞.移动床生物膜反应器水力特性的数值模拟[J].中国给水排水,2002,18(5):14-17
    [55]毛劲乔.曝气池气液两相数学模型的建立与应用[D].南京:河海大学,2002
    [56]程文,宋策,周孝德.曝气池中气液两相流的数值模拟与实验研究[J].水利学报,2001,(12),32-35
    [57]国家环境保护总局,水和废水监测分析方法编委会等.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002,98-354.
    [58]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000,99-100.
    [59]李平,吴海珍,韦朝海.生物流化池反应器生物膜特性研究进展[J].环境污染治理技术与设备,2002,3(9):75-79.
    [60]Fowler H W, Mckay A J, Micobial Adhesion to Surface[M]. London:Academic Press,1980,143-161.
    [61]郑兰香,彭党聪.MBBR的生物反硝化特性[J].工业安全与环保.2006,32(8):33-35.
    [62]于洪斌,全燮,丁蕴铮等.MBBR处理生活、生产混合污水[J].中国给水排水,2005,21(1):49-52.
    [63]兰善红,陈锡强,梁谋会等.新型填料曝气生物滤池处理生活污水的研究[J].中国给水排水,2007,23(9):77-80.
    [64]Raymond.M.Hozalski.TOC.Removel.in.Biological.Filters[J]. AWWA,1995, (12):40-45
    [65]许保玖.当代给水与废水处理原理[M].高等教育出版社,1991,3941
    [66]肖羽堂,许建华.生物接触氧化工艺应用评析[J].净水技术,1998,16(7):16-17
    [67]刘翔,高廷胭.生物接触氧化法处理污水的一种新型填料-悬浮填料[J].重庆环境科学,1999, 21(1),42-44
    [68]NEWELL B. Characterizing bioreactor mixing with residence time distribution (RTD) test [J]. Water Sci Technol,1998,37(12):43-37.
    [69]戚以政.生化反应动力学与反应器[M].北京:化学工业出版社,1996.
    [70]卡尔许格尔.生物反应工程[M].王建华译.成都:成都科技大学出版社,1995
    [71]陈常贵,柴诚敬,姚玉英.化工原理[M].天津:天津大学出版社,2004
    [72]NISIPEANU,EUGEN,HARWOOD, et al.CFD analysis streamlines equipment design [J]. Water and Wastewater Inter,2002,11(1):29-30
    [73]CFX2412 Solver, CFX International 8119 Harwell, Didcot, OXfordshire OX 11 ORA, united kingdom, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700